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Current practices ensure software reliability through careful testing, but while testing can re-

veal the presence of bugs, it cannot entirely guarantee their absence. By contrast, certi�ed systems

come with a formal speci�cation and a computer-checked proof of correctness, providing strong

evidence that the system behaves as expected in all possible scenarios. Over the past decade, re-

searchers have been able to build certi�ed systems of signi�cant size and complexity, including

compilers, processor designs, operating system kernels and more.

Building on these successes, the DeepSpec project seeks to assemble them as certi�ed compo-

nents to build large-scale heterogeneous certi�ed systems. However, by necessity, these certi�ed

components use a broad variety of semantic models and veri�cation techniques. To connect them,

we must �rst embed them into a common, general-purpose model. The work I present here pro-

poses to combine game semantics, algebraic e�ects and the re�nement calculus to build models

suitable for this task. In particular, certi�ed abstraction layers and the certi�ed compiler Comp-

Cert can be embedded into a single framework supporting heterogeneous components, stepwise

re�nement, and data abstraction.
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Chapter 1

Introduction

1.1 Certi�ed systems at scale

Certi�ed software [Shao, 2010] is software accompanied by a mechanized, machine-checkable

proof of correctness. To construct a certi�ed program, we must not only write its code in a given

programming language, but also formally specify its intended behavior. Then, we must use spe-

cialized tools to construct evidence that the program indeed conforms to the speci�cation.

The past decade has seen an explosion in the scope and scale of practical software veri�cation.

Researchers have been able to produce certi�ed compilers [Leroy, 2009], program logics [Appel,

2011], operating system kernels [Gu et al., 2015; Klein et al., 2009], �le systems [Chen et al., 2015],

processor designs [Azevedo de Amorim et al., 2014; Choi et al., 2017] and more, often introducing

new techniques and mathematical models. In this context, there has been increasing interest in

making these components interoperable, with the goal of combining them—and their proofs of

correctness—into larger certi�ed systems.

1.1.1 The DeepSpec project

For example, the DeepSpec project [Appel et al., 2017] seeks to connect various components spec-

i�ed and veri�ed in the Coq proof assistant. The key idea behind DeepSpec is to use speci�cations

as interfaces between components. When a component providing a certain interface has been ver-

i�ed, client components can rely on this for their own proofs of correctness. Standardizing this

process would make it possible to construct large-scale certi�ed systems by assembling o�-the-

1
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shelf certi�ed components.

This approach promises bene�ts beyond the potential increase in the scale of certi�ed systems.

As it stands, a certi�ed system is only as trustworthy as its speci�cation. Indeed, it is possible to

prove a buggy system correct with respect to a buggy speci�cation. If the speci�cation is only

validated by a human expert subjecting it to careful examination, these bugs could go unnoticed

and persist in the �nal system. By contrast, if the same speci�cation is used as a premise in the cor-

rectness proof of a client component, its de�ciencies will become apparent, making it impossible

to carry out this second proof.

Moreover, internal speci�cations used as intermediate steps in the veri�cation of a complex

system disappear from its external characterization and no longer need to be trusted. This reduces

the ratio between the size of the system and the size of the trusted speci�cation.

1.1.2 CompCert

To an extent, these principles are already demonstrated in the structure of the certi�ed C compiler

CompCert [Leroy, 2009]. CompCert can emit assembly code for PowerPC, ARM, RISC-V and x86

processors, and supports an extensive subset of ISO C99 as its source language.

Like all components used in the DeepSpec project, CompCert was speci�ed and veri�ed in

the Coq proof assistant. As a certi�ed compiler, CompCert includes language semantics for the

source and target languages, and a proof of correctness relating the behaviors of the source and

target programs. For the purposes of this work, I will consider Clight as the source language of

CompCert.1 The architecture-speci�c assembly language targeted by CompCert is known as Asm.

CompCert’s correctness proof shows that if the compiler successfully transforms a source pro-

gram p into a target program p′, then the behavior of the target program re�nes that of the source

program:
CompCert(p) = p′

Clight[p] ⊇ Asm[p′]

In the statement above, the semantics of the source and target programs are expressed as the sets of

traces Clight[p] and Asm[p′]. Each trace records a possible execution of the corresponding program
1Clight is a simpli�ed dialect of C and an early intermediate language of CompCert. The utility program clightgen

included with CompCert can be used to convert C source code into a Coq de�nition of a Clight abstract syntax tree.
Source-level veri�cation tools interfaced with CompCert typically operate on this representation of the source program.
Because the resulting proofs characterize the Clight code directly, clightgen does not need to be trusted.
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p
Clight

SimplLocals
Clight

Cshmgen
Csharpminor

...
Linear

Linarize
Mach

Asmgen
Asm

p′

⇒

p
Clight

CompCert

Asm
p′

Figure 1.1: Structure of the certi�ed compiler CompCert. The source program p is progressively
transformed into the target program p′ by successive compilation passes, depicted here as rectan-
gular boxes. The horizontal line above each compilation pass depicts its source language, and the
one below it depicts its target language. Two passes can be composed when the target language
of the �rst one corresponds to the source language of the second one. See also Table 9.3.

as a sequence of events. The trace containment property Clight[p] ⊇ Asm[p′] expresses that every

possible behavior of the target program p′ is a possible behavior of the source program p.

The introduction of CompCert in 2008 represented a breakthrough in the scale and feasibility

of certi�ed software. The key to this achievement was the decomposition of CompCert into com-

pilation passes, which are veri�ed individually. When passes are composed to obtain the overall

C-to-assembly compiler (Figure 1.1), their correctness proofs can be composed as well to establish

the compiler’s overall correctness theorem. The �nal theorem does not mention the intermediate

programs or language semantics, so that a user only needs to trust the accuracy of the Clight and

Asm semantics, and the soundness of the proof assistant.

Since its introduction, CompCert has been used as a platform other projects have built upon.

For example, veri�cation tools have been created with soundness proofs connecting to CompCert

[Appel, 2011; Jourdan, 2016], and the composition techniques used to verify CompCert have been

extended in various directions [Kang et al., 2016; Song et al., 2019; Stewart et al., 2015].

1.1.3 CertiKOS

The techniques used in CompCert also provided a blueprint for the veri�cation of the operating

system kernel CertiKOS [Gu et al., 2015, 2016, 2018] developed in the Yale FLINT group. I joined
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C
TSyscall

Mn
TTrap

Mn−1

TTrapArg

...
MATOp

M2
MATIntro

M1
PreInit

C +Mn + · · ·+M1

⇒

C
TSyscall

CertiKOS

PreInit
C + CertiKOS

Figure 1.2: Structure of the certi�ed OS kernel CertiKOS. Here, boxes represent certi�ed abstrac-
tion layers and horizontal lines represent layer interfaces. The high-level client program C is
transformed into the complete low-level program C + CertiKOS by linking it with the succes-
sive certi�ed abstraction layers of CertiKOS. As before, the correctness properties of layers can be
composed to derive a correctness property for the whole system.

the FLINT group around the time the e�ort to verify a complete version of CertiKOS started.

CertiKOS is divided into several dozen certi�ed abstraction layers, which were speci�ed and

veri�ed individually. Layer interfaces provide an abstract view of a layer’s functionality, hiding

the procedural details and low-level data representations involved in its implementation. A layer

interface enumerates the primitives implemented by a layer and speci�es their expected behavior.

Client code can then be veri�ed in terms of this abstract view in order to build higher-level layers.

To make this possible, we parameterized CompCert semantics by a layer interface: for example,

the expression AsmL[C] denotes the set of traces generated by the client assembly program C

running on top of the layer interface L. Then a layer M implements an overlay interface L2 on

top of an underlay interface L1 when the following contextual re�nement property holds:

∀C · AsmL2 [C] ⊇ AsmL1 [C +M ] .

Here, the execution of the client code C on top of the overlay L2 serves as the speci�cation. The

property shows that this speci�cation can be implemented by running C together with the layer

implementation M on top of the underlay interface L1.

Certi�ed abstraction layers with compatible interfaces can then be chained together, in the
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same way two passes of a compiler can be composed when the target language of one corresponds

to the source language of the other. This allows us to derive a contextual re�nement property for

the whole kernel (Figure 1.2). The system call interface of CertiKOS is speci�ed by the topmost

layer interface TSyscall, and the basic facilities o�ered by the hardware are formalized as the base

layer interface PreInit. Then, by decomposing CertiKOS = Mn + · · · + M1 into 37 certi�ed

abstraction layers, we were able to derive the overall theorem:

∀C · AsmTSyscall[C] ⊇ AsmPreInit[C + CertiKOS] .

1.1.4 Horizontal composition

In addition to the vertical composition principles outlined above, CompCert and CertiKOS provide

limited forms of horizontal composition, which allow individual programs and layer implementa-

tions to be decomposed further.

In CompCert, this is used to model separate compilation. The original correctness theorem

of CompCert only characterized the compilation of a whole program, but in practice C programs

usually consist of several .c �les, known as compilation units. These components are compiled

independently, and the results are combined through linking to build an executable image. To

re�ect this, Kang et al. [2016] introduced a notion of program linking (+), and generalized the

correctness theorem of CompCert to the separate compilation property:

∀ 1 ≤ i ≤ k · CompCert(pi) = p′i

Clight[p1 + · · ·+ pk] ⊇ Asm[p′1 + · · ·+ p′k]

Likewise, in CertiKOS the veri�cation of a given layer can be decomposed into the veri�cation

of the individual functions which constitute its implementation. This is achieved through the layer

calculus presented in Chapter 4.

1.1.5 Challenges

The vertical and horizontal composition principles used in CompCert and CertiKOS enable the

construction of certi�ed systems of signi�cant size. However, extending them to build large-scale

certi�ed systems out of disparate certi�ed components is di�cult. A key aspect enabling com-
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position in CompCert and CertiKOS is the uniformity of the models underlying their language

semantics and correctness proofs. By contrast, across certi�ed software projects there exists a

great diversity of semantic models and veri�cation techniques. This makes it di�cult to formulate

speci�cations for interfacing speci�c projects, let alone devise a general method for connecting

certi�ed components.

Worse yet, this diversity is not simply a historical accident. The semantic models used in the

context of individual veri�cation projects are often carefully chosen to make the veri�cation task

tractable. The semantic model used in CompCert alone has changed multiple times, addressing

new requirements and techniques which were introduced alongside new compiler features and

optimizations [Leroy, 2012].

Given the di�culty of veri�cation, it is essential to preserve this �exibility in the choice of mod-

els used to verify individual components. To make it possible to link components veri�ed using a

variety of paradigms, we must then identify a model expressive enough to embed the semantics,

speci�cations and correctness proofs of all these paradigms. The model should provide high-level

composition and reasoning principles, allowing us to construct large-scale certi�ed systems.

1.2 General models for system behaviors

Fortunately, there is a wealth of semantics research to draw from as we attempt to design general

models for certi�ed components. I outline some of it below.

1.2.1 Symmetric monoidal categories

As a whole, category theory provides a general taxonomy of compositional structures found across

mathematics. In a category, two components (morphisms) can be chained together when the in-

terface which the �rst one provides (its target object) matches the interface which the second one

relies on (its source object). For example, as described above, compilation passes and certi�ed

abstraction layers both constitute categories.

Categories can be equipped with additional structure. In particular, symmetric monoidal cate-

gories allow components to be connected not only in series (◦) but also in parallel (⊗), as illustrated
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by the following rules:

f : A! B g : B ! C

g ◦ f : A! C

f1 : A1 ! B1 f2 : A2 ! B2

f1 ⊗ f2 : A1 ⊗A2 ! B1 ⊗B2

Many kinds of systems and processes exhibit this structure [Baez and Stay, 2010]. The basic

setup can be re�ned by introducing additional constructions, for instance modeling feedback loops

(traced monoidal categories) or allowing wires to run in both directions (∗-autonomous categories).

Symmetric monoidal categories appear in di�erent forms in many approaches to logic and

programming language semantics. For example, cartesian closed categories correspond to models

of the simply typed lambda calculus, and are a special case of symmetric monoidal categories.

However, symmetric monoidal categories in general do not require multiple components to be

able to connect to the same interface (∆ : A! A⊗A), giving us more �exibility when modeling

resources and stateful components. In the same way the simply-typed lambda calculus provides an

internal language for cartesian closed categories, various fragments of linear logic provide internal

languages for various kinds of symmetric monoidal categories.

In general, the theory of symmetric monoidal categories constitutes a repository of algebraic

structures formalizing the compositional aspects of all kinds of systems, and can guide the design

of general models.

1.2.2 Game semantics

A speci�c way to construct symmetric monoidal categories is game semantics [Abramsky, 2010],

which uses two-player games to describe the possible interactions between program components

and their environment, and uses strategies for these games to represent the externally observable

behavior of components.

Game semantics is a synthesis of various approaches to programming language semantics. It

is a form of denotational semantics, de�ning the behavior of complex programs in terms of the be-

havior of their components. However, since it models components by describing their interactions

across time, game semantics also exhibits a strong operational �avor. Finally, the usual construc-

tion of strategies used in game semantics is a variation on the trace semantics used in the context

of process algebras and concurrent systems.
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An early success of game semantics was the formulation of the �rst satisfactory fully complete

models for the programming language PCF [Abramsky et al., 2000; Hyland and Ong, 2000]. Since

then, game semantics have provided fully complete models for a wide variety of languages, in-

corporating features such as state [Abramsky and McCusker, 1997], control [Laird, 1997], general

references [Abramsky et al., 1998], concurrency [Ghica and Murawski, 2004] and more.

There are deep connections between game semantics and linear logic [Blass, 1993], and hence

symmetric monoidal categories, hinting at its promise as a general approach for modeling various

kinds of systems and processes. In particular, the typed aspect of many game models makes them

well-suited for describing the behavior of heterogeneous systems. However, the generality of game

models often translates to a fair amount of complexity, which imposes a high barrier to entry for

practitioners and makes them di�cult to formalize in a proof assistant.

1.2.3 Algebraic e�ects

While more restricted, the framework of algebraic e�ects [Plotkin and Power, 2001] is su�cient for

many modeling tasks, �ts within the well-known monadic approach to e�ectful and interactive

computations, and can be seen as a particularly simple version of game semantics.

In this framework, computations are modeled as terms in an algebra whose operations cor-

respond to the available e�ects. The computation proceeds inward, with each function symbol

representing an occurrence of an e�ect, and each argument representing a possible way for the

computation to be continued after the e�ect has occurred.

An advantage of this approach is that the methods and results of universal algebra become

available to reason about e�ectful computations. Equational theories can be used to characterize

the behavior of e�ects, and interpretations of one e�ect algebra into another model e�ect handlers

[Plotkin and Pretnar, 2009]. The free monad associated to an algebra can be used to recover the

more familiar monadic model of computational e�ects [Moggi, 1991]. Along these lines, interaction

trees [Xia et al., 2019] have been developed and formalized in the Coq proof assistant for use in

and across several DeepSpec projects.

Algebraic e�ects can also be understood as a limited form of game semantics: signatures can be

interpreted as simple games, and the abstract syntax trees of terms can be interpreted as strategies.

However, their restriction to �rst-order computation make them easier to formalize and reason



9

about than more general notions of games.

1.2.4 The re�nement calculus

While game semantics and e�ect systems have been proposed for a wide variety of programming

languages, there has been comparatively less focus on speci�cations and correctness properties.

By contrast, the general approach of stepwise re�nement, suggests a uniform treatment of pro-

grams and speci�cations. It has been studied extensively in the context of Dijkstra’s predicate

transformer semantics [Dijkstra, 1975], and in the framework known as the re�nement calculus

[Back and Wright, 1998].

In re�nement-based approaches, programs and speci�cations are expressed in a common lan-

guage, and a certi�ed program is constructed in an incremental manner, by applying a series of

correctness-preserving transformation to the (abstract and declarative) speci�cation until we ob-

tain a (concrete and executable) program. Correctness preservation is expressed by a re�exive and

transitive re�nement relation. Language constructions are monotonic with respect to this relation,

so that elementary re�nement rules can be applied congruently within any program context.

To make it possible to express speci�cations, the language is extended with non-executable

constructions. In particular, the re�nement calculus includes in�nitary versions of both angelic and

demonic nondeterministic choice operators. In its modern presentation, the re�nement calculus is

formulated in a lattice-theoretic framework where joins (t) and meets (u) correspond respectively

to angelic and demonic choices. The resulting language is remarkably expressive and requires

very few additional primitive constructions. The duality inherent in this approach also lends itself

to game-theoretic interpretations, and indeed the semantics of the re�nement calculus can be

expressed as a two-player game between the angel and the demon.

1.3 Compiling certi�ed components

There are two ways to look at CompCert in the context of software veri�cation: as a certi�ed

system with an interesting structure, or as a tool we can use to build certi�ed programs.
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1.3.1 CompCert as a certi�ed system

Until now, I have mostly discussed CompCert as an example of certi�ed system, describing the

compositional structures used in its construction as a precedent for the development of certi�ed

systems of signi�cant size.

From this point of view, the language semantics formalized alongside the compiler’s code are

components of its speci�cation, used to express the behavior expected of a C compiler and to

formulate the compiler’s correctness theorem. The long-standing e�ort to re�ne and generalize

these semantics and proofs can be understood as an attempt to model real-world compiler usage

more accurately, preventing bugs in the compiler from making it through the veri�cation process

due to simpli�cations in its speci�cation.

Connecting CompCert with other components could mean combining the correctness proof

of CompCert with that of a certi�ed assembler and certi�ed linker, perhaps even with a certi�ed

processor design. By verifying a larger portion of the toolchain end-to-end, this would provide a

stronger guarantee that the source programs written by the user will ultimately be executed in a

way that conforms to the C standard. Work in this direction includes Wang et al. [2019].

1.3.2 CompCert as a tool for building certi�ed systems

CompCert is also used as a tool for constructing other certi�ed systems. For example, CertiKOS

uses the assembly semantics formalized in CompCert to model the execution of the kernel’s code

and to express the correctness property which it must satisfy. In addition, CompCert is used to

compile the portions of the kernel which are written in C, and the compiler’s correctness theorem

allows us to use code proofs carried out with respect to the source code to prove the compiled

assembly code correct.

CompCert serves in this case as a rudimentary framework for the construction of certi�ed C

and assembly programs in the Coq proof assistant. From this point of view, e�orts to increase the

precision and �exibility of the compiler’s correctness theorem have made this framework more

general and compositional.
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1.3.3 Integrating CompCert into a general-purpose model

Given the specialized nature of CompCert’s semantics and proofs, it is di�cult to imagine that

“CompCert as a framework” itself could be extended to allow the construction of general certi�ed

systems spanning a wide range of abstraction levels. Still, given the importance of compilers in

the construction of present-day computer systems, and the importance of CompCert in the formal

methods landscape, its integration into any framework attempting to tackle end-to-end veri�cation

should be a litmus test, and would provide immediate bene�ts:

• CompCert uses transition systems to de�ne language semantics. Embedding these transition

systems into a general model would immediately augment that model with a semantics for

C and assembly programs. If we use a version of CompCert transition systems which can

express the behavior of individual translation units, this would also give us the ability to

formally interface, at a granular level, program components with components of di�erent

kinds, for example �le systems, network services, or hardware devices.

• Then, in conjunction with a su�ciently precise correctness theorem, CompCert would not

simply provide a certi�ed compiler, but in fact a compiler of certi�ed program components.

Correctness proofs characterizing the interactions of a component’s source code with the

environment could be transferred in a systematic way to the compiled code.

Unfortunately, despite the abundance of research extending CompCert in this direction, no

current extension is �exible enough to be used in this way (§8.3). As noted by Patterson and Ahmed

[2019], the problem of certi�ed compositional compilation is extremely complex and challenging,

lacking even a commonly accepted de�nition. In fact, as illustrated by the connections between

certi�ed abstraction layers and certi�ed compilation, the very extensive form of compositional

certi�ed compilation which I describe above is almost as challenging to address as the broader

problem of modeling heterogeneous certi�ed components.

On the other hand, this means that the techniques and conceptual framework developed in this

thesis are well-suited for understanding and tackling this problem, and indeed the culmination of

my work is a version of CompCert which addresses this challenge.
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1.4 Contributions

The central claim of this dissertation is that a synthesis of game semantics, algebraic e�ects, and

the re�nement calculus can be used to construct a hierarchy of semantic models suitable for con-

structing large-scale, heterogeneous certi�ed systems:

• Part I presents some relevant background.

• Part II introduces the general approach of re�nement-based game semantics. A reexamination

of the fundamentals of game semantics under the lens of dual nondeterminism invites us

to regard plays as elementary speci�cations for the behaviors of interactive systems. The

completion of plays with arbitrary angelic and demonic choices yields a notion of strategy

speci�cation, which provides support for stepwise re�nement and data abstraction in the

context of game semantics.

I demonstrate use of this approach in the context of certi�ed abstraction layers. Starting

from the layer calculus of CertiKOS, I construct increasingly expressive models where layer

interfaces, layer implementations and simulation relations can be treated in a uniform and

compositional way.

• Part III presents my work on the certi�ed compiler CompCert. I examine existing models

and techniques under the lens of re�nement-based game semantics, and articulate why none

of the existing CompCert extensions can be integrated within the framework in a completely

satisfactory way. I then introduce CompCertO, the �rst extension of CompCert suitable for

this use, which nevertheless avoids much of the complexity found in previous approaches.

Most of this work has been formalized in the Coq proof assistant. As I am writing this, the

beginning of a Coq library for re�nement-based game semantics is available at:

https://github.com/CertiKOS/rbgs/

A complete implementation of CompCertO can also be found at the following address:

https://github.com/CertiKOS/compcert/tree/compcerto

https://github.com/CertiKOS/rbgs/
https://github.com/CertiKOS/compcert/tree/compcerto
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Chapter 2

Background

Re�nement-based game semantics combines several lines of research. This chapter aims to provide

a short introduction to each one, and to give the reader a sense of how they relate to one another.

I begin by outlining in §2.1 general principles which can be used in the construction of certi�ed

systems. In the following sections, I present the re�nement calculus (§2.2), logical relations (§2.3),

game semantics (§2.4), algebraic e�ects (§2.5) and monads (§2.6).

2.1 Building certi�ed systems

2.1.1 Semantic domains

The goal of certi�ed system design is to create a formal description of the system to be constructed

(the program), while ensuring through careful analysis that the system will behave properly. To

this end, we assign to every system p ∈ P a mathematical object JpK ∈ D representing its behavior.

I will call the set D a semantic domain.

Example 2.1 (Trace semantics). In CompCert, the behaviors of programs are ultimately expressed

as sets of traces. Each trace records a possible execution of the program, as a �nite or in�nite sequence

of externally observable events taken from a set E. The program may then terminate with an exit

status r ∈ int, exhibit an unde�ned behavior ( ) or silently diverge (⇑). The corresponding semantic

domain can be de�ned as:

DCompCert := P(E∗int + E∗ + E∗⇑+ Eω) .

14
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In the remainder of this section I elucidate the structure and properties of D necessary to the

process of building large-scale certi�ed systems.

2.1.2 Speci�cations and re�nement

System design starts with a set of requirements on the behavior of the system to be constructed

(the speci�cation). These requirements do not capture every detail of the eventual system, but

delineate a range of acceptable behaviors.

In re�nement-based approaches, programs and speci�cations are interpreted in the same se-

mantic domain D, which is equipped with a re�nement preorder v ⊆ D × D. The proposition

σ1 v σ2 asserts that σ1 is re�ned by σ2. The correctness of a system description p ∈ P with

respect to a speci�cation σ ∈ D can then be formulated as σ v JpK.

Re�nement is intended to be a correctness-preserving relation. For a set P ⊆ P(D) of proper-

ties of interest and for two semantic objects σ1, σ2 ∈ D, the following property should hold:

σ1 v σ2 ⇒ ∀P ∈ P · P (σ1)⇒ P (σ2) .

Note that in particular, the property Pσ(x) := σ v x is always preserved in this way.

Example 2.2 (Trace containment). Continuing Example 2.1, in the trace semantics of CompCert,

the set of traces associated with the source program is understood as a set of permissible behaviors

for the target program. As a �rst approximation, the corresponding notion of re�nement is trace con-

tainment, expressed by the superset relation ⊇, so that for example Clight[p] ∈ DCompCert is re�ned

by Asm[p′] ∈ DCompCert when Clight[p] ⊇ Asm[p′]. Trace containment preserves any property P (σ)

asserting that all traces t ∈ σ ∈ DCompCert satisfy a given condition.

In fact, CompCert also allows unde�ned behaviors to be re�ned bymore speci�c ones, whichmakes

the re�nement relation slightly more sophisticated. See Chapter 8 for details.

2.1.3 Compositionality

Complex systems are built by assembling components whose behavior is understood, such that

their interaction achieves a desired e�ect. The syntactic constructions of the language used to

describe systems correspond to the ways in which they can be composed.
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To enable compositional reasoning, a suitable model must provide an account of the behavior

of a system in terms of the behavior of its parts. For instance, if the language contains a binary

operator + : P × P ! P , then the semantic domain should be equipped with a corresponding

operation ⊕ : D× D! D. Ideally, the operation ⊕ will characterize + exactly:

Jp1K⊕ Jp2K = Jp1 + p2K . (2.1)

Example 2.3. Denotational semantics are compositional by nature. The behavior of program com-

ponents is de�ned recursively on their structure, so that (2.1) holds by de�nition.

In the context of re�nement-based veri�cation, we can regard ⊕ as a speci�cation for +, and

it is su�cient to establish that:

Jp1K⊕ Jp2K v Jp1 + p2K . (2.2)

Example 2.4 (Linking). CompCert approximates linking as an operator + which merges programs.

In my variant CompCertO presented in Chapter 9, the semantic model is equipped with a horizontal

composition operation ⊕, which provides a speci�cation for the linking operator. In particular, the

correctness of assembly linking is established in Thm. 9.9 as Asm(p1)⊕ Asm(p2) v Asm(p1 + p2).

2.1.4 Monotonicity

Once a component has been shown to conform to a given speci�cation, we want to abstract it as a

“black box” so that further reasoning can be done in terms of the component’s speci�cation rather

than its implementation details. To support this, we must establish that semantic composition

operators are compatible with re�nement:

σ1 v σ′1 σ2 v σ′2
σ1 ⊕ σ2 v σ′1 ⊕ σ′2

For example, suppose we have two components p1 and p2, where p2 relies on p1 for its operation,

and we want to verify that their combination p1 + p2 satis�es a speci�cation σ. Once we verify

p1 against its own speci�cation σ1 v Jp1K, by the monotonicity of ⊕ it is su�cient to show that

σ v σ1 ⊕ Jp2K:

σ v σ1 ⊕ Jp2K v Jp1K⊕ Jp2K v Jp1 + p2K .
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2.1.5 Types

In many cases, systems are built out of components of various types which can only be composed

when their types are compatible. Di�erent semantic domains can then be used to interpret com-

ponents of di�erent types.

As discussed in Chapter 3, categories o�er a systematic framework to realize this separation.

Instead of a single set D, we use a category D. The objectsA ∈ D correspond to the possible types

or interfaces alongside which components can be connected. A component which uses an interface

A to implement an interface B can be modeled as a morphism of type A ! B. Categorical

constructions can then be used to formulate and characterize typed composition principles, and

the theory of enriched categories can be used to explore how these composition principles interact

with the structure of the semantic domains D(A,B).

Example 2.5 (Signatures). The models introduced in this thesis use signatures, discussed in §2.5, to

enumerate the operations used and provided by program components. Consequently, the semantics of

components are often expressed in categories whose objects are signatures. Morphisms of typeE ! F

describe the behavior of components which use the operations of the signature E to implement the

operations of the signature F . Categorical products and other monoidal structures can then be used

to describe various horizontal composition principles.

2.1.6 Abstraction

Large-scale systems operate across multiple levels of abstraction. Each abstraction level brings

its own understanding of the interaction between a component and its environment. To reason

across abstraction layers we need to give an explicit account of how these di�erent views of a

component’s behavior correspond to one another.

This is studied extensively in the context of abstract interpretation [Cousot and Cousot, 1992].

Suppose D1 is the concrete domain and D2 is the abstract one. To establish a correspondence

between them, the most general approach is to de�ne a soundness relation ρ ⊆ D2 × D1. We

expect ρ to be compatible with re�nement:

σ′2 v2 σ2 σ2 ρ σ1 σ1 v1 σ
′
1

σ′2 ρ σ
′
1



18

In other words, if σ2 is an abstraction which soundly approximates a concrete semantic object σ1,

we can make σ2 less precise or σ1 more precise and preserve this relationship.

Often there will be a more elementary description of the correspondence, based on the con-

struction of the semantic domains, as illustrated by the following example.

Example 2.6. In the model of certi�ed abstraction layers presented in Chapter 4, the semantic

domain used to model a layer interface is built from a set of abstract states S. To compare a layer

interface formulated in terms of a more concrete set of states S1 with a layer interface formulated in

terms of a more abstract set of states S2, we will use a relation R ⊆ S2 × S1. This relation can then

be extended to the level of layer interfaces as a soundness relation ≤R ⊆ D[S2] × D[S1], asserting

that R is a simulation relation between a layer interface in D[S2] and a layer interface in D[S1].

In the case of categorical semantics whereD1 = D(A1, B1) andD2 = D(A2, B2) are homsets,

the constituents of the soundness relation may themselves be organized as a category with the

same objects as D. This induces a double category structure, where horizontal morphisms are the

semantic objects, vertical morphisms are abstraction relationships, and 2-cells correspond to the

soundness relation.

Example 2.7 (Simulation conventions in CompCertO). Interactions between C compilation units

are understood very di�erently from interactions between assembly-language components. At the

level of C, cross-module interactions are de�ned in terms of function calls; invoking a function means

assigning values to the function’s parameters, initializing a new stack frame, and �nally executing

the function’s body. At the assembly level, cross-module interactions simply consist in branching to

an address outside of the current module with a certain register state. The calling convention used by

a compiler speci�es the correspondence between the two.

In the model used in CompCertO, language interfaces describe the form of cross-component in-

teractions for a class of languages. They play the role of objects, and semantic domains are assigned a

type A! B where A and B are the language interfaces respectively used by outgoing and incoming

calls. In addition, a simulation convention RA : A1 ⇔ A2 is used to formulate the correspondence

between the high-level language interface A1 and the low-level language interface A2. A simulation
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property can then be depicted as the 2-cell:

A1

A2

B1

B2

L1

L2

RA RB

When semantic domains are rich enough, there may be a most precise abstraction σ2 ∈ D2 for

each concrete semantic object σ1 ∈ D1, de�ning an abstraction function α : D1 ! D2 such that:

σ′2 ρ σ1 ⇔ σ′2 v2 α(σ1)

Conversely, there may be a most general σ1 corresponding to each σ2, de�ning a concretization

function γ : D2 ! D1 such that:

γ(σ2) v1 σ
′
1 ⇔ σ2 ρ σ

′
1

When both an abstraction and a concretization function exist, they are related by the property:

γ(σ2) v1 σ1 ⇔ σ2 v2 α(σ1)

This corresponds to the original formulation of abstract interpretation [Cousot and Cousot, 1977]

in terms of Galois connections [Erné et al., 1993].

2.1.7 Embedding

It is often useful to �rst interpret the semantics of a component in a restricted domain, then embed

this domain into a more general one:

p ∈ P J−K
−−! σ ∈ D

|−|
↪−! |σ| ∈ D′

The elements of the restricted domain D will often have stronger properties, or will be expressed

in a way which makes certain proof methods more tractable. The more general domain D′ can
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then provide more expressivity and additional algebraic structures, and may embed the behaviors

of di�erent kinds of components, but may be less amenable to domain-speci�c reasoning.

In this situation, we will want the embedding |−| : D ↪! D′ to preserve any relevant structure

present in both D and D′. For example, in the case of categorical semantics, this embedding will

be a (faithful) functor of the appropriate kind.

Example 2.8 (Transition systems and trace semantics in CompCert). As mentioned in Example 2.1,

CompCert semantics ultimately characterize the behavior of programs in terms of traces. However,

they are �rst de�ned as labelled transition systems, and the correctness properties of compilation

passes are �rst proved as simulations. An embedding then assigns to each transition system L the set

of traces |L| characterizing its observable behavior, and a soundness proof shows that under certain

conditions, simulation properties L1 ≤ L2 imply trace containment |L1| ⊇ |L2|.

Example 2.9 (Certi�ed abstraction layers). The theory of certi�ed abstraction layers developed in

Chapter 4 describes deterministic layer interfaces and implementations. Abstraction is expressed using

simulation relations. Layer interfaces, layer implementations and simulation relations are represented

as three di�erent kinds of objects.

In Chapter 6, I show how this theory of certi�ed abstraction layers can be embedded into a more

general framework which supports dual nondeterminism, allowing layer interfaces, layer implemen-

tations and simulation relations to be represented as morphisms in a uniform way, at the cost of a

more sophisticated notion of re�nement.

Finally in Chapter 7, I outline a framework where the layers’ states can be encapsulated and hidden

from the descriptions of the layers’ behaviors, and again provide an embedding of the previous theory

into this more general one. Layer correctness can be expressed without simulation relations, but the

cartesian products of layers sharing states (§4.3.3) are no longer available.

Each of these embeddings preserves categorical composition, re�nement, and tensor products.

2.2 The re�nement calculus

Correctness properties for imperative programs are often stated as triples of the form P{C}Q

asserting that when the programC is started in a state which satis�es the predicate P (the precon-

dition), then the state in which C terminates will satisfy the predicate Q (the postcondition). For



21

example:

x is odd {x := x ∗ 2} x is even

In the axiomatic approach to programming language semantics [Hoare, 1969], inference rules cor-

responding to the di�erent constructions of the language determine which triples are valid, and

the meaning of a program is identi�ed with the set of properties P{−}Q which it satis�es.

2.2.1 Dual nondeterminism

Axiomatic semantics can accommodate nondeterminism in two di�erent ways.

In the program C1 uC2, a demon will choose which of C1 or C2 is executed. For example, the

program x := 2 ∗ x u x := 0 may be executed arbitrarily as x := 2 ∗ x or x := 0, with no guarantee

as to which branch will be chosen. The demon works against us, so that if we want C1 u C2 to

satisfy a given correctness property, we need to make sure we can deal with either choice:

P{C1}Q P{C2}Q
P{C1 u C2}Q

Conversely, in the program C1 t C2, an angel will decide whether C1 or C2 is executed. The

statement x := x ∗ 2 t x := 0 is more di�cult to interpret than its demonic counterpart, but

roughly speaking it magically behaves as x := x ∗ 2 or x := 0 depending on the needs of its user.

If possible, the angel will make choices which validate the correctness property. Therefore:

P{C1}Q
P{C1 t C2}Q

P{C2}Q
P{C1 t C2}Q

More generally, a tripleP{C}Q can be interpreted as a game between the angel and the demon

[Back and Wright, 1998, Chapter 14]. The angel resolves thet choices, whereas the demon resolves

the u choices. The triple is valid if there is a strategy for the angel to validate the correctness

property.
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2.2.2 Distributivity

Note that in this setup, u and t distribute over each other. More precisely, for all P,C1, C2, C3, Q:

P{C1 u (C2 t C3)}Q ⇔ P{(C1 u C2) t (C1 u C3)}Q

P{C1 t (C2 u C3)}Q ⇔ P{(C1 t C2) u (C1 t C3)}Q

Consider the �rst equivalence above. For the angel to have a winning strategy for the left-hand

side triple, they must be able to win both P{C1}Q and either P{C2}Q or P{C3}Q. Although

the right-hand side triple reverses the order between the angel and the demon’s choices, the angel

can preemptively choose the left or right disjunct depending on whether they can win P{C2}Q

or P{C3}Q. Likewise, if the angel can win the right-hand side, then they have a winning strategy

for the left-hand side as well. The second equivalence corresponds to a similar situation where the

angel and demon have been exchanged.

2.2.3 Program re�nement

Instead of proving program correctness in one go, stepwise re�nement techniques use a more in-

cremental approach centered on the notion of program re�nement. A re�nement C1 v C2 means

that any correctness property satis�ed by C1 will also be satis�ed by C2:

C1 v C2 := ∀PQ · P{C1}Q⇒ P{C2}Q

We say that C2 re�nes C1 or that C1 is re�ned by C2.

Typically, under such approaches, the language is extended with constructions allowing the

user to describe abstract speci�cations as well as concrete programs. Then the goal is to establish

a sequence of re�nements C1 v · · · v Cn to show that a program Cn correctly implements

a speci�cation C1. The speci�cation may be formulated in abstract, declarative terms, but the

program should only use executable constructions.

If the language is su�ciently expressive, then a correctness property P{−}Q can itself be
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encoded [Morgan, 1988] as a speci�cation statement 〈P,Q〉 such that:

P{C}Q ⇔ 〈P,Q〉 v C .

In the context of re�nement, the properties associated with demonic and angelic choice become:

C v C1 C v C2

C v C1 u C2

C v C1

C v C1 t C2

C v C2

C v C1 t C2

Given the duality between the demon and angel, it is then natural to interpret demonic and angelic

choices respectively as meets and joins of the re�nement ordering.

2.2.4 Nondeterministic choice in speci�cations

Until this point, I have discussed demonic (u) and angelic (t) choices as implementation constructs

(appearing to the right of v), taking the point of view of a client seeking to use the program to

achieve a certain goal. However, in this work they are used primarily as speci�cation constructs

(appearing to the left of v), and we are interested in what it means for a system to implement

them. As a speci�cation, C1uC2 allows the system to re�ne either one ofC1 orC2, whileC1tC2

requires it to re�ne both of them:

C1 v C
C1 u C2 v C

C2 v C
C1 u C2 v C

C1 v C C2 v C
C1 t C2 v C

In other words, demonic choices give us more implementation freedom, whereas angelic choices

make a speci�cation stronger and more di�cult to implement. Therefore we can think of demonic

choices as choices of the system, and think of angelic choices as choices of the environment.

Remark 2.10. Since the work presented in this thesis borrows from various lines of research, one

di�culty is that the conventions and notations they use are often di�erent and sometimes inconsistent.

As the discussion above illustrates, in the literature on Hoare logic, the reader is often invited to

identify with a user of the program (the environment) trying to ascertain the program’s properties,

and the terminology of “angelic” and “demonic” is used accordingly. By contrast, descriptions of game

semantics are often narrated from the point of view of the system, and in that context the terminology

associated with dual nondeterminism can be counter-intuitive at �rst.
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(a) Angelic choice (b) Demonic choice

Figure 2.1: Angelic and demonic choices in speci�cations, from the perspective of the imple-
menter. Life is hard when you’re expected to behave like an angel!

2.2.5 The re�nement calculus

The basic ingredients presented above have been studied systematically in the re�nement calculus,

dating back to Ralph-Johan Back’s 1978 PhD thesis [Back, 1978]. In its modern incarnation, the

re�nement calculus subsumes programs and speci�cations with contracts featuring unbounded an-

gelic and demonic choices [Back and Wright, 1998]. These choice operators constitute a completely

distributive lattice with respect to the re�nement ordering.

Dijkstra’s predicate transformer semantics [Dijkstra, 1975] is a natural �t for the re�nement

calculus, but other approaches are possible. For instance, as mentioned above, the understanding

of contracts as a game between the angel and the demon can be formalized to provide a form of

game semantics for the re�nement calculus.

In fact, the re�nement calculus can be presented as a hierarchy along the lines discussed

in §2.1.7, whereby simpler models (state transformer functions, relations) can be embedded into

more general ones (predicate transformers) in various structure-preserving ways. This makes it

possible to reason about simpler components in a limited, stronger version of the framework,

while retaining the possibility of embedding them in a setting where more general constructions

are available, and where they can be composed with components developed and analyzed in a

di�erent setting.

However, in its traditional formulation, the re�nement calculus only models imperative pro-

grams with no side-e�ects beyond changes to the program state. Recent research has attempted

to extend the paradigm to a broader setting, and my work can be understood as a step in this
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direction as well.

2.3 Logical relations

Logical relations are structure-preserving relations in the way homomorphisms are structure-

preserving maps. However, logical relations are more compositional than homomorphisms, be-

cause they do not su�er from the same problems in the presence of mixed-variance constructions

like the function arrow [Hermida et al., 2014]. In the context of typed languages, this means that

type-indexed logical relations can be de�ned by recursion over the structure of types.

Logical relations have found widespread use in programming language theory. For example,

unary logical relations can be used to establish various properties of type systems: a type-indexed

predicate expressing a property of interest is shown to be compatible with a language’s reduction,

and to contain all of the well-typed terms of the language. Binary logical relations can be used

to capture contextual equivalence between terms, as well as notions such as non-interference or

compiler correctness. Relational models of type quanti�cation yield Reynolds’ well-known theory

of relational parametricity, and can be used to prove free theorems that all terms of a given generic

type must satisfy.

For our purposes, logical relations will provide a language to formulate relationships between

high-level and low-level behaviors, or between speci�cations and implementations, in a uniform

and compositional way.

2.3.1 Binary logical relations

Logical relations can be of any arity, but I will focus on binary logical relations. Consider an

algebraic structure S . A logical relation between two instances S1, S2 of S is a relationR between

their carrier sets, such that the corresponding operations of S1 and S2 take related arguments to

related results. We write R ∈ R(S1, S2).

Example 2.11. Amonoid is a set with an associative operation · and an identity element ε. A logical

relation of monoids between 〈A, ·A, εA〉 and 〈B, ·B, εB〉 is a relation R ⊆ A×B such that:

(u R u′ ∧ v R v′ ⇒ u ·A v R u′ ·B v′) ∧ εA R εB . (2.3)
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Logical relations used to reason about contextual equivalence are often partial equivalence re-

lations (PER). By contrast, in the context of re�nement, most of the relations will not be symmetric.

2.3.2 Relators

Logical relations between multi-sorted structures consist of one relation for each sort, between the

corresponding carrier sets. In the case of structures which include type operators, we can associate

to each base type A a relation over its carrier set JAK, and to each type operator T (A1, . . . , An) a

corresponding relator : given relationsR1, . . . , Rn over the carrier sets JA1K, . . . , JAnK, the relator

for T will construct a relation T (R1, . . . , Rn) over JT (A1, . . . , An)K. Relators for some common

constructions are shown in Figure 2.2. Using them, the proposition (2.3) can be reformulated as:

·A [R×R! R] ·B ∧ εA R εB .

Example 2.12. Simulation relations are logical relations of transition systems. Consider the transi-

tion systems α : A! P(A) and β : B ! P(B). A simulation relation R ∈ R(A,B) satis�es:

s1 s′1

s2 s′2

α

R R

β

∀s1 s2 s
′
1 . α(s1) 3 s′1 ∧ s1 R s2 ⇒

∃s′2 . β(s2) 3 s′2 ∧ s′1 R s′2

Using the relators in Figure 2.2, we can express the same property concisely and compositionally as:

α [R! P≤(R)] β .

2.3.3 Kripke relations

Relations for stateful languages often depend on the current state. To address this, Kripke logical

relations are parameterized over a set of state-dependent worlds. Components related at the same

world are guaranteed to be related in compatible ways. We use the following notations.

De�nition 2.13. A Kripke relation is a family of relations (Rw)w∈W . I will write R ∈ RW (A,B)
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x [R1 ×R2] y ⇔ π1(x) [R1] π1(y) ∧ π2(x) [R2] π2(y)

x [R1 +R2] y ⇔ (∃x1 y1 . x1 [R1] y1 ∧ x = i1(x1) ∧ y = i1(y1))

∨ (∃x2 y2 . x2 [R2] y2 ∧ x = i2(x2) ∧ y = i2(y2))

f [R1 ! R2] g ⇔ ∀x y . x [R1] y ⇒ f(x) [R2] g(y)

A [P≤(R)] B ⇔ ∀x ∈ A .∃ y ∈ B . x [R] y

A [P≥(R)] B ⇔ ∀ y ∈ B .∃x ∈ A . x [R] y

Figure 2.2: A selection of relators. The relators×, +,! are standard. P≤ andP≥ are asymmetric
relators for the powerset type operator P , which can be used to formulate simulations.

for a Kripke relation between the sets A and B. For w ∈W , I will use the following notations:

[w 
 R] := Rw [
 R] :=
⋂
w Rw

A simple relation R ∈ R(A,B) can be promoted to a Kripke relation dRe ∈ RW (A,B) by

de�ning [w 
 dRe] := R for all w ∈W . More generally, for an n-ary relator F we have:

F : R(A1, B1) × · · · × R(An, Bn)! R(A,B)

dF e : RW (A1, B1)× · · · × RW (An, Bn)! RW (A,B)

where for the Kripke relations Ri ∈ RW (Ai, Bi):

[w 
 dF e(R1, . . . , Rn)] := F (w 
 R1, . . . , w 
 Rn)

In the following, I will use d−e implicitly when a relator appears in a context where a Kripke

logical relation is expected. Since reasoning with logical relations often involves self-relatedness,

I will use the notation x :: R to denote x R x. For legibility, I also writew 
 x R y for x [w 
 R] y

and 
 x R y for x [
 R] y.

2.3.4 Modal relators

Kripke logical relations are connected to the Kripke semantics of modal logic. In that context,

the set of worlds is used to index a model, and the satisfaction of formulas may depend on which

world is considered. The modality ♦ is then interpreted in terms of an accessibility relation, which
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I will write as . The formula ♦P is satis�ed in a world w if there exists w  w′ such that P is

satis�ed in w′. Dually, the formula �P ≡ ¬(♦¬P ) is satis�ed in a world w if P is satis�ed in all

worlds w′ accessible from w.

The accessibility relation essentially de�nes a directed graph on the set of worlds, and formulas

constructed with♦ and� can explore the neighborhood of a given node. A wide variety of complex

data structures can be seen as graphs; modal logics and Kripke semantics can be used to reason

about them, with countless applications [Blackburn et al., 2001].

Translating this approach to the setting of logical relations, the modalities become relators.

De�nition 2.14. A Kripke frame is a tuple 〈W, 〉, where W is a set of possible worlds and is

a binary accessibility relation over W . Then the Kripke relator ♦ : RW (A,B) ! RW (A,B) is

de�ned by:

w 
 x [♦R] y ⇔ ∃w′ . w  w′ ∧ w′ 
 x R y

2.4 Game semantics

Game semantics [Abramsky and McCusker, 1999; Blass, 1992] is a form of denotational semantics

which incorporates some operational aspects. An early success of this approach was the formu-

lation of the �rst fully abstract models of the programming language PCF [Abramsky et al., 2000;

Hyland and Ong, 2000]. Typically, game semantics interpret types as two-player games and terms

as strategies for these games. Games describe the form of the interaction between a program com-

ponent (the system) and its execution context (the environment). Strategies specify which move

the system plays for all relevant positions in the game.

Positions are usually identi�ed with sequences of moves, and strategies with the set of posi-

tions a component can reach. This representation makes game semantics similar to trace semantics

of process algebras, but it is distinguished by a strong polarization between actions of the system

and the environment, and between outputs and inputs. This confers an inherent “rely-guarantee”

�avor to games which facilitates compositional reasoning [Abramsky, 2010].

For example, in a simple game semantics resembling that of Idealized Algol [Abramsky and
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McCusker, 1997], sequences of moves corresponding to the execution of x := 2 ∗ x have the form:

run · readx · n · writex[2n] · ok · done (n ∈ N)

The moves of the system have been underlined. The environment initiates the execution with the

move run. The system move readx then requests the value of the variable x, communicated in

response by the environment move n. The system move writex[2n] requests storing the value 2n

into the variable x, and is acknowledged by the environment move ok. Finally, the system move

done expresses termination. The gray arrows show the relationships between questions and their

corresponding answers, but in the simple game models that I will consider they are not part of the

formalism.

2.4.1 Games

A game is de�ned by a set of moves players will choose from, as well as a stipulation of which

sequences of moves are valid. We focus on two-player, alternating games where the environment

plays �rst and where the players each contribute every other move. As above, when typesetting

examples, we underline the moves of the system.

Example 2.15. In the game of chess, moves are taken in the set {a1 . . . h8}×{a1 . . . h8}. From the

perspective of the player with black pieces, a valid sequence of moves may look like:

e2e4 · c7c5 · c2c3 · d7d5 · · ·

Most game semantics include additional structure in the description of games. The set of moves

is usually partitioned into environment and system moves (M = MO ]MP), and into questions

and answers (M = M◦ ]M•). Game models for high-order languages are often more complex,

and include justi�cation pointers encoding the causal structure of the interaction.

The compositionality of game semantics comes from the ways in which complex games can be

derived from simple ones, and used to interpret compound types. For example, in the gameA×B

the environment initially chooses whether to play an instance ofA or an instance ofB. The game

A! B usually consists of an instance of B, played together with instances of A where the roles
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of the players are reversed and started at the discretion of the system.

2.4.2 Strategies

The plays of a game are sequences of moves; they both identify a position in the game and describe

the succession of actions that led to it. Most game models of sequential computation use alternating

plays, in which the system and environment each contribute every other move. It is also common

to require the environment to play �rst and to restrict plays to even lengths, so that they specify

which action the system took in response to the latest environment move. We write PG for the

set of plays of the game G, partially ordered by the pre�x relation vp.

Traditionally [Abramsky and McCusker, 1999], strategies are de�ned as pre�x-closed sets of

plays, so that strategies σ ∈ SG for the gameG are downsets ofPG satisfying certain requirements:

SG ⊆ D(PG,vp)

Pre�x closure makes it possible both to represent partially de�ned strategies, and to represent

in�nite computations using their �nite pre�xes. Additional constraints are carefully chosen to

construct strategy models with the right properties for a given application.

2.4.3 Determinism

A common constraint is that a strategy σ ∈ SG should not contain two plays sm1, sm2 ∈ σ where

m1 andm2 are distinct moves of the system. This is usually understood as enforcing determinism:

given a set of environment choices, there is only one possible behavior for the system. Therefore,

relaxing this constraint has usually been understood as the �rst step toward modeling nondeter-

ministic systems [Harmer and McCusker, 1999]. We will see in Chapter 5 that by approaching the

question from the point of view of dual nondeterminism, we are led to a di�erent interpretation

and a di�erent approach.
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2.5 Algebraic e�ects

The framework of algebraic e�ects [Plotkin and Power, 2001] models computations as terms in an

algebra whose operations represent e�ects: a term m(x1, . . . xn) represents a computation which

�rst triggers an e�ect m, then continues as a computation derived from the subcomputations

x1, . . . xn. For example, the term

w := readbit(print[“Hello”](done), print[“World”](done))

could denote a computation which �rst reads one bit of information, then depending on the result

causes the words “Hello” or “World” to be output, and �nally terminates. I will use the term w in

several examples below.

Note that somewhat surprisingly, the arguments of operations correspond to the possible out-

comes of the associated e�ect. For instance the readbit operation takes two arguments. Moreover,

e�ects such as print which take parameters are represented by families of operations indexed by

the parameters’ values, so that there is a print[u] operation for every u ∈ string.

2.5.1 E�ects theories

Under this approach, e�ects can be described as algebraic theories: a signature describes the set of

operations together with their arities, and a set of equations describes their behaviors by specifying

which computations are equivalent. The example above uses a signature with the operations done

of arity 0, readbit of arity 2, and a family of operations (print[u])u∈string of arity 1. An equation

for this signature is:

print[u](print[v](x)) = print[uv](x) ,

which indicates that printing the string u followed by printing the string v is equivalent to printing

the string uv in one go.

In this work, I use e�ect signatures to represent the possible external interactions of a compu-

tation, but I will not use equational theories. It will however be possible to interpret e�ects into

another signature, modeling a limited form of e�ect handlers [Plotkin and Pretnar, 2009].
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2.5.2 E�ect signatures

De�nition 2.16. An e�ect signature is a set E of operations together with a mapping ar, which

assigns to each operationm ∈ E a set ar(m) called the arity ofm. I will describe e�ect signatures

using the notationE = {m1:N1,m2:N2, . . .}, whereNi = ar(mi) is the arity of the corresponding

operation mi.

Note that in this de�nition, arities are sets rather than natural numbers. This allows the repre-

sentation of e�ects with a potentially in�nite number of outcomes. The examples above use e�ects

from the signature

Eio := {readbit : 2, print[u] : 1, done : ∅ | u ∈ string} ,

where 1 = {∗} and 2 := {tt,ff} are �nite sets of the expected size.

Since the construction {m[x] : B | x ∈ A} is used extensively, I will represent it using the

syntactic sugar {m : A! B} so that for example the signature above can be described as:

Eio = {readbit : 2, print : string! 1, done : ∅}

2.5.3 Computations as terms

The most direct way to interpret an e�ect signature is the algebraic point of view, in which it

induces a set of terms built out of the signature’s operations. A term represents a computation

which proceeds inward from the top-level operation towards the leaves of the term.

The leaves are the constants (c :∅) ∈ E, and in terms representing partial computations they

may be variables as well. In that case, the variables may be thought of as placeholders, each one

representing a possible intermediate outcome.

Terms are de�ned below. Since we are using in�nite arities, the argument tuple for an oper-

ation m : N will often be given as a family (tn)n∈N indexed by N . When it seems helpful, I will

use underlining to prevent any confusion between the operation (m :N) ∈ E itself and the term

constructor m : TE(X)N ! TE(X) associated with it, and to prevent confusion between an

element v ∈ X of the set of variables and the corresponding term v ∈ TE(X).
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De�nition 2.17 (Terms over a signature). The set of terms associated with a signature E and a

set of variables X is de�ned by the grammar:

t ∈ TE(X) ::= m(tn)n∈N | v where (m : N) ∈ E, v ∈ X

Consider an operation m : N in the signature E. A term of the form m(tn)n∈N �rst triggers

the corresponding e�ect. The e�ect’s outcome n ∈ N then resumes the computation as prescribed

by the subterm tn ∈ TE(X). On the other hand, terms of the form v correspond to computations

which immediately terminate with the outcome v ∈ X . A variable substitution f : X ! TE(Y )

can then specify how the computation is to be continued.

De�nition 2.18 (Variable substitution). A substitution f : X ! TE(Y ) can be applied to a term

t ∈ TE(X), yielding the term tf ∈ TE(Y ) de�ned recursively by:

v f := f(v) v ∈ X

m(tn)n∈N f := m(tnf)n∈N (m :N) ∈ E

Example 2.19. The computation w given above can be decomposed into the term t ∈ TEio
({x, y})

and the substitution f : {x, y}! ∅ de�ned as:

t := readbit(x, y)

f := {x 7! print[“Hello”](done), y 7! print[“World”](done)} .

Then the term tf ∈ TEio
(∅) obtained applying f to t is again:

tf = readbit(print[“Hello”](done), print[“World”](done)) = w .

2.5.4 Terms as strategies

An e�ect signature can also be seen as a particularly simple game, in which the system chooses

a question (m : N) ∈ E and the environment responds with an answer n ∈ N . Then the terms

induced by the signature are strategies for an iterated version of this game.
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For example, the abstract syntax tree of the term w ∈ TEio
(∅) can be read as the strategy:

readbit

print[“Hello”] print[“World”]

done done

0 1

∗ ∗

In this tree, the nodes are labeled with operations and can be interpreted as moves of the sys-

tems. The edges are labeled with elements of the arity sets and can be interpreted as moves of the

environment. Represented as a set of plays, the same strategy could be written as:

ω = { readbit · 0 · print[“Hello”] · ∗ · done,

readbit · 1 · print[“World”] · ∗ · done } .

2.5.5 Interpreting e�ects

To assign a semantics to the e�ects of E, we can interpret the operations of the signature in a

domain A by de�ning for each (m : N) ∈ E a corresponding function αm : AN ! A. When

equational theories are used, we need to make sure that the corresponding equations hold. In our

limited setting we can use the simple de�nition below.

De�nition 2.20. An algebra for the e�ect signature E is a carrier set A together with a function

αm : AN ! A for each operation (m : N) ∈ E. We can then interpret a term t ∈ TE(A) as an

element tα ∈ A of the carrier set, de�ned recursively by:

vα := v v ∈ A

m(tn)αn∈N := αm(tαn)n∈N (m :N) ∈ E

Example 2.21 (Trace semantics forEio). The operations ofEio can be interpreted using traces in the

language P = (2∪ string)∗. A trace s ∈ P records a possible execution, and sets of traces are used to
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characterize computations. Hence the algebra π uses the carrier P(P ) and the following operations:

πreadbit(σ0, σ1) := {ff · s0 | s0 ∈ σ0} ∪ {tt · s1 | s1 ∈ σ1}

πprint[u](σ) := {u · s | s ∈ σ}

πdone := {ε}

For instance, the recurring example w yields the set:

wπ = {0 · “Hello”, 1 · “World”} .

Note that as presented, the algebra does not respect the equation:

print[u](print[v](x)) = print[uv](x) ,

since the left-hand side will add two events u · v at the beginning of the traces, while the right-hand

side will add a single event uv.

We can de�ne an algebra for E on the set of terms TE(X) itself. Each operation (m :N) ∈ E

is interpreted by the term constructor cmX : TE(X)N ! TE(X) de�ned as:

cmX(tn)n∈N := m(tn)n∈N .

Then the interpretation of a term t ∈ TE(TE(X)) will be a “�attened” term tc ∈ TE(X) where

any variable occurrence v is replaced by the term v ∈ TE(X).

2.6 Monads

Semantics of e�ectful computations are often formulated using monads. There are deep connec-

tions between monadic and algebraic e�ects, which mirror the way monads have long been used

both for modeling e�ects and in the categorical treatment of universal algebra. This is explained

in more detail in §3.3.6. Below, I give a brief introduction free of categorical jargon.
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2.6.1 Motivation

The notion of algebra given in De�nition 2.20 does not provide a very sophisticated account of

terms with variables (partial computations). We did allow the interpreted terms to include “vari-

ables” taken directly from the algebra’s underlying set A. In fact, it is possible to interpret terms

with variables from an arbitrary set X if we provide an assignment ρ : X ! A, by constructing

a substitution ρ̂(x) := ρ(x) and interpreting t ∈ TE(X) as (tρ̂)α ∈ A.

However, to be able to interpret open terms independently of any assignment, we need a notion

of algebra which is parametric in the set of variables we use. Instead of using a single carrier set,

we will specify for every possible set X of variables:

• A carrier set T (X) for the corresponding algebra.

• A function ηX : X ! T (X) providing the interpretations of variables;

• For every “semantic substitution” f : X ! T (Y ), a map f † : T (X) ! T (Y ) applying the

substitution to the elements of T (X).

These data can be interpreted in computational terms as follows:

• A semantic object τ ∈ T (X) is a partial computation with an intermediate result in X .

• The computation ηX(v) ∈ T (X) immediately yields the intermediate result v ∈ X .

• A continuation f : X ! T (Y ) is activated with a value v ∈ X to produce a computation

with outcomes in Y . Its extension f †(τ) is the sequential composition of τ ∈ T (X) with

the continuation f , sometimes written v τ ; f(v).

When they behave consistently with each other, these constructions de�ne a monad.

De�nition 2.22. A monad 〈T, η, (−)†〉 is given as above, and must satisfy for all f : X ! T (Y )

and g : Y ! T (Z) the following properties:

η†Y ◦ f = f † ◦ ηX = f (g† ◦ f)† = g† ◦ f † .

The family η is called the monad’s unit, and f † is called the Kleisli extension of f .
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Written in a more computational style, the monad laws given above can be reformulated as:

v τ ; ηX(v) = τ

v ηX(x) ; f(v) = f(x)

v (u τ ; f(u)) ; g(v) = u τ ; v f(u) ; g(v)

2.6.2 Interpreting e�ects

To assign a meaning to the operations of a signature E in the context of a monad T , we assign to

each operation (m : N) ∈ E a computation σm ∈ T (N). Then for every set X of variables, we

can de�ne a corresponding algebra 〈T (X), σX〉 where σmX : T (X)N ! T (X) is de�ned as:

σmX (τn)n∈N := n σm ; τn .

Note that this family of algebras is compatible with the monadic structure, in the sense that

substituting the variables within a computation before or after interpreting its outermost operation

m : N yields the same result. In other words, for a family of arguments (τn)n∈N taken in T (X)

and for a substitution f : X ! T (Y ), the following property holds:

f †(σmX (τn)n∈N ) = σmY (f †(τn))n∈N (2.4)

In fact, every set-indexed family of algebras which satis�es this property can be speci�ed in the

computational style we started from. Speci�cally, given the family of algebras (σmX )
(m:N)∈E
X , we

can de�ne σm = σmN (ηN (n))n∈N as the computation associated withm :N and rederive the same

algebras:

n σNm(ηN (n))n∈N ; τn = σmX (n′ ηN (n) ; τn′)n∈N = σmX (τn)n∈N

De�nition 2.23 (Interpretation into a monad). An interpretation of the signatureE into the monad

T is a family (σm)(m:N)∈E with σm ∈ T (N) for all (m : N) ∈ E. Then the interpretation



38

t[σ] ∈ T (X) of a term t ∈ TE(X) can be recursively de�ned as:

m(tn)n∈N [σ] := n σm ; tn[σ] (m :N) ∈ E

v[σ] := ηX(v) v ∈ X

Note that the functions (−)[σ] : TE(X) ! TE(X) map variables v ∈ TE(X) to ηTX(v) ∈

T (X), and syntactic substitutions tf to the “semantic substitutions” expressed by (−)† in T :

v[σ] = ηTX(v) (tf)[σ] = v t[σ] ; f(v)[σ] (2.5)

In that case (−)[σ] is called a monad homomorphisms (see De�nition 2.26 below).

Remark 2.24. In the context of universal algebra, monads are usually understood as algebraic the-

ories themselves rather than as a kind of model, although we may perhaps interpret a theory into

another using a monad homomorphism. We will see in the remainder of this section that the free

monad for a signature bridges the gap between these two views.

For my purposes it is useful to retain signatures as the starting point for constructing models, in

particular in view of their interpretations as games outlined in §2.5.4. For example, Chapter 6 describes

a monad which adds a lattice structure to signatures in a systematic way, constructed by borrowing

ideas from game semantics. The presentation above also reveals more clearly the connections between

e�ect signatures and the practical use of monads in functional programming, where the additional

operations associated with a speci�c monad are often given in the style I have used.

2.6.3 Free monad

The terms generated by a signature E can themselves be presented as a monad equipped with an

“identity” interpretation of E.

De�nition 2.25 (Free monad for a signature). The free monad for a signature E is given by the

triple 〈TE , ηE , (−)†〉 whose components are de�ned as follows:

ηEX(v) := v v ∈ X

f †(t) := tf t ∈ TE(X), f : X ! TE(Y )
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The canonical interpretation of E into TE is given by the family (cm)(m:N)∈E , where for each

operation m :N in the signature E, the elementary term cm ∈ TE(N) is de�ned by:

cm := m(n)n∈N .

Note that in the associated algebras, cmX : TE(X)N ! TE(X) interprets the operation m : N as

the corresponding term constructor; hence cmX = m and t[c] = t.

2.6.4 Monad homomorphisms

The free monad gives us a di�erent way to present monadic interpretations of e�ect signatures.

Note that for an interpretation σ of the signature E into the monad T , the family of functions

(−)[σ] : TE(X)! T (X) preserves the monadic structure in the following way:

ηEX(v) [σ] = ηTX(v) v ∈ X

(v t ; f(v))[σ] = v t[σ] ; f(v)[σ] t ∈ TE(X), f : X ! TE(Y )

In other words, it is a monad homomorphism in the following sense.

De�nition 2.26. Amonad homomorphism between from 〈T, ηT , (−)†〉 to 〈U, ηU , (−)?〉 is a family

of functions φX : T (X)! U(X) satisfying for all f : X ! T (Y ) the following properties:

φX ◦ ηTX = ηUX φY ◦ f † = (φY ◦ f)? ◦ φX

Conversely, any monad homomorphism φ : TE ! T out of the free monad TE is uniquely

de�ned by an interpretation of E into the monad T , which uses φm := φN (cm) ∈ T (N) to

interpret each operation (m :N) ∈ E. By induction on t ∈ TE(X):

v[φ] = ηTX(v) m(tn)n∈N [φ] = n φN (cm) ; φX(tn)

= φX(v) = φX(n cm ; tn)

= φX(m(tn)n∈N )
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Since monad homomorphisms compose, this means that an interpretation of F into a free

monad TE can be combined with an interpretation of E into an arbitrary monad T to obtain an

interpretation of F into T .

TF TE

T

(−)[τ ]

(−)[τ◦σ]
(−)[σ]

This makes interpretations into free monads special.

De�nition 2.27 (Interpretation into another signature). An interpretation τ of the signature F

into the free monad TE is also called an interpretation of F into the signature E, and labeled as

τ : E ! F . The interpretation τ can be composed with an interpretation σ of E into an arbitrary

monad T to yield the interpretation τ ◦ σ of F into T de�ned in the following way:

(τ ◦ σ)m := τm[σ] (m :N) ∈ F

The interpretation τ uses terms over the signature E to provide an implementation for the

operations of F . When T is itself of the form TD for a signature D so that σ : D ! E, the

composite has type τ ◦ σ : D ! F . This justi�es the choice of the notation ◦ which is somewhat

abusive in the general case. Note that t[τ ◦ σ] = t[τ ][σ] for all terms t ∈ TF (X).

2.6.5 Interpretations as strategies

As discussed in §2.5.4, signatures can be understood as simple games, and terms in a signature can

be understood as a certain kind of strategy for the associated game.

Likewise, an interpretation σ : E ! F de�nes a strategy in a version of the game E ! F .

The plays for this game are of the form

m ·m1 · n1 · · ·mj · nj · n .

The environment opens with a question (m : N) ∈ F . The system then plays according to the

term σm ∈ TE(N), asking a series of questions m1 . . .mj in E which the environment answers

with n1 . . . nj . If a variable n is reached within σm, the corresponding value n ∈ N is used to
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answer the environment’s initial question m.



Chapter 3

A refresher on category theory

In general, to keep the exposition as accessible as possible, I will avoid relying on category theory

to describe the constructions and methods I use. A reader unfamiliar with category theory should

be able to skip this chapter and understand the work presented in the remainder of this thesis.

Nevertheless, category theory allows us to understand in a common language the high-level

structures exhibited by various theories. Given the unifying ambition behind re�nement-based

game semantics, this is a valuable resource and can help guide the design of general-purpose

models. Therefore, whenever possible I will mention the categorical structures underlying the

constructions I describe.

This chapter is a brief summary of the concepts and de�nitions of category theory I will use for

this purpose, but is not a self-contained introduction. For a more complete and careful treatment,

you may want to use following resources:

• a short introduction to category theory for computer scientists is given in Pierce [1991];

• a modern textbook covering the basics is provided by Awodey [2010];

• a standard reference is Mac Lane [1978].

3.1 Motivation

Ultimately, re�nement-based game semantics seeks to provide general methods for constructing

heterogeneous certi�ed systems, by integrating a wide range of semantic models and veri�cation

42
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techniques. Category theory allows us to understand the commonalities and di�erences between

these models in a uni�ed and systematic way. By describing the compositional structure of a model

in categorical terms, we can step back from the details of its construction and focus instead on the

abstract, high-level facilities which the model provides. Formulated in the universal language of

categories, they can be readily compared with those of similar models, or reveal connections with

seemingly unrelated phenomena across distant �elds of mathematics.

In many cases, a condensed description of a model’s high-level categorical properties will be

enough to characterize it up to isomorphism, without reference to the details of its construction.

For mechanization in a proof assistant, this can be a very useful proof engineering device. In addi-

tion, a characterization along these lines will provide evidence that the model is in fact the most

general one exhibiting a certain structure, and demonstrate that its construction is free of arbitrary

choices which may prove inadvisable at a later point.

Formalizing category theory itself in a proof assistant like Coq can be useful [Spitters and

van der Weegen, 2011], but it is a challenging undertaking involving sophisticated techniques,

and can steepen the learning curve for the users of a code base. A more mundane approach is

to simply spell out the categorical characterization of a given structure. This will give a compact

speci�cation which we can nonetheless trust to be complete, with universal properties providing

representation-independent reasoning principles for the structure of interest.

Regardless, category theory allows us to develop an understanding of abstract compositional

structures in and of themselves, independently of the context in which they may show up. This

makes it possible to transfer intuition and apply general, abstract forms of reasoning across a

variety of mathematical settings.

3.2 Basic de�nitions

3.2.1 Categories

De�nition 3.1. A category C is a collection of objects A ∈ C together with a collection of mor-

phismsC(A,B) between any two objectsA,B ∈ C. We write f : A! B whenever f ∈ C(A,B)

is a morphism from A to B. For every object A ∈ C there is an identity morphism idA : A! A,

and whenever f : A! B and g : B ! C there is a composite morphism g ◦ f : A! C
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Composition is associative and admits identities as units. In other words, for all morphisms

f : A! B, g : B ! C, h : C ! D, the following properties hold:

idB ◦ f = f ◦ idA = f (h ◦ g) ◦ f = h ◦ (g ◦ f) .

Categories are often named after their objects and morphisms, and assigned a short name based

on their objects, as in “the category Vect of vector spaces and linear maps”. The prototypical

example is the category Set of sets and functions.

Example 3.2. Set is the category whose objects are sets in a given universe, and whose morphisms

of typeA! B are the functions fromA toB. The identity forA ∈ Set is the function idA : A! A

de�ned by idA(a) := a. The composite of the functions f : A ! B and g : B ! C is the function

g ◦ f : A! C de�ned by (g ◦ f)(a) := g(f(a)).

Many categories use sets equipped with some additional structure as objects, and structure-

preserving functions as morphisms. Categories of this form are known as concrete categories.

Example 3.3. In the categoryMon of monoids and monoid homomorphisms:

• The objects are monoids, in other words tuples 〈A, ·, ε〉 where A is a set and where the binary

operation · : A×A! A is associative and admits ε ∈ A as a unit.

• The morphisms are monoid homomorphisms. A monoid homomorphism from 〈A, ·A, εA〉 to

〈B, ·B, εB〉 is a function f : A! B such that f(x ·A y) = f(x) ·B f(y) and f(εA) = εB .

It is easy to verify that the identity function is a monoid homomorphism and that the composition of

two monoid homomorphisms is again a monoid homomorphism.

Table 3.1 lists some categories I will use together with some of their properties.

3.2.2 Products

De�nition 3.4. A product of a collection (Ai)i∈I of objects Ai ∈ C is an object A ∈ C together

with a collection of morphisms (πi : A! Ai)i∈I satisfying the following property: for anyX ∈ C

and collection of morphisms (fi : X ! Ai)i∈I , there exists a unique morphism 〈fj〉j∈I : X ! A

such that fi = πi ◦ 〈fj〉j∈I for all i ∈ I . A category with all �nite products is called cartesian.
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Category Objects Morphisms Mon. See also
Set Sets Functions [×] Ex. 3.2
Pos Partially ordered sets Monotonic functions [×]
Mon Monoids Monoid homomorphisms × Ex. 3.3
Sup Complete lattices Preserve all sups × [⊗] §3.4.2
CDLat Completely distributive lattices Complete homomorphisms × ⊗
CAL Layer interfaces Certi�ed abstraction layers ⊗ Chap. 4
Gibv E�ect signatures Innocent strategies × Chap. 6
Gbv E�ect signatures Reentrant strategies ⊗ Chap. 7

Table 3.1: A selection of categories relevant to my work. Categories listed in the upper part of
the table are standard; the ones in the lower part are described in following chapters. A cartesian
category is indicated by ×, with cartesian closure labeled [×]. Categories with tensor products
are indicated by ⊗, or [⊗] when I know them to be monoidal closed with respect to the tensor
structure.

A nullary product is called a terminal object and written 1. The de�nition boils down to the

existence of a unique morphism 〈〉 : X ! 1 for each object X ∈ C:

X

1

〈〉

The unary product of an object A is just itself, with the morphism idA as the sole “projection”:

X

A A

f

id

Binary products are written A×B, and satisfy the following property:

X

A A×B B

f g〈f,g〉

π1 π2

More generally, we can write a �nite product
∏

1≤i≤nAi as A1 × · · · ×An.

When they exist, products are unique up to isomorphism, so we can talk about the product of

(Ai)i∈I and refer to the corresponding object as
∏
i∈I Ai, or in the �nitary case use the notations
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mentioned above. Note that:

1×X ∼= X × 1 ∼= X X × Y ∼= Y ×X (X × Y )× Z ∼= X × (Y × Z)

In other words, 〈C/∼=,×, 1〉 behaves like a commutative monoid, so we do not need to be too

careful about parentheses.

Example 3.5 (Products in Set and Mon). In Set, singletons like the unit set 1 = {∗} are terminal

objects, and the morphism 〈〉 : A ! 1 is the only possible function into 1, de�ned by 〈〉(a) := ∗.

Binary products are given by sets of pairs:

A×B := {(a, b) | a ∈ A ∧ b ∈ B} π1(a, b) := a π2(a, b) := b

Products in Mon extend the de�nitions above to provide a monoid structure on the underlying sets.

The terminal monoid uses 1 as its underlying set with the monoid structure de�ned by ∗ ·1 ∗ := ∗ and

ε1 := ∗. Similarly, the monoid structure on A×B is de�ned component-wise as:

(x1, x2) ·A×B (y1, y2) := (x1 ·A y1, x2 ·B y2) εA×B := (εA, εB)

A similar approach can be used for products of arbitrary arities.

The categories listed in the upper part of Table 3.1 are all cartesian. The construction of their

products is similar to the one used for Mon: we start with the product of the underlying sets, and

de�ne the appropriate structure component-wise.

3.2.3 Generalized elements

Terminal objects are useful for representing elements as morphisms. For example in Set, there

is a one-to-one correspondence between the morphism e : 1 ! A and the element e(∗) ∈ A.

Combining this with the terminal morphism 〈〉 : X ! 1, we can de�ne the constant function e◦〈〉 :

X ! Amapping all elements of a domain setX to the element e(∗) ofA. More generally, products

can be used to represent functions of n arguments as morphisms of type f : A1 × · · · ×An ! B.

We can then compose f with a family (fi : X ! Ai)1≤i≤n of functions producing arguments of
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f as f ◦ 〈f1, . . . , fn〉 : X ! B.

In a category with a terminal object 1, the morphisms of type 1! A are known as the global

elements of A, but in fact we can extend this intuition to any morphism e : X ! A by viewing

it as a generalized element of A in the context of X . This point of view is used quite literally in

categorical models of type theories.

Example 3.6 (Categorical semantics). Consider a simple type theory, for example the simply-typed

lambda calculus, built around a typing judgement of the form

x1 : A1, . . . , xn : An `M : B

which asserts that the termM has type B in a context where each variable xi has type Ai.

To interpret a type theory of this kind in a cartesian categoryC, we can assign to each type A an

object JAK ∈ C, and to each well-typed term a morphism of type:

Jx1 : A1, . . . , xn : An `M : BK : JA1K× · · · × JAnK! JBK .

The syntactic constructions of the language can then be interpreted in terms of categorical construc-

tions. In particular, given the well-typed terms:

Γ, x : A `M : B Γ ` N : A ,

the substitutionM [x/N ] of x by N inM should be interpreted as:

JΓ `M [x/N ] : BK : JΓK! JBK = JΓ, x : A `M : AK ◦ 〈idΓ, JΓ ` N : AK〉 .

In addition, the language may contain product types, usually de�ned by the typing rules:

Γ `M : A Γ ` N : B

Γ ` (M,N) : A×B
Γ `M : A×B
Γ ` fst(M) : A

Γ `M : A×B
Γ ` snd(M) : B
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and the reduction rules:

fst(x, y) x snd(x, y) y (fst(z), snd(z)) z

Since these rules correspond to the categorical notion of product, we can use the interpretation:

JA×BK := JAK× JBK

JΓ ` (M,N) : A×BK := 〈 JΓ `M : AK, JΓ ` N : BK 〉

JΓ ` fst(M) : AK := π1 ◦ JΓ `M : A×BK

JΓ ` snd(M) : BK := π2 ◦ JΓ `M : A×BK .

De�ning categorical semantics for programming languages in this way establishes general

principles for interpreting a language in any category with the required structure. For example,

the κ-calculus [Hasegawa, 1995] can be interpreted along the lines of Example 3.6 in any cartesian

category. As such it gives a computational, variable-based syntax which we can use to de�ne

morphisms in Set, Mon, and many other categories.

3.3 Adjunctions

3.3.1 Functors

Categories are mathematical structures in their own right, and come with a natural notion of

structure-preserving maps. These “homomorphisms of categories” are known as functors.

De�nition 3.7 (Functor). For two categories C and D, a functor F from C to D associates:

• to each object X ∈ C an object FX ∈ D;

• to each morphism f : A! B in C, a morphism Ff : FA! FB in D.

Functors must preserve identity and composition, so that for f : A! B and g : B ! C in C:

F (idA) = idFA F (g ◦ f) = Fg ◦ Ff .

I will write F : C! D when F is a functor from C to D.



49

The following constructions on categories are useful to de�ne functors in several variables, as

well as contravariant functors.

De�nition 3.8 (Product and opposite categories). The product of the categories C and D is the

category C×D. Its objects are pairs (X,Y ) withX ∈ C and Y ∈ D. The morphisms from (A,B)

to (C,D) are pairs (f, g) with f ∈ C(A,C) and g ∈ D(B,D). The composites and identities are

de�ned component-wise.

The opposite of a category C is the category Cop where the morphisms are reversed: Cop has

the same objects as C and a morphism fop ∈ Cop(B,A) for every morphism f ∈ C(A,B). The

identity for A ∈ Cop is idop
A : A! A, and the composite of fop : A! B and gop : B ! C is the

morphism (f ◦ g)op : A! C .

Remark 3.9. Using these constructions, we can de�ne the homset functor for a category C, which

consists of a functor C(−,−) : Cop ×C! Set mapping:

• an object (X,Y ) ∈ Cop ×C to the homset C(X,Y ) ∈ Set, and

• a morphism (fop, g) : (A,B) ! (C,D) to the function C(fop, g) : C(A,B) ! C(C,D)

which takes h ∈ C(A,B) to g ◦ h ◦ f ∈ C(C,D).

With some care, it is possible to de�ne a category Cat whose objects are categories and whose

morphisms are the functors between two categories. We can in fact go one step further, and de�ne

a notion of natural transformation between two functors of the same type.

3.3.2 Natural transformations

One way to think about functors is to consider the source category as a “shape”, and to think of the

functor as selecting an instance of this shape in the target category. This point of view is used for

example to formalize commutative diagrams as functors, and in the context of other constructions

such as limits and colimits.

Under this interpretation, two functors F,G : C! D give instances of the same shape C in

the target category D. A natural transformation η : F ! G de�nes edges between corresponding

target objects, connecting the two shapes as the two bases of a prism, and requiring the diagrams
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formed by each face to commute. For example, suppose the category C has three objects, and the

following morphisms in addition to identities:

A C

B

g◦f

f g

Then a natural transformation η : F ! G will induce the following commutative diagram in the

category D:

FA FC

FB

GA GC

GB

ηA

F (g◦f)

Ff

ηB

Fg

Gf Gg

ηC

De�nition 3.10. A natural transformation η : F ! G between the functors F,G : C ! D is

a family of morphisms ηX : FX ! GX in D, indexed by X ∈ C, such that for all morphisms

f : X ! Y in C, the naturality condition ηY ◦ Ff = Gf ◦ ηX holds:

FX FY

GX GY

Ff

ηX ηY

Gf

Another way to gain intuition about natural transformations, especially relevant in the con-

text of programming languages, is to think of them as parametric functions. This relies on the

correspondence summarized in Table 3.2. If we think of D as a category of types and functions,

then a functor F : C! D, can be thought of as a generic type parameterized by the objects of C.

A natural transformation η : F ! G corresponds to a generic function of type:

η : ∀X · FX ! GX ,

where the naturality condition enforces a form of parametricity.
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Category theory Programming
Object Type

Morphism Function
Functor Generic type

Natural transformation Parametric function
Adjunction Introduction and elimination rules

Table 3.2: Informal correspondence between category theory and programming concepts

Example 3.11 (Lists). Consider the case where C = D = Set. The functor (−)∗ : Set ! Set

maps a set A to the corresponding set of lists A∗. Its action on a function f : A ! B yields the

function f∗ : A∗ ! B∗ which applies f independently to every element in a list. In other words:

f∗(~a) := map(f,~a) .

The generic function length : ∀A · A∗ ! N corresponds to a natural transformation η : (−)∗ !

N, where N is understood as the constant functor mapping all objects to N and all functions to idN.

Then the naturality condition:

A∗ B∗

N N

f∗

ηA ηB

id

expresses that length, and all parametric functions of the same type, satisfy the property:

length(map(f, ~x)) = length(~x) .

3.3.3 Hom-set adjunction

An adjunction between the categories C and D establishes a correspondence between morphisms

out of certain objects of C and morphisms into certain objects of D. More precisely:

• A functor F : D! C picks out the objects of interest in C;

• A functor G : C! D picks out the objects of interest in D.

The correspondence takes the form of a natural bijection which can be described informally as:

∀XY ·C(FX, Y ) ∼= D(X,GY ) .
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The notation F a G is often used when F and G are adjoint functors in the way outlined above.

Example 3.12 (Cartesian closure in Set). Given two sets A,B ∈ Set, the function space BA is

itself a set; in other words, BA is an object in Set. In fact, there exists a one-to-one correspondence

between the morphisms of type A! B and the global elements of BA:

Set(A,B) ∼= Set(1, BA)

More generally, there is a correspondence between the morphisms of type Γ×A! B and the gener-

alized elements Γ! AB :

Set(Γ×A, B) ∼= Set(Γ, AB)

This correspondence is known as currying, and is in fact an adjunction −×A a (−)A between:

• the functor − × A, which maps an object X to the product X × A, and f : X ! Y to the

morphism f × idA : X ×A! Y ×A;

• the functor (−)A, which maps an object X to the function space XA and f : X ! Y to the

morphism fA : XA ! Y A which maps (xi)i∈A to (yi)i∈A where yi := f(xi) for all i ∈ A.

When they exist, adjoint functors determine each other. F is called the left adjoint of G and

conversely G is called the right adjoint of F . If many constructions found across mathematics

can be characterized succinctly in the language of category theory, many construction in category

theory can in turn be characterized succinctly in terms of adjunctions.

While the de�nition of adjunction sketched above is fairly compact, much structure can be

extracted from it, as summarized in Figure 3.1. This allows us to look at adjunctions from di�erent

points of view, which give rise to various alternative de�nitions.

3.3.4 Universal morphisms

I have mentioned in passing the naturality of the bijection associated with an adjunction F a G,

de�ned for all X ∈ D and Y ∈ C as a function:

φX,Y : C(FX, Y )! D(X,GY )
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X FX

GY FGY Y

g Fg
f

εY

⇔

X GFX FX

GY Y

ηX

g
Gf f

Figure 3.1: Adjunctions in terms of universal morphisms. In each pair of diagram, the left-hand
side is a diagram in D and the right-hand side is a diagram in C.

Once we spell out the details, naturality in this case boils down to the following property:

x : X ′ ! X ∈ D f : FX ! Y ∈ C y : Y ! Y ′ ∈ C

φX′,Y ′(y ◦ f ◦ Fx) = Gy ◦ φX,Y (f) ◦ x

This means in particular that:

g = φX,Y (f) = Gf ◦ φX,FX(idFX) f = φ−1
X,Y (g) = φ−1

GY,Y (idGY ) ◦ Fg

The morphism ηX := φX,FX(idFX) : X ! GFX de�nes a natural transformation called the

adjunction’s unit, and the morphism εY := φ−1
GY,Y (idGY ) : FGY ! Y de�nes the counit. They

satisfy the universal properties shown in Figure 3.1.

Example 3.13 (Universal property of exponentials). In the case of the adjunction −× A a (−)A,

the universal property of the counit is particularly interesting:

Γ Γ×A

BA BA ×A B

g g×A f

εB

The counit εB : BA×A! B is called an evaluation map. It applies a function inBA to an element

of A and returns the result in B.

The universal properties of the unit and counit each su�ce to characterize the adjunction. We

give a de�nition below in terms of the universal property of the unit.

De�nition 3.14 (Adjoint functors). The functors F : D ! C and G : C ! D de�ne an

adjunction when there is a natural transformation η : idD ! GF with the following property:
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for all g : X ! GY in D, there is a unique f : FX ! Y in C such that g = Gf ◦ ηX :

X GFX FX

GY Y

ηX

g
Gf f

This de�nition is particularly useful to characterize free functors, which are left adjoints of

forgetful functors.

Example 3.15 (Free objects). Consider the functor U : Mon! Set which forgets the structure of

a monoid to retain only the underlying set. Likewise, U forgets the properties of a monoid homomor-

phism to retain only the underlying function. Given explicitly,

U〈Y, ·, ε〉 := Y Uf := f .

This functor has a left adjoint F : Set ! Mon, which for a set X constructs the corresponding

monoid of lists. The action of F on a function f : X ! Y is given by the map operation, which

applies f independently to each element of the list.

FX := 〈X∗,++, nil〉 Ff := λ~x · map(f, ~x) .

The monoid FX is the free monoid generated by the elements ofX . Lists correspond to arbitrary

monoid expressions built from these generators, identi�ed up to the associativity and unit laws which

monoids must obey. This makes FA unique: it is in a sense the most general monoid containing A.

The unit ηX : X ! X∗ embeds the generator x ∈ X as the single-element list ηX(x) = x :: nil.

The de�ning property of the free monoid is that a function f : X ! U〈Y, ·, ε〉 can be uniquely

extended to a monoid homomorphism f † : FX ! 〈Y, ·, ε〉 such that Uf † ◦ ηX = f , namely:

X X∗ 〈X∗,++, nil〉

Y 〈Y, ·, ε〉

ηX

f
Uf† f†

f †(x :: ~y) := f(x) · f †(~y) f †(nil) := ε
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3.3.5 Cartesian closure

Generally speaking, a category C is closed when its collections of morphisms C(X,Y ) can be

represented internally as an object of C itself. In cartesian closed categories, this correspondence

is expressed using products. I discussed cartesian closure somewhat informally in Examples 3.12

and 3.13. Armed with De�nition 3.14 we can formulate the following characterization.

De�nition 3.16 (Cartesian closed category). An object A in a cartesian category C is called ex-

ponentiable if the functor −× A has a right adjoint (−)A. A cartesian category where all objects

are exponentiable is called cartesian closed.

Cartesian closure provides a categorical notion of high-order functions which can be intro-

duced by currying and eliminated through uncurrying. Cartesian closed categories are the models

of the simply typed λ-calculus.

Example 3.17 (Simply-typed λ-calculus). In addition to the structures mentioned in Example 3.6,

the simply typed λ-calculus has types of the form A! B with the associated rules:

Γ, x : A `M : B

Γ ` λx ·M : A! B

Γ ` f : A! B Γ ` x : A

Γ ` f x : B

and reductions:

(λx ·M)N  M [x/N ] (λx · f x) f

In a cartesian closed category, we can give these constructions the following interpretation:

JA! BK := BA

JΓ ` λx ·M : A! BK := JΓ, x : A `M : BK†

JΓ ` f x : BK := εB ◦ 〈 JΓ ` f : A! BK, JΓ ` x : AK 〉 .

3.3.6 Monads

I have given in §2.6 an overview of monads in Set and their connection with algebraic e�ects.

The general categorical formulation is the following.

De�nition 3.18 (Monad). A monad in C is a triple 〈T, η, µ〉 consisting of a functor T : C! C,



56

a natural transformations η : idC ! T called the monad’s unit, and a natural transformation

µ : TT ! T called its multiplication, which satisfy for all X ∈ C the following properties:

T 3X T 2X

T 2X TX

µTX

TµX µX

µX

TX T 2X

T 2X TX

ηTX

TηX µX

µX

µX ◦ TµX = µX ◦ µTX µX ◦ TηX = µX ◦ ηTX = idTX .

Note that a monad in the sense of De�nition 2.22 corresponds to a monad in Set in the sense

of the de�nition above:

• The action of T on a function f : X ! Y can be de�ned as Tf := (ηY ◦ f)†.

• The multiplication is given as µX := id†TX .

Conversely, for any monad T and morphism f : X ! TY , its Kleisli extension f † : TX ! TY

can be de�ned as f † := µ ◦ Tf .

Monads are in a sense “�attened adjunctions”. In particular, every adjunction F a G gives rise

to a monad 〈GF, η, µ〉 where µ is de�ned from ε as µX := GεFX . A number of familiar monads

can be obtained in this way from the adjunctions that I have presented. The adjunction associated

with the cartesian closure of Set discussed in Example 3.12 gives rise to the state monad (−×S)S .

The free monoid adjunction gives rise to the list monad (−)∗. In the next section, I discuss how

the free monad TE presented in §2.6.3 arises from an adjunction between the category Set and

the category of algebras for the signature E.

3.3.7 Categorical algebra

I discussed in §2.5 some basic concepts from universal algebra, and their use in the context of

algebraic e�ects. These concepts admit an elegant categorical formulation [Trnková et al., 1975],

allowing us to generalize them to categories other than Set, and to establish a formal connection

with the monadic approach to modeling e�ectful computations.

Recall that an algebra for the signature E is a set A together with a function αm : AN ! N
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for each operation (m :N) ∈ E. Equivalently, we can give a single function

α :

 ∑
(m:N)∈E

AN

 ! A .

For example, an algebra for the signature Eio = {readbit : 2, print : string ! 1, done : ∅} will

have the following type:

α : A×A +

 ∑
s∈string

A

 + 1 ! A ,

where in the domain of α:

• The �rst summand corresponds to the operation readbit : 2.

• The second one corresponds to the family of operations print : string! 1.

• The last one corresponds to done : ∅.

In fact, the “shape” of algebras for Eio can be captured by a functor Êio : Set! Set de�ned as:

ÊioX := X ×X +

 ∑
s∈string

X

 + 1

An algebra for Eio is then a set A with a function α : ÊioA! A. This generalizes as follows.

De�nition 3.19. The functor associated to an e�ect signature E is Ê : Set! Set, de�ned as:

ÊX :=
∑

(m:N)∈E

XN .

Once a signature has been encoded as a functor, we can use the following notion of algebra to

represent the associated structure.

De�nition 3.20 (F -algebras). An algebra for the functor F : C ! C or F -algebra is an object

A ∈ C together with a morphism α : FA ! A. F -algebras form a category FAlg in the

following way. An object of FAlg is a pair 〈A,α〉 as above. A homomorphism of F -algebras from
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〈A,α〉 to 〈B, β〉 is a morphism f : A! B of C such that f ◦ α = β ◦ Ff .

ÊA A

ÊB B

α

Ff f

β

The identities of C are identity homomorphisms of F -algebras. Homomorphisms of F -algebras

likewise compose as expected.

For a signature E, an algebra homomorphisms between the Ê-algebras 〈A,α〉 and 〈B, β〉 is a

function f : A! B such that for all operations (m :N) ∈ E and argument tuples x ∈ AN :

f(αm(xn)n∈N ) = βm(f(xn))n∈N .

Example 3.21 (Algebra of closed terms). The set of terms for a signature E can be used to de�ne

an algebra 〈TE(∅), e〉, where for all (m :N) ∈ E and family of closed terms (tn)n∈N , we de�ne:

em(tn)n∈N := m(tn)n∈N .

Terms are interpreted as themselves; in other words, te = t for all t ∈ TE(∅). This algebra is in fact

the initial object in the category ÊAlg: for any other 〈A,α〉 ∈ ÊAlg, the interpretation function

(−)α : TE(∅)! A de�nes the unique Ê-algebra homomorphism from 〈TE(∅), e〉 to 〈A,α〉.

More generally, note that for any functor F : C ! C, we can de�ne a forgetful functor

UF : FAlg ! C. Its action on algebras is UF 〈A,α〉 := A, retaining only the underlying object

of an F -algebra. Likewise, its action on algebra homomorphisms retains only the underlying

morphism of C. In the case of Ê-algebras, TE can be characterized as the left adjoint of UE .

Example 3.22 (TE as a left adjoint). The set TE(X) of terms on a signature E with variables inX

can be used to de�ne a functor FE : Set ! ÊAlg with FEX := 〈TE(X), e〉, where the function

e : Ê TE(X)! TE(X) is de�ned as above by:

em(tn)n∈N := m(tn)n∈N (m :N) ∈ E .
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The action of FE on a function g : X ! Y gives a Ê-algebra homomorphism ĝ : FEX ! FEY

which applies g to all variables in a term:

ĝ(m(tn)n∈N ) := m(ĝ(tn))n∈N ĝ(x) := g(x)

There is an adjunction FE a UE with the following components:

X FEX X TE(X) FEX

A FEA 〈A,α〉 A 〈A,α〉

g FE g
f

ηX

g f f

εα

In other words, there is a one-to-one correspondence between the variable assignments g : X ! A

and algebra homomorphisms of the form f : FEX ! 〈A,α〉 which map open terms with variables

in X to the carrier set A and satisfy the following homomorphism property:

f(m(tn)n∈N ) = αm(f(tn))n∈N .

This property determines the behavior of f on operations. The behavior on variables is de�ned by the

property f(v) = g(v). The adjunction’s unit maps v ∈ X to v ∈ TE(X), and the counit maps a term

t ∈ TE(A) to its interpretation tα ∈ A.

3.4 Monoidal structures

3.4.1 Motivation

In categories with products, systems which use and provide multiple interfaces can be represented

as morphisms of type:

f : A1 × · · · ×An ! B1 × · · · ×Bm .

In particular, two morphisms f1 : A1 ! B1 and f2 : A2 ! B2 can be combined side-by-side as:

f1 × f2 := 〈f1 ◦ π1, f2 ◦ π2〉 : A1 ×A2 ! B1 ×B2 .
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As noted in §3.2.2, products essentially behave as a commutative monoid on the objects of a

category. In the “systems” interpretation, this means that a multiset of interfaces can be combined

to de�ne a larger interface. The properties of products correspond to that of “wiring diagrams”,

allowing systems to be combined in series through the usual composition of morphisms, and in

parallel through the operation × shown above.

However, products also come with additional structure and properties which are not always

appropriate when modeling systems. For example, for every object A ∈ C, there is a morphism:

∆A := 〈idA, idA〉 : A! A×A

with the property that π1 ◦ ∆A = π2 ◦ ∆A = idA. This means that every interface can be

duplicated and shared between several clients with no interference. This is appropriate for some

simple systems; for instance the value produced by a function can be duplicated or discarded at

will and used as an input by an arbitrary number of other functions. However, systems which

are stateful or manipulate resources do not usually behave in this way. For instance, invoking the

primitives of an abstraction layer will transform its state. Two clients accessing the same layer

interface may interfere with each other; because of this it is not possible in general to duplicate a

layer interface in a transparent way (see also §4.3.3 and §4.3.4).

3.4.2 Example: nondeterministic functions

Below I illustrate how these phenomena are expressed in the context of the category Sup of sup-

lattices and their homomorphisms. This category is particularly relevant to the work presented in

this thesis because it provides a possible model of unbounded nondeterminism and nondetermin-

istic functions.

De�nition 3.23. A sup-lattice is a poset L with all least upper bounds. In other words, for every

family (xi)i∈I of elements of L, there is an element
∨
i∈I xi ∈ L with the property that:

∀ i ∈ I · xi ≤ y ⇔
∨
i∈I

xi ≤ y
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X FX X P(X) FX

L FL 〈L,≤,
∨
〉 L 〈L,≤,

∨
〉

g g[−]
f

{−}

g f f

∨
Figure 3.2: Adjunction for the free sup-lattice FX = 〈P(X),⊆,

⋃
〉. The unit maps x ∈ X to the

singleton set {x} ∈ P(X). The counit “evaluates” a subset A ⊆ L of the sup-lattice 〈L,≤,
∨
〉 to

its least upper bound
∨
A ∈ L.

A sup-lattice homomorphism from 〈L,≤,
∨
〉 to 〈M,v,

⊔
〉 is a function f : L!M such that:

f

(∨
i

xi

)
=
⊔
i

f(xi) .

I will write Sup for the category of sup-lattices and their homomorphisms.

In any sup-lattice 〈L,≤,
∨
〉, we can compute the least upper bound of a subset X ⊆ L as the

supremum
∨
X =

∨
x∈X x. Binary joins are computed as x∨y =

∨
{x, y}. Every sup-latticeL has

a least element ⊥ =
∨
∅ and a greatest element > =

∨
L. Note that sup-lattice homomorphisms

preserve binary joins and ⊥, but do not necessarily preserve > because the image of L may not

be the entire target lattice. Since x ≤ y ⇔ x ∨ y = y, sup-lattice homomorphisms are always

monotone.

Sup-lattices are in fact complete lattices, since arbitrary meets can be computed in any sup-

lattice as
∧
i∈I xi =

∨
{x | ∀i ∈ I · x ≤ xi}. However, complete lattices are usually associated

with complete homomorphisms, which preserve both arbitrary joins and arbitrary meets, whereas

viewing complete lattices as a sup-lattices yields the weaker notion of sup-lattice homomorphism

used to de�ne the category Sup.

Free sup-lattice and powerset monad There is a forgetful functor U : Sup ! Set which

maps a sup-lattice 〈L,≤,
∨
〉 to its underlying setL. This functor has a left adjointF : Set! Sup

which maps a set X to the sup-lattice FX = 〈P(X),⊆,
⋃
〉 of subsets of X ordered by inclusion.

The action of F on a function f : X ! Y is de�ned by the image f [A] = {f(a) | a ∈ A} of a

subset A ∈ P(X) under f . The components of the adjunction are summarized in Figure 3.2.
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Cartesian structure The category Sup has all products
∏
i∈I〈Li,≤i,

∨
〉. The underlying set

of a product is the cartesian product
∏
i∈I Li of underlying sets, so that its elements have the form

(xi)i∈I with xi ∈ Li. Their ordering is de�ned component-wise by

(xi)i∈I ≤ (yi)i∈I ⇔ ∀i ∈ I · xi ≤i yi ,

and joins can likewise be computed as follows:

∨
j∈J

(xji )i∈I =

∨
j∈J

xji


i∈I

In particular, the bottom element of a product is the tuple ⊥ = (⊥i)i∈I . The terminal object of

Sup is the trivial sup-lattice 1 = {⊥}, and the terminal sup-lattice homomorphism 〈〉L : L ! 1

maps every element of L to ⊥.

Products in Sup behave in a rather unexpected way. For example, a global element e : 1! L

carries no information, because as a sup-lattice homomorphism e can only map ⊥ ∈ 1 to ⊥ ∈ L.

A related phenomenon is that within the sup-lattice L1 × L2, the tupling operation (−,−) is

only a sup-lattice homomorphism jointly in the two variables: although (⊥,⊥) = ⊥, in general

(⊥, x2) 6= ⊥ and (x1,⊥) 6= ⊥. If the global elements behaved in the usual way, this would be a

paradox because it would be possible to construct a morphism id× e2 : L1× 1! L1×L2 which

would not be a sup-lattice homomorphism. But since e2 : 1! L2 can only represent the element

⊥ ∈ L2 this is not a problem.

The following, related phenomenon also occurs. The hom-sets Sup(X,Y ) can be equipped

with a sup-lattice structure, where the ordering and joins are de�ned pointwise as:

f ≤ g ⇔ ∀x ∈ X · f(x) ≤ g(x)

(∨
i∈I

fi

)
(x) =

∨
i∈I

fi(x)

Therefore, we expect Sup to be closed in some way, with [X,Y ] = 〈Sup(X,Y ),≤,
∨
〉 as de�ned

above representing the hom-set Sup(X,Y ) as an object in the category Sup itself. However,

Sup cannot be cartesian closed with respect to [X,Y ]. For example there cannot be in general

a correspondence between the single morphism of type 1 ! [X,Y ] and the potentially many
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morphisms of type X ! Y .

While the cartesian structure of Sup does not support elements and closure in the expected

way, it turns out we can recover them by using alternative constructions which behave similarly in

some aspects. This alternative monoidal structure on Sup can be de�ned using the tensor product

of sup-lattices [Joyal and Tierney, 1984, Chapter I].

Tensor product Tensor products were �rst studied in the context of linear algebra, but they

can be de�ned for many structures other than vector spaces, and they admit a general categorical

description. Tensor products of vector spaces emerge from the notion of bilinear maps. Likewise,

the more general notion of tensor product emerges from a notion of bimorphism [Banaschewski

and Nelson, 1976].

In the context of Sup, a bimorphism from the sup-lattices L1 and L2 to the sup-lattice M is a

function f : UL1 × UL2 ! UM in Set, which satis�es the following properties:

f(
∨
i∈I

xi, y) =
∨
i∈I

f(xi, y)

f(x,
∨
i∈I

yi) =
∨
i∈I

f(x, yi) ,

Note that f is not in general a sup-lattice homomorphism. The de�ning property of the tensor

product L1 ⊗ L2 is the existence of a bimorphism h : UL1 × UL2 ! U(L1 ⊗ L2), universal in

the sense that all bimorphisms f out of L1 and L2 factor through h in the following way:

UL1 × UL2 U(L1 ⊗ L2) L1 ⊗ L2

UM M

h

f
Uf† f† (3.1)

This means in particular that bimorphisms are in one-to-one correspondence with homomor-

phisms out of the corresponding tensor object.

One way to construct the tensor product is to start from the free sup-lattice F (UL1 × UL2)

with h(x, y) = {(x, y)}, then identify elements of L1 ⊗ L2 to make h into a bimorphism. Often,

the notation ⊗ is used for elements of the tensor product as well as the object, in other words



64

h(x, y) is written as x⊗ y ∈ L1 ⊗ L2. A sup-lattice homomorphism f † out of the tensor product

L1 ⊗ L2 can be de�ned by giving its action on elements of the form x ⊗ y, and verifying that

f †(−⊗ y) and f †(x⊗−) are sup-lattice homomorphisms.

Monoidal structure The tensor product is in fact a functor ⊗ : Sup×Sup! Sup. To de�ne

its action f ⊗ g : L1 ⊗ L2 ! M1 ⊗M2 on the morphisms f : L1 ! M1 and g : L2 ! M2, it

su�ces to specify

(f ⊗ g)(x⊗ y) := f(x)⊗ g(x) .

Note that since f and g are sup-lattice homomorphisms and ⊗ is a bimorphism, f(x)⊗ g(y) is a

sup-lattice homomorphism separately in x and y.

The tensor product ⊗ shares various characteristics with the cartesian product × besides its

functoriality. In particular, the sup-lattice I = {⊥, ∗} serves as a unit for ⊗, which satis�es the

following isomorphisms:

I ⊗X ∼= X ⊗ I ∼= X X ⊗ Y ∼= Y ⊗X (X ⊗ Y )⊗ Z ∼= X ⊗ (Y ⊗ Z)

Finally, the tensor product in Sup has some of the characteristics which the cartesian product

failed to deliver. For example, the generalized elements e : I ! L are in one-to-one correspon-

dence with the elements e(∗) ∈ L. Moreover, there is an adjunction−⊗A a [A,−] which allows

us to recover a tensor version of the cartesian closed structure present for example in Set. This

also provides an alternative characterization of the tensor product.

The properties of Sup illustrate a more general phenomenon. In categories like Set and Pos,

all morphisms out of a product A × B are “bifunctions” or “bimonotonic functions”. Because of

this, the notion of tensor product collapses into the usual cartesian product. By contrast, in Sup

morphisms and bimorphisms are two very di�erent things, giving rise to a richer setting where

these two structures interact in interesting ways. These structures mirror those found in linear

algebra and are captured by various fragments of linear logic.
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3.4.3 Symmetric monoidal categories

Generalizing from the cartesian and tensor products, the notion of symmetric monoidal category

is de�ned as follows.

De�nition 3.24. A symmetric monoidal category C is equipped with a functor ⊗ : C×C! C,

a unit object I ∈ C and the following natural isomorphisms:

• a left unitor λX : I ⊗X ∼= X and right unitor ρX : X ⊗ I ∼= X ;

• a braiding γX,Y : X ⊗ Y ∼= Y ⊗X such that γY,X = γ−1
X,Y ;

• an associator αX,Y,Z : (X ⊗ Y )⊗ Z ∼= X ⊗ (Y ⊗ Z).

The unitors and braiding must be compatible in the sense that ρX ◦ γI,X = λX .

I ⊗X X ⊗ I

X X

λ

γ

ρ

The associator must obey (idW ⊗αX,Y,Z)◦αW,X⊗Y,Z ◦ (αW,X,Y ⊗ idZ) = αW,X,Y⊗Z ◦αW⊗X,Y,Z .

((W ⊗X)⊗ Y )⊗ Z (W ⊗X)⊗ (Y ⊗ Z) W ⊗ (X ⊗ (Y ⊗ Z))

(W ⊗ (X ⊗ Y ))⊗ Z W ⊗ ((X ⊗ Y )⊗X)

α

α⊗id

α

α

id⊗α

Finally, the braiding and associator must be compatible in the sense that

(idY ⊗ γX,Z) ◦ αY,X,Z ◦ (γX,Y ⊗ idZ) = αY,Z,X ◦ γX,Y⊗Z ◦ αX,Y,Z .

(X ⊗ Y )⊗ Z X ⊗ (Y ⊗ Z) (Y ⊗ Z)⊗X

(Y ⊗X)⊗ Z Y ⊗ (X ⊗ Z) Y ⊗ (Z ⊗X)

α

γ⊗id

γ

α

α id⊗γ

3.4.4 Monoidal closure

In the context of symmetric monoidal categories, De�nition 3.16 generalizes as follows.
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De�nition 3.25 (Monoidal closed category). A symmetric monoidal category C is closed when

for every object A ∈ C the functor −⊗A has a right adjoint [A,−].
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Chapter 4

Certi�ed abstraction layers

4.1 Introduction

This chapter describes the theory of certi�ed abstraction layers used in the veri�cation of the

certi�ed operating system kernel CertiKOS.

4.1.1 Abstraction layers

Software is constructed in layers. The basic, concrete facilities provided by the programming

environment are used to implement abstract data structures and operations. The programmer can

then forget the implementation details of these data structures and operations, and instead think

of them as primitives when building the next layer of code.

This core principle is especially relevant in the context of system code, where abstraction layers

may transform the programming model signi�cantly. For example, at the level of the bare metal,

the memory address space must be manipulated explicitly. For higher-level code, the operating

system’s memory management layers abstract away the hardware’s low-level details and provide

a more convenient view of the memory.

This illustrates a conceptual similarity between abstraction layers and compilers. As is the case

for abstraction layers, the purpose of a compiler is to use a lower-level programming model (like

assembly code) to provide a more abstract, higher-level model (for example the C programming

language). For abstraction layers, the transformation of client code is less expansive, consisting

only of linking with a layer’s code. Nevertheless compilers and abstraction layers can be under-

68
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CompCert CertiKOS
Language semantics Layer interface

Source language Overlay interface
Compilation pass Abstraction layer
Target language Underlay interface
Pass correctness Layer correctness

Table 4.1: Correspondence between certi�ed compilation and certi�ed abstraction layers

stood as speci�c instances of a more general phenomenon.

4.1.2 Certi�ed abstraction layers in CertiKOS

The analogy between compilers and abstraction layers can be extended to cover correctness and

veri�cation techniques. This is illustrated by the certi�ed abstraction layers of CertiKOS and their

connection to CompCert. The veri�cation of CertiKOS builds on CompCert in two di�erent ways:

• In terms of functionality, CompCert provides C and assembly semantics mechanized in the

Coq proof assistant, and its correctness theorem allows us to use proofs about the kernel’s

C code to verify the compiled assembly code.

• Additionally, many of the patterns and techniques used to verify CompCert serve as a start-

ing point for the formulation of certi�ed abstraction layers (Table 4.1).

The CertiKOS kernel is divided into several dozen abstraction layers, which are speci�ed and

veri�ed individually. Speci�cations of abstraction layers are called layer interfaces. They extend

CompCert semantics to provide a set of primitives, which can be invoked as external functions. The

behavior of primitives is described in terms of an abstract state, maintained alongside CompCert’s

memory state but only updated by primitive invocations.

A layer implementation realizes the primitives described by an overlay interface as client code

for an underlay interface. A layerM implementing the overlay interfaceL2 on top of the underlay

interface L1 can be depicted as follows:

L2

M
L1
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The correctness of M is formulated as the contextual re�nement property:

∀C . JCKL2 v JC +MKL1

expressing that the behavior of the client code C running alongside M on top of the underlay

interface L1 re�nes the behavior of C evaluated on top of the overlay interface L2. Then, when

the underlay interface of one layer corresponds to the overlay interface of another contextual

re�nement properties can be combined to obtain the composite certi�ed layer:

L3

N
L2

M
L1

⇒
L3

M + N
L1

This is similar to the way the passes of CompCert can be composed when the target language of

one corresponds to the source language of another.

4.1.3 Contributions

In our original design [Gu et al., 2015], the formalization of certi�ed abstraction layers was closely

tied with the semantic infrastructure of CompCert. Indeed, we introduced the variant CompCertX

discussed in §4.4 to make it possible for language semantics to use arbitrary underlay interfaces

and express the behavior of layer implementations.

As we proceeded to verify the 37 layers of CertiKOS in the framework outlined above, it quickly

became apparent that the common structures found in the veri�cation of each layer were a source

of excessive redundancy in our proofs. This prompted my work on the layer calculus of CertiKOS,

which became the starting point for the research presented in this thesis.

This chapter presents a modernized version of the layer calculus decoupled from CompCert.

The new version avoids the complications of the original model but captures its essential features.

Through a series of embeddings, the new model could be interfaced with CompCertO (§9) to pro-

vide the capabilities of the original model and more.



71

4.2 Layer model

A layer interface L has three components. First, a signature E enumerates primitive operations

together with their types (see Def. 2.16). Second, the set S contains the abstract states of the layer

interface. Finally, for each operationm :N in the signatureE, a speci�cation is given as a function:

L.m : S ! P1(N × S) .

Throughout this thesis, the notation v@k ∈ V × S is used for a pair containing the value v ∈ V

and the state k ∈ S.

4.2.1 Speci�cation monad

In the type of L.m above, P1 corresponds to the maybe monad:

P1(X) := {x ⊆ X : |x| ≤ 1} ,

where a terminating computation producing the value v ∈ X is represented as the singleton:

ηPX(v) := {v} ,

and where the empty set ∅ ∈ P1(X) speci�es an unde�ned computation, which is free to silently

diverge, crash, or produce any possible outcome. When two computations are sequentially com-

posed, both must be successful for the result to be de�ned. For x ∈ P1(P1(X)), the multiplication

µP(x) ∈ P1(X) is de�ned by:

µPX(x) := {v ∈ X | ∃ y ∈ P1(X) · x 3 y 3 v} =
⋃
x .

Equivalently, for x ∈ P1(X) and f : X ! P1(Y ), the Kleisli extension f † : P1(X)! P1(Y ) is

de�ned by:

f †(x) = {v ∈ Y | ∃u ∈ X · x 3 u ∧ f(u) 3 v} =
⋃
u∈x

f(u) .
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The notion of re�nement associated with this monad is set inclusion, which allows an unspeci�ed

computation to be re�ned by a computation with a de�nite outcome:

∅ ⊆ {v} .

To account for state, we combine P1 with the state monad transformer. For a set of states S,

we obtain the monad:

LS(X) := P1(X × S)S ,

equipped with the structure:

ηL(v) := λ k · {v@k}

µL(x) := λ k · {v@k′′ | ∃ y k′ · x(k) 3 y@k′ ∧ y(k′) 3 v@k′′} .

Then in a layer interface L using abstract states in the set S, the primitive m : N will be given a

speci�cation L.m ∈ LS(N).

Remark 4.1. Our version of the maybe monad P1 arises from an adjunction P1 a U between the

category Pos⊥ of lower-bounded posets and the category Set, enriching our model with a notion

of failure ⊥ and an associated partial order. Likewise, the state monad arises from the adjunction

− × S a (−)S introduced in Example 3.12. The left adjoint allows computations to produce a state,

and the right adjoint allows them to consume one. The monad LS corresponds to the composition:

Pos⊥ Set Set
U

P1

(−)S

−×S
.

Since Pos⊥ is monoidal closed, these two aspects of LS could be combined in the opposite way:

Pos⊥ Pos⊥ Set
[S,−]

−⊗S

U

P1

.

Under this approach, from a lower-bounded, partially ordered set of states S, we would construct a
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Lbq Sbq := V ∗

enq : V ! 1 Lbq.enq[v] := λ ~q · {∗@~qv | |~q| < N}
deq : 1! V Lbq.deq := λ ~q · {v@~p | ~q = v~p}

Mbq R ⊆ Sbq × Srb

Mbq.enq[v] := i inc2; set(i, v) ~q R (f,c1, c2)⇔ (c1 ≤ c2 < N ∧ ~q = fc1 · · · fc2−1) ∨
Mbq.deq := i inc1; get(i) (c2 ≤ c1 < N ∧ ~q = fc1 · · · fN−1f0 · · · fc2−1)

Lrb Srb := V N × N× N

set : N× V ! 1 Lrb.set[i, v] := λ(f, c1, c2) · {∗@(f ′, c1, c2) | i < N ∧ f ′ = f [i := v]}
get : N! V Lrb.get[i] := λ(f, c1, c2) · {fi@(f, c1, c2) | i < N}

inc1 : 1! N Lrb.inc1 := λ(f, c1, c2) · {c1@(f, c′1, c2) | c′1 = (c1 + 1) modN}
inc2 : 1! N Lrb.inc2 := λ(f, c1, c2) · {c2@(f, c1, c

′
2) | c′2 = (c2 + 1) modN}

Figure 4.1: A certi�ed abstraction layer Lrb `R Mbq : Lbq implementing a bounded queue of
sizeN using a ring bu�er. The left-hand side of the �gure shows the signatures of the overlay and
underlay interfaces, and the code associated with the layer. The right-hand side shows primitive
speci�cations and the simulation relation used by the correctness proof.

monad L′ consisting of the monotonic, ⊥-preserving functions:

L′(A) := S
Pos⊥−−−! P1(A)⊗ S

Since the tensor product P1(A)⊗ S identi�es the posets’ lower bounds, L′ is largely equivalent to L.

However, L′ can use an arbitrary bounded poset of states containing states with partial information.

4.2.2 Layer interfaces

De�nition 4.2. A layer interface is a tuple L = 〈E,S, σ〉, where E is an e�ect signature, S is a

set of states, and σ assigns to each operation (m : N) ∈ E a speci�cation σm ∈ LS(N). I will

sometimes use the notation L.m to refer to σm.

As a running example, I will use the certi�ed layer described in Figure 4.1, which implements

a bounded queue with at most N elements using a circular bu�er. We outline the construction of

the corresponding layer interfaces below.

Example 4.3 (Bounded queue and ring bu�er interfaces). The layer interface Lrb = 〈Erb, Srb, σrb〉

describes a bounded queue. Its states are sequences of values, expected to contain at mostN elements.
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The two primitives enq and deq respectively add a new element to the queue and remove the oldest

element. If we attempt to add an element which would over�ow the queue’s capacityN , or remove an

element from an empty queue, the result is ∅ (i.e., the operation aborts).

I will demonstrate how the bounded queue interface can be implemented in terms of a circular

bu�er described by the layer interface Lbq = 〈Ebq, Sbq, σbq〉. The states of Lrb contain an array

f ∈ V N storing N values of type V , and two counters taking values in the interval 0 ≤ c1, c2 < N .

The array can be accessed through the primitives get and set; the primitives inc1 and inc2 increment

the corresponding counter and return the counter’s old value.

4.2.3 Client code

We can use the free monad TE on the signature E as a general representation for client code for

an underlay interface L = 〈E,S, σ〉. The monad homomorphism (−)[σ] : TE ! LS can then be

used to evaluate client programs.

More explicitly, as discussed in §2.6, a client programC ∈ TE(X) is a term on the signatureE

with variables in X , or equivalently a monadic expression built using the operations in E with a

result in X . A client program C ∈ TE(A) can be interpreted as a computation C[L] ∈ LS(A) in

the following way:

m(tn)n∈N [L] = (n m ; tn)[L] = n σm ; tn[L] (m :N) ∈ E

v[L] = ηEA(v)[L] = ηLA(v) v ∈ A

In other words, in C[L] ∈ LS(A), occurrences of the operations of E have been replaced by their

speci�cation given in σ to interpret the program in terms of state transitions.

Example 4.4 (Queue rotation). The following client program for the signature Ebq rotates a queue

and returns the rotated value:

Crot := v deq ; enq[v] ; η(v)

Using Lbq as an underlay interface, we can evaluate it to

Crot[Lbq] := λ ~q · {~pv@v | ~q = v~p ∧ |~p| < N} .
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4.2.4 Layer implementations

A layer implementation provides underlay client code for each operation of the overlay interface.

In other words, it is an interpretation of the overlay’s signature into the underlay’s signature.

De�nition 4.5. A layer implementation for an underlay signature E and an overlay signature F

is a family (M q)(q:R)∈F with M q ∈ TE(R). As before I will write M : E ! F , and sometimes

use the notationM.q to refer toM q . Then, for an underlay interface L = 〈E,S, σ〉, the evaluation

of M over L is the layer interface M ◦ L := 〈F, S, τ〉 with τ q := M q[L].

Similarly to layer interfaces, a layer implementation M : E ! F is associated with a monad

homomorphism (−)[M ] : TF ! TE . The monad homomorphism associated with the evaluated

layer interface M ◦ L is then the composite (−)[L] ◦ (−)[M ] : TF ! LS .

Example 4.6. The layer implementationMbq stores the queue’s elements into the array, between the

indices given by the counters’ values. This is expressed by the simulation relationR given in Figure 4.1,

which explains how overlay states are realized byMbq in terms of underlay states.

The code ofMbq can be interpreted in the monad Srb ! P1(−× Srb), with calls to primitives of

Lrb replaced by their speci�cations, to obtain the layer interfaceMrb[Lbq]. Concretely, the behaviors

ofMbq.enq[v] andMbq.deq running on the underlay interface Lrb evaluate to:

(Mbq ◦ Lrb).enq[v] = i Lrb.inc2 ; Lrb.set[i, v]

= λ (f, c1, c2) · Lrb.set[c2, v](f, c1, (c2 + 1) modN)

= λ (f, c1, c2) · {∗@(f [c2 := v], c1, (c2 + 1) modN) | c2 < N}

(Mbq ◦ Lrb).deq = i Lrb.inc1 ; Lrb.get[i]

= λ (f, c1, c2) · Lrb.get[c1](f, (c1 + 1) modN, c2)

= λ (f, c1, c2) · {fc1@(f, (c1 + 1) modN, c2) | c1 < N}

4.2.5 Correctness

Consider an underlay interface L1, an overlay interface L2, and a corresponding layer implemen-

tation M . The layer interface M ◦ L1 shares a signature with L2, but its behavior is described
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in terms of the states of L1. To establish correctness, we need to provide a simulation relation

R ⊆ S2×S1 explaining the correspondence between the more abstract states of L2 and the more

concrete states of L1. Using the relators!, ×, P≤ presented in §2.3.2, the associated simulation

property can be de�ned as follows.

De�nition 4.7 (Simulation of layer interfaces). For a relationR ⊆ S2×S1 and two computations

τ2 ∈ LS2(A) and τ1 ∈ LS1(A), we say that τ2 is simulated by τ1 and write τ2 ≤R τ1 when:

τ2 [R! P≤(=×R)] τ1 (4.1)

Likewise, given two layer interfaces L1 = 〈E,S1, σ1〉 and L2 = 〈E,S2, σ2〉 sharing a signature,

we say that L2 is simulated by L1 and write L2 ≤R L1 when the following simulation property

holds for each operation (m :N) ∈ E:

L2.m ≤R L1.m . (4.2)

The properties (4.1) and (4.2) correspond to the following simulation diagram, which asserts

that if the computation L2.m started in a state k1 succeeds, then the computation L1.m started in

a related state k2 must produce the same result while maintaining the relation between states:

k1 v@k′1

k2 v@k′2

L2.m

R =×R

L1.m

Layer correctness is established by showing a simulation between the overlay interface and the

layer implementation.

De�nition 4.8 (Certi�ed abstraction layer). For an underlay interface L1 = 〈E1, S1, σ1〉, a layer

implementationM : E1 ! E2 and an overlay interfaceL2 = 〈E2, S2, σ2〉, we say thatM correctly

implements L2 on top of L1 when there is a simulation relation R ⊆ S2 × S1 such that:

L2 ≤R M ◦ L1 .
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We say that L1, M , L2 together constitute a certi�ed abstraction layer and write L1 `R M : L2.

Example 4.9 (Correctness of the bounded queue implementation). I will prove the correctness of

the layer implementationMbq with respect to the relation R shown in Figure 4.1.

First, we can write [f ]c2c1 for the set of possible sequences of values read between indices c1 and c2

within the array f . More precisely:

[f ]c2c1 := {fc1 . . . fc2−1 | c1 ≤ c2 < N} ∪ {fc1 . . . fN−1f0 . . . fc2 | c2 ≤ c1 < N} .

Then the simulation relation can be formulated as:

~q R (f, c1, c2) ⇔ ~q ∈ [f ]c2c1 .

To show the correctness property Lrb `R Mbq : Lbq, we need to prove that:

Lbq ≤R Mbq ◦ Lrb .

To this end, consider the related states ~q R (f, c1, c2). We know in particular that c1, c2 < N . Hence,

from the calculation carried out in Example 4.6:

(Mbq ◦ Lrb).enq[v](f, c1, c2) = {∗@(f [c2 := v], c1, (c2 + 1) modN)}

(Mbq ◦ Lrb).deq(f, c1, c2) = {fc1@(f, (c1 + 1) modN, c2)}

Since the operations are speci�ed as:

Lbq.enq[v](~q) = {∗@~qv | |~q| < N}

Lbq.deq(~q) = {v@~p | ~q = v~p} ,

we need to show that whenever |~q| < N , the following relations hold:

∗ = ∗ ∧ ~qv R (f [c2 := v], c1, (c2 + 1) modN) ,
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and that whenever ~q = v~p, the following relations hold:

v = fc1 ∧ ~p R (f, (c1 + 1) modN, c2) .

This is straightforward to check, using the constraints on the length of the queue to verify that:

~q ∈ [f ]c2c1 ⇒ ~qv ∈ [f [c2 := v]](c2+1)modN
c1

v~p ∈ [f ]c2c1 ⇒ ~p ∈ [f ]c2(c1+1)modN .

Remark 4.10. Note that we place no restriction on the relations we use beyond the simulation prop-

erty. In particular, in the example above R is neither one-to-many nor many-to-one.

On one hand, there are many low-level ring bu�er states corresponding to a given high-level queue

state: the implementation is free to choose the position c1 where the queue’s �rst element is stored,

and arbitrary values for the N − |~q| array locations which are not in use.

On the other hand, a low-level state where c1 = c2 can be interpreted in two di�erent ways, as

the empty queue ε or as the full queue fc1 . . . fN−1f0 . . . fc2−1. This would make it impossible to im-

plement an operation speci�ed as Lbq.len(~q) := {|~q|@~q} because when c1 = c2, the implementation

would have to simultaneously return 0 and N . However, this is not an issue for enq and deq because

for both interpretations, one of the speci�cations is unde�ned:

Lbq.enq[v](fc1 . . . fN−1f0 . . . fc2−1) = ∅ Lbq.deq(ε) = ∅ .

The implementation can satisfy both speci�cations under both interpretations, because in each case

one of the speci�cation does not actually place any constraints on the implementation. This allows

Mbq.enq to be correct by using the “empty” interpretation, and Mbq.deq to be correct by using the

“full” interpretation.

Once we have shown an abstraction layer correct, we will be able to reason about any client

code in terms of the layer’s overlay interface rather than its low-level implementation. This is

enabled by the following property.

Theorem 4.11 (Soundness). For a certi�ed abstraction layer L1 `R M : L2 and a client program
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C of L2, the following contextual re�nement property holds:

C[L2] ≤R C[M ◦ L1]

Proof. We need to show that C[−] preserves ≤R. In essence, as C executes successive operations

of the two layer interfaces, we can follow along with the corresponding simulation diagrams, and

paste them horizontally to derive a simulation for the whole execution. More formally, we can

proceed by structural induction on the term C :

• If the term C is of the form v = ηE(v), then it is interpreted as λk · {v@k} in any layer, and

we get the simulation property:

k1 v@k1

k2 v@k2

C[L2]

R =×R

C[M◦L1]

• Now suppose C is of the form m(Cn)n∈N = n m ; Cn. We know from the correctness

property of M and from the induction hypothesis that:

k1 n@k′1

k2 n@k′2

L2.m

R =×R

(M◦L1).m

k′1 v@k′′1

k′2 v@k′′2

Cn[L2]

R =×R

Cn[M◦L1]

By pasting the two diagrams horizontally, we can conclude that:

k1 v@k′′1

k2 v@k′′2

C[L2]

R =×R

C[M◦L1]
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4.2.6 Composing certi�ed abstraction layers

Layer implementations can be composed as explained in §2.6.4. Given the layer implementations

M : E1 ! E2 and N : E2 ! E3, the layer implementation N ◦M replaces the operations of E2

in N by their interpretation given by M :

(N ◦M)m := Nm[M ] .

The soundness theorem for the certi�ed abstraction layer L1 `R M : L2 can be easily extended

from individual client programs to complete layer implementations, so that:

L1 `R M : L2

N ◦ L2 ≤R N ◦M ◦ L1

More generally, if N de�nes a certi�ed abstraction layer with underlay L2, then its correctness

property can be combined with that of M to build a composite certi�ed abstraction layer.

Theorem 4.12 (Vertical composition). Certi�ed abstraction layers compose in the following way:

L1 `R M : L2 L2 `S N : L3

L1 `R◦S N ◦M : L3

Proof. Simulation properties can be composed by vertically pasting the simulations diagrams:

τ3 ≤S τ2 τ2 ≤R τ1

τ3 ≤R◦S τ2

This can be easily extended to layer interfaces. Then, the theorem can be proved by combining

this property with the soundness theorem for M as follows:

L3 ≤S N ◦ L2 N ◦ L2 ≤R N ◦M ◦ L1

L3 ≤R◦S N ◦M ◦ L1

Theorem 4.12 allows us to decompose a large system into multiple abstraction layers, verify

their correctness individually, then derive a correctness property for the whole system. Note that

for every layer interface L = 〈E,S, σ〉, the identity interpretation e : E ! E is a correct imple-
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mentation L `= e : L of the layer interface L itself. In other words, layer interfaces and certi�ed

layer implementation de�ne a category CAL.

4.3 Horizontal composition

While vertical composition is quite useful, individual abstraction layers can themselves be fairly

complex and involve a signi�cant number of operations. We would like to verify them one by one,

and build layers out of elementary components in a systematic way.

Moreover, abstraction layers do not always depend on each other in a purely linear fashion;

often two independent subsystems will rely on the same underlay. We would like to be able to

verify them in isolation but retain the ability to build higher-level code based on their combined

functionality.

In this section I present horizontal composition principles which we can use to achieve this.

It will then be possible to combine layers side-by-side in addition to stacking them on top of one

another.

4.3.1 Signatures

To describe horizontal compositions of layers we must �rst combine signatures. When layers are

placed side-by-side, a client program will have access to the operations of both. The result is

essentially the disjoint union of the two layers’ signatures, and can be constructed as follows.

De�nition 4.13. The sum of a family of e�ect signatures (Ei)i∈I is de�ned as:

⊕
i∈I

Ei := {ιi(m) :N | i ∈ I, (m :N) ∈ Ei}

The �nitary case
⊕

1≤i≤nEi can be written as E1 ⊕ · · · ⊕ En.

On one hand, this allows us to compute the operations o�ered by a collection of layers. For

instance, if we combine an implementation of Lbq with an implementation of the I/O operations

used an example in §2.5, the signature of the result will beEbq⊕Eio. Conversely, this also allows us

to decompose the signature of a single layer into signatures associated with individual operations,
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for instance:

Ebq
∼= {deq : V } ⊕ {enq : V ! 1} .

Remark 4.14. In the categories of monads and monad homomorphisms, the signature E1 ⊕ E2

de�nes the coproduct of the free monads TE1 and TE2 . This means that interpreting TE⊕F into a

monad T is the same thing as giving independent interpretations of TE and TF :

TE1 TE1⊕E2 TE2

T

ι1

φ1

[φ1,φ2]

ι2

φ2

In terms of interpretations, the combined monad homomorphism [φ1, φ2] can be described as:

[φ1, φ2]ι1(m) = φm1 ∈ T (N) (m :N) ∈ E1

[φ1, φ2]ι2(m) = φm2 ∈ T (N) (m :N) ∈ E2

This immediately suggests composition principles for layer interfaces and layer implementations:

• When T is of the form LS , this characterizes horizontal composition for layer interfaces ex-

pressed in terms of a common set of abstract states S.

• When T is itself a free monad of the form TE , this gives a horizontal composition principle for

layer implementations.

4.3.2 Layer implementations

It is straightforward to combine layer implementations of the individual signaturesE1 andE2 into

an implementation of E1 ⊕ E2.

De�nition 4.15. The layer implementations M1 : E ! E1 and M2 : E ! E2 can be combined

into 〈M1,M2〉 : E ! E1 ⊕ E2 as follows:

〈M1,M2〉ι1(m) := Mm
1 ∈ TE(N) (m :N) ∈ E1

〈M1,M2〉ι2(m) := Mm
2 ∈ TE(N) (m :N) ∈ E2
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In addition, we can de�ne the layer implementations:

π1 : E1 ⊕ E2 ! E1 πm1 := eι1(m) ∈ TE1⊕E2(N) (m :M) ∈ E1

π2 : E1 ⊕ E2 ! E2 πm2 := eι2(m) ∈ TE1⊕E2(N) (m :M) ∈ E2

which discard the operations of one of the summands.

Given a client program formulated in terms of the operations of E1, the projections allow

C ∈ TE1(A) to be lifted to C[π1] ∈ TE1⊕E2(A), so that it can be connected to underlay interfaces

and implementations which provide the larger signature. A layer implementation M : E1 ! F

can likewise be lifted to M ◦ π1 : E1 ⊕ E2 ! F .

Conversely, tupling allows us to construct a layer implementations for the signature F1 ⊕ F2

out of components implementing F1 and F2. Combined with projections, this means in particular

that two layer implementations M1 : E1 ! F1 and M2 : E2 ! F2 can be composed side-by-side

as M1 ⊕M2 : E1 ⊕ E2 ! F1 ⊕ F2, where M1 ⊕M2 := 〈M1 ◦ π1,M2 ◦ π2〉.

Moreover, we can break down any signature F =
∑

i Fi into elementary components of the

form Fi = {mi : Ai ! Bi} containing a single Ai-indexed family of operations of arity Bi.

Likewise, we can break down any layer implementation into elementary components of typeE !

Fi. If the operation mi[a] is interpreted by Ca ∈ TE(Bi) for all a ∈ A, we can write

(mi[a] 7! Ca) : E ! Fi

for the corresponding elementary layer implementation. Tupling can be used to reconstruct com-

plete layer implementations from these elementary components.

Example 4.16 (Decomposition of Mbq). The signature Ebq and layer implementationMbq can be

decomposed into the elementary components:

Eenq := {enq : V ! 1} Menq : Erb ! Eenq := enq[v] 7! (i inc2 ; set[i, v])

Edeq := {deq : 1! V } Mdeq : Erb ! Edeq := deq[∗] 7! (i inc1 ; get[i])
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Then:

Ebq
∼= Eenq ⊕ Edeq Mbq

∼= 〈Menq,Mdeq〉 .

Since layer implementations are de�ned operation-wise, there is not much substance to this

reshu�ing. However, it will allows us to verify certi�ed abstraction layers by verifying their

elementary components one by one.

4.3.3 Layer interfaces sharing state

Layer interfaces can likewise be built from elementary components. For a signature {m : A! B},

a set of states S, and a speci�cation σa ∈ LS(B) for all a ∈ A, we can write:

(m[a] 7! σa) := 〈{m : A! B}, S, σ̂〉 σ̂m[a] := σa

Going one step further, we can build elementary certi�ed abstraction layers by using the property:

∀a ∈ A · σa ≤R Ca[L]

L `R (m[a] 7! Ca) : (m[a] 7! σa)

These elementary layers can then be composed in the following way.

De�nition 4.17. When two layer interfaces L1 = 〈E1, S, σ1〉 and L2 = 〈E2, S, σ2〉 share a

common set of abstract states, their product can be de�ned as:

L1 × L2 := 〈E1 ⊕ E2, S, 〈σ1, σ2〉〉 , where 〈σ1, σ2〉ιi(m) := σmi .

Theorem 4.18. When the product of layer interfaces is de�ned, the tupling of layer implementations

preserves correctness in the following sense:

L `R M1 : L1 L `R M2 : L2

L `R 〈M1,M2〉 : L1 × L2
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Moreover, the projections satisfy the following correctness properties:

L1 × L2 `= π1 : L1 L1 × L2 `= π2 : L2

Proof. From the re�exivity of ≤= and the operation-wise de�nition of correctness.

Example 4.19 (Decomposition of Lbq). The speci�cation and veri�cation of our bounded queue

implementation can be decomposed in the following way:

Lrb `Rbq
Menq : Lenq Lrb `Rbq

Mdeq : Ldeq

Lrb `Mbq : Lbq

where:

Lenq := 〈Eenq, Sbq, (enq[v] 7! Lbq.enq[v])〉

Ldeq := 〈Edeq, Sbq, (deq[v] 7! Lbq.deq[v])〉

To summarize, the constructions I have presented so far provide a language to build complex

certi�ed abstraction layers by verifying elementary components. Together with vertical compo-

sition, this is the essence of the layer calculus we used in our initial veri�cation of CertiKOS [Gu

et al., 2015].

However, under this approach the components of a given layers must still be designed around

a common notion of abstract state, and it is not possible to horizontally compose layers which have

been designed and veri�ed independently. A related phenomenon is that the diagonal morphism:

L `= ∆ : L× L

does not duplicate any of the resources implemented by L. That is, in the layer:

Lrb `Rbq
Mbq : Lbq Lrb `Rbq

Mbq : Lbq

Lrb `Rbq
〈Mbq,Mbq〉 : Lbq × Lbq

we have simply duplicated the code for each of the queue operations. But each copy uses the same

underlying ring bu�er, and the layer still implements a single queue.
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4.3.4 Tensor product

In this section, I present a more general form of horizontal composition which lets two layers

operate independently of one another. In particular, the layers do not share state.

De�nition 4.20. The tensor product of L1 = 〈E1, S1, σ1〉 and L2 = 〈E2, S2, σ2〉 is de�ned as:

L1 ⊗ L2 := 〈E1 ⊕ E2, S1 × S2, 〈σ̂1, σ̂2〉〉 ,

where σ̂1 and σ̂2 act on their respective halves of the state:

σ̂
m@(k1,k2)
1 := {v@(k′1, k2) | σm@k1

1 3 v@k′1}

σ̂
m@(k1,k2)
2 := {v@(k1, k

′
2) | σm@k2

2 3 v@k′2}

The corresponding monoidal structure is not cartesian. In particular, two certi�ed abstraction

layers L `R1 M1 : L1 and L `R2 M2 : L2 cannot be composed as

L `〈R1,R2〉 〈M1,M2〉 : L1 ⊗ L2 ,

because the operations of one layer could update the underlay state in a way that breaks the

simulation relation for the other layer. However, layers can be composed side-by-side when they

act on two independent underlay interfaces.

Theorem 4.21 (Tensor product of certi�ed abstraction layers). Two certi�ed abstraction layers can

be composed as follows:
L1 `R1 M1 : L′1 L2 `R2 M2 : L′2

L1 ⊗ L2 `R1×R2 M1 ×M2 : L′1 ⊗ L′2

Proof. Each abstraction layer will act on its half of the state with no interference from the other.

Hence the correctness properties of the premises can be used almost directly to establish those of

the composite layer.

To enable two independent certi�ed abstraction layers to rely on a common underlay L, we

must �rst show that the resources of L can be multiplexed by introducing a third component

L `R M : L⊗ L.
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Example 4.22 (Multiplexing a memory allocator). Suppose the layer interface Lmm o�ers an oper-

ation alloc : 1 ! pageno which allocates a page of memory from a pool and returns its identi�er.

In a practical system, memory allocators can be used concurrently by any number of subsystems,

which will only access pages that have been allocated to them. To re�ect this, we need to introduce a

component

Lmm `R ∆ : Lmm ⊗ Lmm ,

where the simulation relation R explicates how the client views of the allocator’s state add up con-

sistently to make up the global state, such that the clients won’t interfere with each other when they

execute operations based on their view. The layer implementation∆ = 〈π1, π2〉 simply passes through

the calls of each client unchanged to the underlay.

This presents several challenges. For instance, unless the allocator’s interface describes an idealized

allocator which always succeeds (a convenient but unimplementable abstraction), the state will need

to keep track of a �nite number of available pages. Since R cannot duplicate these pages, we may

need to add a parameter n to the layer interface Lnmm indicating the total number of available pages.

Then the multiplexing component could be weakened to take the form:

Ln1+n2
mm `R ∆ : Ln1

mm ⊗ Ln2
mm .

Another issue is that the model presented in this chapter can only express deterministic interfaces.

In the case of a memory allocator, this means the allocator’s abstract state should contain enough

details to predict the speci�c identity of every page handed out by the allocator. This is possible in

the global view, but when multiple clients are accessing the allocator, the sequences of page identi�ers

handed out to each client will depend on how their requests interleave with that of other clients. This

limitation, among others, is addressed by the models presented in Chapters 6 and 7

4.4 CompCertX

Our original de�nition of certi�ed abstraction layers was tightly coupled with the semantic model

of CompCert [Gu et al., 2015]. In that context, layer speci�cations are de�ned to operate on a

CompCert memory state component as well as the layer-speci�c abstract state.
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The overall structure of the layer calculus used in CertiKOS is very similar to the one I have

described so far. In this section, I brie�y touch on some of the di�erences between the two systems,

and the ways in which the system is integrated with CompCert.

The version of CompCert we used for this purpose is called CompCertX. It was designed to

support certi�ed abstraction layers, and allow CompCert programs to play the role of layer imple-

mentations. CompCertX itself was largely designed and implemented by Tahina Ramananandro

during his time in the Yale FLINT group.

4.4.1 Layer interfaces

Roughly speaking, external calls in CompCert can be understood as e�ects in a signature

C̃D = {f : val∗ ! val | f ∈ D ⊆ ident} .

In an external call f [~v], the identi�er f designates the function to be called and ~v ∈ val∗ gives its

actual parameters; the corresponding outcome v′ ∈ val is the value returned by the function.

In CertiKOS, we use these signatures to construct layer interfaces of the form

L = 〈C̃D, S ×mem, σ〉 .

The set D is the layer’s domain, in other words the set of primitives which it implements. The

set S is a layer-speci�c set of abstract states, and is combined with the set mem of memory states

used to de�ne the language semantics of CompCert.

4.4.2 Client code

Traditional CompCert semantics use a parameter χ common to all languages, which describes

the behavior of external functions. Schematically, Clightχ[p] describes the semantics of the Clight

program p, where χf [~v] ∈ Lmem(val) describes the behavior of the external call f [~v]. This can be

understood as a rudimentary underlay interface 〈C̃ident,mem, χ〉 on top of which Clight programs

are evaluated.

To enable the use of richer underlay interfaces, we extend this facility as follows. Given a
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CertiKOS layer interfaceL = 〈CD, S×mem, σ〉, the semantics ClightL[p] will maintain an abstract

state k ∈ S alongside the memory state, and use the family of speci�cations σf [~v] ∈ LS×mem(val)

to interpret external calls. This allows us to evaluate client code with L as underlay.

4.4.3 Layer implementations

To make it possible to evaluate CompCert modules as complete layer implementations, CompCertX

also extends the incoming interface of language semantics. Traditional CompCert semantics only

model the top-level invocation of main[ε]. In CompCertX, we make it possible to evaluate any

incoming call f [~v] and describe its action in terms of the combined abstract and memory states:

ClightL[M ]f [~v] ∈ LS×mem(val) .

Then evaluating M on the underlay L = 〈C̃D, S ×mem, σ〉 yields the layer interface:

M [L] := 〈C̃dom(M), S ×mem, ClightL[M ]〉 .

4.4.4 Simulation relations

Using CompCertX to compile layer implementations to assembly introduces memory injections,

written ι 
 m1 ↪! m2, which re�ect the change in structure between a source memory state m1

and a corresponding target memory state m2. Moreover, the certi�ed abstraction layers used in

CertiKOS follow a common pattern, where abstract data is progressively realized in lower layers

as global variables stored in the CompCert memory state.

To make our certi�ed abstraction layers compatible with injections and to capture this pattern,

the simulation relations are speci�ed by two components indexed by a memory injection ι:

Rr
ι ⊆ S2 × S1

Rm
ι ⊆ S2 ×mem .

The overlay abstract states of S2 will retain some of the underlay’s abstract data in S1. This is

formalized by the component Rm. On the other hand, S2 may also contain newly abstracted data,
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stored in the underlay as part of the memory states. This is formalized by the componentRr. From

this description, we can derive the layer’s simulation relation as:

(k2,m2) R (k1,m1) ⇔ ∃ ι · k2 R
r
ι k1 ∧ k2 R

m
ι m1 ∧ ι 
 m2 ↪! m1

k2 m2

k1 m1

Rr
ι

Rm
ι

ι

Describing simulation relations in this way allows us to take advantage of the pattern when we

develop proof principles for individual layers, especially when it comes to making sure our simula-

tion relations are compatible with compilation by CompCertX. Unfortunately, simulation relations

described in this way do not directly compose. To see why, consider the following diagram:

k3 m3

k2 m2

k1 m1

Injections compose as expected, in the sense that (ι ◦ ι′ 
 ↪!) = (ι 
 ↪!) ◦ (ι′ 
 ↪!). We also

place restrictions on the component relations which guarantee that they composes with memory

injections in the appropriate way. However, to formulate the compositeRm, we must existentially

quantify over the intermediate memory state. Because there is no way to guarantee consistency

between the m2 involved in (ι 
 ↪!) ◦ (ι 
 ↪!) and in the composite Rm, the composition does

not behave as expected.

To work around this issue, we can use formal sequences of (Rr, Rm) pairs to describe the sim-

ulation relation used by vertically composable CertiKOS layers. We can then compose the overall

simulation relations derived from individual components when we formulate the soundness proof.

Another approach is to generalize our pattern so that it still provides the same advantages but be-

haves in a better way with respect to composition. This was the original motivation for my work

on CompCert Kripke logical relations (§10.1).



91

4.5 Conclusion

The new presentation of certi�ed abstraction layers laid out in this chapter eliminates some of

the complexity found in the original code by decoupling the model from CompCert semantics. In

doing so, the new exposition makes precise the underlying mathematical structures and some of

the challenges involved in our approach to layered veri�cation.

In particular, the categorical structures behind the layer calculus are made explicit. The dis-

tinctions between our restricted form of product and the more general monoidal structure hints at

connections between certi�ed abstraction layers and other models which incorporate structures

found in fragments of linear logic.



Chapter 5

Games and dual nondeterminism

This chapter presents my general approach to dual nondeterminism in game semantics, leading to

the construction of strategy speci�cations featuring dual nondeterminism and a form of alternating

re�nement. This approach decouples the nature of nondeterminism from the structure of plays,

leading to a more uniform and tractable theory.

I outline the issues in §5.1 in the context of a simple model of function speci�cations, then

articulate in §5.2 how they carry over to the context of games and strategies. In §5.3 I introduce the

construction used by Morris [2004] to extend the re�nement calculus to functional programming,

and show in §5.4 that it can be used to construct strategy speci�cations.

5.1 Example: function speci�cations

To illustrate the use of dual nondeterminism in the context of speci�cations and re�nement, I will

use functions on integers. A function f : Z! Z can be seen as a simple system, which accepts a

single input and produces a single output:

f : Z! Zx y

92
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−1 7! 0 0 7! 0 0 7! 1 1 7! 2

f(x) := 2x X X
g(x) := x+ 1 X X X
h(x) := 2dx/2e X X X

Table 5.1: Some functions and elementary speci�cations used as examples in §5.1

5.1.1 Elementary function speci�cations

To constrain the behavior of such a system, we can use an elementary speci�cation of the form:

x 7! y

The speci�cation above asserts that whenever the function’s input is x ∈ Z, it should produce the

output y ∈ Z; in other words, f(x) = y. Table 5.1 shows some simple functions and elementary

speci�cations which I will use for illustration. For example, the function de�ned by f(x) := 2x

satis�es the speci�cations 0 7! 0 and 1 7! 2 but does not satisfy −1 7! 0 or 0 7! 1.

On their own, elementary speci�cations carry limited information about the functions they

attempt to characterize. Like the plays of a game, they only give a snapshot of a single interac-

tion between the system and its environment. However, by incorporating angelic and demonic

nondeterminism, the model can be made much more expressive.

5.1.2 Angelic and demonic choices

Angelic choice allows us to range over various possible choices of the environment, placing more

constraints on the function and making the speci�cation stronger. For example, the speci�cation:

−1 7! 0 t 1 7! 2

is satis�ed by both of the functions g(x) := x + 1 and h(x) := 2dx/2e, but not by f which only

satis�es the right-hand side component. In�nite choice allows us to formulate richer speci�cations.

For example, the following speci�cation characterizes the function f exactly:

f̂ :=
⊔
x∈Z

x 7! 2x
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This allows f itself to be represented as the speci�cation f̂ . The fact that f satis�es 1 7! 2 can

then be expressed as:

1 7! 2 v
⊔
x∈Z

x 7! 2x = f̂ .

This also illustrates that a speci�cation can be made stronger and more precise by adding more

angelic choices, although if we go too far it may not be possible to implement it; for example, no

function satis�es the following speci�cation:

0 7! 0 t 0 7! 1 .

Conversely, demonic choices make speci�cations weaker, allowing us to express implementa-

tion freedom. For example, the following speci�cation:

0 7! 0 u 0 7! 1

is satis�ed the each one of the functions f , g, h. Using in�nite choice, the speci�cation:

l

x∈Z
x 7! x

expresses that there must be at least one x which the function maps to itself. It can be re�ned by

narrowing down the range of demonic choices, for example:

l

x∈Z
x 7! x+ 1 v −1 7! −1 u 0 7! 0 u 1 7! 1 .

This speci�cation is satis�ed by f and h, but not by g.

Angelic and demonic choices become even more powerful when they are used together. For

example the speci�cation ⊔
x odd

l

y even
x 7! y

expresses the constraint that all odd inputs must be mapped to some even output. All of the

functions f , g, h satisfy this speci�cation. A counter-example is the constant function u(x) := 1.

To summarize, adding arbitrary angelic and demonic choices to a speci�cation framework
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allows us to gain a signi�cant amount of expressivity. When used in speci�cations, angelic choice

corresponds to the logical conjunction and the for all quanti�er, while demonic choice corresponds

to disjunction and there exists.

5.1.3 Data abstraction

To illustrate the expressivity of the resulting model, consider the usual construction of integers as

pairs of natural numbers.

An integer is represented by a pair n = (n1, n2) ∈ N × N, where n1 is understood as the

positive component, n2 is understood as the negative component, and two integers n = (n1, n2)

and m = (m1,m2) in this form are considered equal when n1 + m2 = n2 + m1. The canonical

embedding of natural numbers into integers can be realized as n 7! (n, 0), and the standard

arithmetic operations can be de�ned as:

n+m := (n1 +m1, n2 +m2)

n−m := (n1 +m2, n2 +m1)

n×m := (n1 ×m1 + n2 ×m2, n1 ×m2 + n2 ×m1) .

This “low-level” representation can be connected to the more usual and abstract notion of

integer by the relation ρ ⊆ Z× (N× N) de�ned by:

x ρ (n1, n2) ⇔ x = n1 − n2 .

Then a natural question is: given a function g : N×N! N×N on the concrete representation, and

a function f : Z! Z expressed in the more abstract representation, what does it mean for g to be

a correct implementation of f? This situation is depicted by the simulation diagram below. Given

related inputs x ρ n, the functions f and g are expected to produce related outputs f(x) ρ g(n):

x f(x)

n g(n)

f

(∀) ρ ρ (∃)

g

f [ρ! ρ] g
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However, since this involves objects of two di�erent types, it is not immediately obvious how this

property can be formulated in the context of re�nement. As it turns out, dual nondeterminism

makes it possible to de�ne the concretization and abstraction functions:

γ(f) :=
⊔

n ∈ N× N

⊔
x ∈ Z | x ρ n

l

m ∈ N× N | f(x) ρ m

n 7! m

α(g) :=
⊔

x ∈ Z

l

n ∈ N× N | x ρ n

⊔
y ∈ Z | y ρ g(n)

x 7! y

such that the correspondence of f and g can be stated as:

γ(f) v ĝ ⇔ f̂ v α(g) .

5.2 Re�nement in game semantics

Game semantics represents strategies as sets of plays. Each play records a possible interaction

between the system and the environment. For instance, if we interpret the elementary function

speci�cation x 7! y as a simple play containing one move of the environment (x) followed by one

move of the system (y), the strategy associated to f : Z! Z can be represented as:

σ := {x 7! f(x) | x ∈ Z} .

5.2.1 Strategies and re�nement

In most game models, there are restrictions on the contents of σ. One common restriction is the

exclusion of nondeterministic choice involving moves of the system. In the context of function

speci�cations, this translates to the following property:

(x 7! y1) ∈ σ ∧ (x 7! y2) ∈ σ ⇒ y1 = y2 (5.1)

Another common requirement is for σ to range over all possible behaviors of the environment:

∀x ∈ Z · ∃ y ∈ Z · (x 7! y) ∈ σ . (5.2)
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In our setting, these constraints correspond to strategies which precisely describe functions.

To obtain a richer model, we can relax these restrictions, allowing strategies such as:

σ′ := {0 7! 0, 1 7! 1, 1 7! −1} .

On one hand, the relaxation of (5.1) permits some form of nondeterminism, for example between

the elementary speci�cations 1 7! 1 and 1 7! −1 in the example above. Indeed this is the approach

taken in early work on nondeterminism in game semantics [Harmer and McCusker, 1999]. On the

other hand, the relaxation of (5.2) allows strategies which which do not cover the entire domain.

Yet even after these constraints have been relaxed, we need to choose how this nondeterminism

should be interpreted, which will in particular determine how strategy re�nement works:

• We can use an angelic interpretation of nondeterminism and accordingly de�ne re�nement

as set inclusion (⊆). This �ts with the original formulation of strategies and allows us to

choose which elements of the domain to constrain. However, under this approach it is not

possible to express a speci�cation allowing di�erent outputs for a given input. For example,

the subset {1 7! 1, 1 7! −1} ⊆ σ′ results in an unimplementable speci�cation, since it

requires both f(1) = 1 and f(1) = −1.

• If we use a demonic interpretation and de�ne re�nement as set containment (⊇), we cannot

formulate any speci�cation stronger than a single x 7! y. In particular, under this approach

a function can no longer be completely characterized. A function f which satis�es any one

of the conditions f(0) = 0, f(1) = 1 or f(1) = −1 will match σ′.

• To address these issues, we can use an alternating interpretation [Alur et al., 1998], which

takes into account the polarity of moves, so that σ′ above is interpreted as:

0 7! 0 t (1 7! 1 u 1 7! −1) ,

requiring that the function map 0 to 0 and map 1 to either −1 or 1.

The alternating interpretation of strategy nondeterminism is the one most in line with our

goals. In the context of games, choices of the system and the environment must be distinguished,
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and it is natural to use the polarity of moves to make this distinction. However, the resulting

re�nement ordering is complex and unintuitive. For example, in the case of function speci�cations,

we get the following ordering:

{0 7! 0} v {0 7! 0, 1 7! 1, 1 7! −1} v {0 7! 0, 1 7! 1}

In the more general case where plays consist of an unbounded alternation of input and outputs,

the re�nement ordering becomes even more complex to describe.

Another issue with the alternating interpretation of nondeterminism is its incompleteness. For

example, the nondeterministic choices:

{0 7! 1} t {0 7! −1} {1 7! 0} u {−1 7! 0}

cannot be represented in the model proposed above. This restriction may at �rst seem harmless.

After all, the �rst speci�cation above is unimplementable, and the second one is so weak that it

is unclear whether it could ever �nd any practical use. However, from an algebraic point of view

the loss of completeness is a signi�cant shortcoming. It breaks the uniformity of the model and

imposes a proliferation of side-conditions which the user must establish.

Consider for example data abstraction as discussed in §5.1.3. The completely distributive lat-

tice structure associated with dual nondeterminism allows us to use arbitrary abstraction relations.

If the relation makes a high-level speci�cation impossible to implement, for instance because it

involves abstract data with no concrete representation, or concrete data with an ambiguous high-

level interpretation, the associated concretization function γ will simply generate an unimple-

mentable low-level speci�cation.

If this is not possible because unimplementable low-level speci�cations cannot be represented,

we need instead to formulate, prove and track various restrictions on the abstraction relation or the

speci�cation of interest. This is a particular concern in the context of formal proofs mechanized

in a proof assistant, where even simple and intuitive side-conditions may interfere with usability.
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5.2.2 Strategy speci�cations

Since formulating an appropriate notion of re�nement for strategies is challenging, I will use a

di�erent approach. Instead of retro�tting nondeterminism and re�nement onto the usual notion

of strategy, we can reexamine the construction altogether:

• Individual plays are understood as elementary speci�cations. Like the elementary function

speci�cations of §5.1, they indicate how the system may react to a speci�c behavior of the

environment. The pre�x relation on plays can be understood as a notion of re�nement, with

longer plays placing more precise constraints on the system.

• Sets of plays (strategies) allow us to range over the possible choices of the environment,

understood as angelic nondeterminism. They are ordered by inclusion (⊆). By requiring

them to be pre�x-closed, we can make sure they incorporate and preserve the re�nement

ordering of plays.

• Sets of strategies (strategy speci�cations) permit choices of the system as well, understood

as demonic nondeterminism. They are ordered by containment (⊇). By requiring them to

be upward closed with respect to strategy inclusion, we can once again incorporate strategy

re�nement into this ordering.

Under this approach, dual nondeterminism is built into the construction of strategy speci�cations,

allowing us to avoid the pitfalls of previous approaches. The model outlined above is complete and

general in a precise way: this construction corresponds to the free completely distributive lattice

generated by the underlying poset of plays.

5.3 Free completely distributive completions

Historically, dual nondeterminism in the re�nement calculus only operates at the level of state-

ments, in the context of imperative programming. More recently, Morris and Tyrrell were able to

extend the lattice-theoretic approach used in the re�nement calculus to functional programming

[Morris, 2004; Morris and Tyrrell, 2008; Tyrrell et al., 2006].

In essence, their approach works by capturing dual nondeterminism as a monad constructing

free completely distributive lattices. Importantly, this monad operates on partially ordered sets
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and can incorporate a “ground-level” notion of re�nement. This allows dual nondeterminism to

be used in a variety of new contexts.

De�nition 5.1 (Free completely distributive completion). A complete lattice is called completely

distributive when it satis�es the following property for all families (xi,j)i∈I,j∈Ji of elements:

l

i∈I

⊔
j∈Ji

xi,j =
⊔

f∈(
∏
i Ji)

l

i∈I
xi,fi

A completely distributive complete latticeL is a free completely distributive completion of a posetC

if there is a monotonic function φ : C ! L such that for any completely distributive complete

lattice M and monotonic function f : C ! M , there exists a unique complete homomorphism

f † : L!M such that f † ◦ φ = f :

C L

M

φ

f
f†

A free completely distributive completion of a poset always exists and is unique up to isomorphism.

I will write FCD(C) for the free completely distributive completion of C .

5.3.1 Construction

Morris [2004] gives the following constructions for the free completely distributive completion of

a partially ordered set (A,≤):

FCD(A,≤) := DU(A,≤) FCD(A,≤) := UD(A,≤)

φ(a) := #"a φ(a) := "#a .

In the expressions above, D and U are themselves completions. A downset of a poset (A,≤) is a

subset x ⊆ A satisfying the downward closure property:

∀ a, b ∈ A · a ≤ b ∧ b ∈ x ⇒ a ∈ x .
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Unions and intersections preserve downward closure, giving rise to the downset lattice D(A,≤).

Its elements are the downsets of (A,≤), ordered by set inclusion (⊆) with unions as joins and

intersections as meets. The dual upset lattice U(A,≤) is ordered by set containment (⊇) with

intersections as joins and unions as meets.

5.3.2 Categorical characterization

Categorically speaking, the functor FCD : Pos ! CDLat is the left adjoint to the forgetful

functor U : CDLat ! Pos from the category CDLat of completely distributive complete

lattices and complete homomorphisms to the category Pos of posets and monotonic functions.

C FCD(C) C UFCD(C) FCD(C)

UL FCD(UL) L UL L

f FCD(f)
f†

φC

f
Uf† f†

εL

In other words, there is a correspondence:

∀CM ·CDLat(FCD(C),M) ∼= Pos(C,UM)

whereby complete homomorphisms out of a free completely distributive complete lattice are char-

acterized by the image of its generators.

The adjunction’s unit corresponds to the function φ in Def. 5.1, and embeds the poset C of

generators into its free completely distributive completion FCD(C). The counit εL �attens an

element of FCD(UL) by using the inner joins and meets of L to interpret the outer joins and

meets added by FCD.

Since FCD a U are adjoint functors, the composite UFCD is a monad in Pos, which can be

used to model dual nondeterminism as an e�ect. The monad’s unit is given by φ, its Kleisli exten-

sion is given by (−)†, and its multiplication can be described as µC := UεFCD(C). In the following,

I will often identify FCD with the monad UFCD, and refer to the complete homomorphism f † as

the FCD extension of f .
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5.3.3 Computational interpretation

Computationally, the FCD monad can be used to model dual nondeterminism as an e�ect. The

computationφ(a) ∈ FCD(A) terminates immediately with the outcome a ∈ A. For a computation

x ∈ FCD(A) and for f : A! FCD(B), the computation f †(x) ∈ FCD(B) replaces any outcome

a of x with the computation f(a). As with other monads, I will use the notation a x; f(a) for

f †(x), or simply x; y when f is constant with f(a) = y.

A computation x ∈ FCD(A) can be understood as a structured collection of possible outcomes.

More precisely, each element x ∈ FCD(A) can be written as x =
d
i∈I
⊔
j∈Ji φ(aij) where the

index i ∈ I ranges over the possible demonic choices, the index j ∈ Ji ranges over possible

angelic choices, and aij ∈ A is the corresponding outcome of the computation. Note that f †(x) =

d
i∈I
⊔
j∈Ji f(aij).

The commutativity and associativity of meets and joins mean that the model is insensitive to

branching. Complete distributivity further allows angelic and demonic choices to commute, and

the status of f † as a complete homomorphism enables the following properties, where M is any

expression monotonic in the variables bound by the left arrows:

a 

(⊔
i∈I

xi

)
;M =

⊔
i∈I

(a xi ;M)

a 

(
l

i∈I
xi

)
;M =

l

i∈I
(a xi ;M)

a x ; b y ;M = b y ; a x ;M

The least element ⊥ :=
⊔
∅, traditionally called abort, merits some discussion. As a speci-

�cation construct, it places no constraint on the implementation (it is re�ned by every element).

As an implementation construct, we use it indiscriminately to interpret failure, silent divergence,

and any other behavior which we want to exclude (it re�nes only itself).

Writing again 1 = {∗} for the unit set, the assertion {P} ∈ FCD(1) of a proposition P

evaluates to the unit value φ(∗) when the proposition is true and to ⊥ otherwise. I will use it to

formulate guards blocking a subset of angelic choices.

Note that the complete homomorphism properties of f † outlined above mean that failure as
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denoted by ⊥ is global, in the sense that a computation that fails at any point simply fails overall

without yielding any partial result. This is an important point to consider when using FCD to

construct models for interactive computations.

5.4 Dually nondeterministic strategies

5.4.1 Angelic choices

As mentioned in §2.4.2, in game semantics strategies are usually constructed as pre�x-closed sets

of plays. In other words, they are downsets over a set of plays P partially ordered under the pre�x

relationvp. From the perspective outlined in §5.2.2, this corresponds to the angelic interpretation

of strategies. A play s ∈ P can be promoted to an elementary strategy #s ∈ D(P,vp):

#s := {t ∈ P | t vp s}

Set inclusion (⊆) corresponds to strategy re�nement, and the downset completion augments P

with arbitrary angelic choices (∪) allowing us to describe more precise behaviors.

Angelic nondeterminism allows us to range over all possible choices of the environment and

record the resulting plays. Recall the game interpretation of the statement x := 2 ∗ x mentioned

at the beginning of §2.4. The strategy associated with this statement is the following pre�x-closed

set of even-length plays:

σ := Jx := 2 ∗ xK =
⋃
n∈N
#(run · readx · n · writex[2n] · ok · done)

= {ε, run · readx,

run · readx · n · writex[2n],

run · readx · n · writex[2n] · ok · done | n ∈ N}

Note that this strategy admits re�nements containing much more angelic nondeterminism, includ-

ing with respect to moves of the system. For instance:

σ ⊆
⋃
n∈N

⋃
−1≤δ≤1

#(run · readx · n · writex[2n+ δ] · ok · done)
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These re�nements do not correspond to interpretations of concrete programs, and in game models

which seek to achieve de�nability they are usually excluded. For our purposes, retaining them is

algebraically important, and they can in fact appear as intermediate terms in some applications. In

the construction above, although δ appears in a system move, it is still associated with an angelic

choice, in other words a choice of the environment which is not directly observed (perhaps as a

result of abstraction), but which nonetheless in�uences the behavior of the system.

Remark 5.2 (System nondeterminism vs environment determinacy). As mentioned earlier, the

situation described above is usually excluded by requiring that strategies do not contain two plays

sm1 and sm2 where m1 and m2 are distinct moves of the system. This is usually understood as

enforcing system determinism. However, in the present context it corresponds instead to environment

determinacy: all choices of the environment should be directly observed and recorded in plays.

5.4.2 Demonic choices

If we wish to allow the system to choose an answer in the interval [2n− 1, 2n+ 1], we must use

a demonic choice instead. The model and re�nement lattice presented above are insu�cient to

express such a speci�cation, because downsets do not add enough meets, forcing the would-be

demonic speci�cation to become much coarser:

⋃
n∈N

⋂
−1≤δ≤1

#(run · readx · n · writex[2n+ δ] · ok · done) = {ε, run · readx} .

My approach to dual nondeterminism in game semantics will be to replace D with FCD in

the construction of strategies presented earlier. The permissive strategy speci�cation which we

attempted to construct above can then be expressed precisely as:

σ̃ :=
⊔
n∈N

l

−1≤δ≤1

φ
(
run · readx · n · writex[2n+ δ] · ok · done

)
Because of the properties of FCD, the strategy speci�cation σ̃ will retain not only angelic choices,

but demonic choices as well, expressing possible behaviors of the system.

For the construction FCD := UD, strategy speci�cations correspond to sets of traditional

strategies, ordered by containment (⊇). This outer set ranges over demonic choices. Writing
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sn,δ := run · readx · n · writex[2n+ δ] · ok · done, the strategy speci�cation σ̃ will be encoded as:

σ̃ = {σ ∈ D(P ) | ∀n ∈ N · ∃δ ∈ [−1, 1] · sn,δ ∈ σ} ∈ UD(P ) .

Upward closure ensures that a strategy speci�cation which contains a strategy σ contains all of

its re�nements as well. For instance, the only strategy speci�cation containing the completely

unde�ned strategy ∅ ∈ D(P ) is the maximally permissive strategy speci�cation containing all

possible strategies ⊥ = D(P ) ∈ UD(P ).



Chapter 6

The interaction speci�cation monad

6.1 Introduction

Chapter 4 presented the theory of certi�ed abstraction layers used to verify CertiKOS, articulating

in particular how various components of the theory can be understood in terms of monads and

monad homomorphisms:

• client code is expressed in a monad TE ;

• layer speci�cations are expressed in a monad LS ;

• layer implementations de�ne monad homomorphisms from TF to TE ;

• layer interfaces de�ne monad homomorphism from TE to LS .

In this chapter, I switch to the point of view of re�nement-based game semantics to construct the

interaction speci�cation monad IE , a variation on the free monad for the e�ect signature E which

incorporates dual nondeterminism and re�nement.

The correspondence between the primarily monadic view taken in Chapter 4 and the game

semantics view taken in this chapter follows the pattern suggested in §2.6. The interaction speci-

�cation monad generalizes the various monads used in Chapter 4 along the following lines:

• As a richer version of the free monad, IE can represent both client code and layer imple-

mentations in a straightforward way.

106
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• The re�nement ordering induced by the component P1 of the monad LS is generalized by

a completely distributive lattice structure on IE(X).

• The state component of LS is addressed by extending the signature E to a signature E@S

where every question and answer is annotated by a state component in S.

The resulting model is remarkably expressive. It can be used to construct a category of games

and strategies along the lines suggested in §2.6.5, and to formulate a theory of certi�ed abstrac-

tion layers in which layer interfaces, layer implementations, and simulation relations are treated

uniformly and compositionally. In addition, it can embed the interaction trees used in various

DeepSpec projects [Xia et al., 2019] and can be used to formulate game semantics for the compiler

CompCertO presented in Part III of this thesis.

Remark 6.1. Note that rather than providing denotational semantics for speci�c programming lan-

guages, our models are intended as a coarse-grained composition “glue” between components devel-

oped and veri�ed in their own languages, each equipped with their own internal semantics. In this

context, the models’ restriction to �rst-order computation applies only to cross-component interac-

tions, but individual components can still make use of high-order languages and reasoning techniques

[Mansky et al., 2020].

6.2 Overview

I follow the general approach to re�nement-based game semantics outlined in Chapter 5. Given

an e�ect signature E, we can construct a pre�x-ordered set of plays P̄E(X) corresponding to the

possible interactions between a computation with e�ects in E and its environment. These inter-

actions include the computation’s ultimate outcome in X . The interaction speci�cation monad

IE(X) is then obtained as the free completely distributive completion of the poset P̄E(X).

For each e�ect (m :N) ∈ E, the interaction speci�cation monad has an elementary operation

ImE ∈ IE(N) which triggers an instance of m and returns its outcome. Given a second e�ect sig-

nature F , a family (fm)(m:N)∈F of computations fm ∈ IE(N) can be used to interpret the e�ects

of F into the signature E. This is achieved by a substitution operator (−)[f ], which transforms a

computation x ∈ IF (A) into the computation x[f ] ∈ IE(A), where each occurrence of an e�ect
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(m :N) ∈ F is replaced by the corresponding computation fm ∈ IE(N).

E�ect signatures are seen as simple games, and a family (fm)m∈F as described above can

be interpreted as a certain kind of dually nondeterministic strategy for the game E ! F . I use

this approach to de�ne a �rst category of games and strategy speci�cations Gibv , where IE is the

identity morphism for E and the substitution operator is used to de�ne composition.

6.3 Plays

I �rst introduce the partially ordered sets of plays which we use to construct the interaction spec-

i�cation monad. Since the monad is intended to describe active computations, I use odd-length

plays which start with system moves, by contrast with the more common approach presented in

§2.4.2.

De�nition 6.2. The set P̄E(A) of interactions for an e�ect signature E and a set of values A is

de�ned inductively:

s ∈ P̄E(A) ::= v | m | mns ,

where v ∈ A, (m : N) ∈ E and n ∈ N . The set P̄E(A) is ordered by the pre�x relation v ⊆

P̄E(A)× P̄E(A), de�ned as the smallest relation satisfying:

v v v , m v m, m v mnt ,
s v t

mns v mnt .

A play corresponds to a �nite observation of an interaction between the system and the en-

vironment. At any point in such an interaction, the system can terminate the interaction with a

given value (v), or it can trigger an e�ect (m : N) ∈ E and wait to be resumed by an answer

n ∈ N of the environment (mns). A play which ends before the environment answers a query

from the system (m) denotes that no information has been observed after that point. It can be re-

�ned by a longer observation of an interaction which begins with the same sequence of questions

and answers.
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6.4 Interaction speci�cations

The interaction speci�cation monad can now be de�ned as the free completely distributive com-

pletion of the corresponding poset of plays. For the sake of conciseness and clarity, I will use the

order embedding associated with FCD implicitly, so that an element of a poset s ∈ P can also

be regarded as an element of its completion s ∈ FCD(P ). Likewise, for a completely distribu-

tive lattice M , we can implicitly promote a monotonic function f : P ! M to its extension

f : FCD(P )!M . These conventions are at work in the following de�nition.

De�nition 6.3. The interaction speci�cation monad for an e�ect signature E maps a set A to the

free completely distributive completion of the corresponding poset of plays:

IE(A) := FCD(P̄E(A))

An element x ∈ IE(A) is called an interaction speci�cation.

The monad’s action on a function f : A! B replaces the values in an interaction speci�cation

with their image by f :

IE(f)(v) := f(v)

IE(f)(m) := m

IE(f)(mns) := mn IE(f)(s) .

The monad’s unit ηEA : A! IE(A) is the embedding of a single play consisting only of the given

value:

ηEA(v) := v

Finally, the multiplication µEA : IE(IE(A)) ! IE(A) carries out the outer computation and

sequences it with any computation it evaluates to:

µEA(x) := x

µEA(m) := m

µEA(mns) := m tmnµEA(s) .
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The most subtle aspect of De�nition 6.3 is the case for µEA(mns), which includes m as well

as mnµEA(s). This is both to ensure that the e�ects of the �rst computation are preserved when

the second computation is ⊥, and to ensure the monotonicity of the underlying function used to

de�ne µEA . Consider for example m v mn⊥ ∈ P̄E(IE(A)). Since µEA(⊥) = ⊥ and the FCD

extension of the function s 7! mns preserves⊥, it is not the case that µEA(m) = m v mnµEA(⊥).

As usual, the Kleisli extension of a function f : A! IE(B) is the function f † = µEB ◦ IE(f).

It can also be given directly as:

f †(v) := f(v)

f †(m) := m

f †(mns) := m tmnf †(s)

I will extend the notations used for FCD to the monad IE .

6.5 Interaction primitives

The operations of an e�ect signature E can be promoted to elementary interaction speci�cations

in IE in the following way.

De�nition 6.4 (Interaction primitive). For an e�ect signature E and an operation m ∈ E, the

interaction speci�cation ImE ∈ IE(ar(m)) is de�ned as:

ImE :=
⊔

n∈ar(m)

mnn

Note that in the play mnn, the �rst occurrence of n is the environment’s answer, whereas the

second occurrence is the value returned by ImE .

To model e�ect handling for a signature F , we can use a family of interaction speci�cations

(fm)(m:N)∈F providing an interpretation fm ∈ IE(N) of each e�ect (m : N) ∈ F in terms of

another e�ect signature E. This allows us to transform an interaction speci�cation x ∈ IF (A)

into an interaction speci�cation x[f ] ∈ IE(A), de�ned as follows. The constructions ⊥ and {P}

were discussed in §2.2 in the context of free completely distributive lattices; they carry similar
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meanings in the context of the interaction speci�cation monad.

De�nition 6.5 (Interaction substitution). Given the e�ect signatures E,F and the set A, for an

interaction speci�cation x ∈ IF (A) and a family (fm)(m:N)∈F with fm ∈ IE(N), the interaction

substitution x[f ] ∈ IE(A) is de�ned by:

v[f ] := v

m[f ] := r  fm;⊥

mns[f ] := r  fm; {r = n}; s[f ] .

The outcome of the interaction speci�cation is left unchanged, but e�ects are replaced by their

interpretation. Whenever that interpretation produces an outcome r, the substitution process

resumes with the remainder of any matching plays of the original computation.

6.6 Categorical structure

As presented so far, the interaction speci�cation monad can be seen as an extension of the re�ne-

ment calculus able to model e�ectful computations for a given signature. We now shift our point

of view to game semantics and show how interaction substitutions can be used to de�ne a simple

category of games and strategies featuring dual nondeterminism and alternating re�nement.

De�nition 6.6 (Morphisms). Consider the e�ect signatures E, F and G. I will write f : E ! F

whenever (fm)(m:N)∈F is a family of interactive computations such that fm ∈ IE(N). For the

morphisms f : E ! F and g : F ! G, their composite g ◦ f : E ! G can be de�ned as:

(g ◦ f)m = gm[f ] .

The completely distributive lattice structure of IF (−) can be extended pointwise to morphisms.

For a family (fi)i∈I with fi : E ! F , the morphisms
(⊔

i∈I fi
)

: E ! F and
(d

i∈I fi
)

: E ! F

are de�ned as: (⊔
i∈I

fi

)m
:=
⊔
i∈I

fmi

(
l

i∈I
fi

)m
:=

l

i∈I
fmi ,
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For f, g : E ! F re�nement is de�ned as:

f v g ⇔ ∀m ∈ F · fm v gm .

A morphism f : E ! F can be interpreted as a well-bracketed strategy for the game !E ( F .

In this game, the environment �rst plays a move m ∈ F . The system can then ask a series of

questions q1, . . . qk ∈ E to which the environment will reply with answers ri ∈ ar(qi), and �nally

produce an answer n ∈ ar(m) to the environment’s initial question m. The plays of !E ( F are

restricted to a single top-level question m. In addition, the well-bracketing requirement imposes

that at any point, only the most recent pending question may be answered.

Compared with the usual notion of strategy, the model presented here introduces arbitrary

demonic choices and relaxes all constraints over angelic choices. The de�nition of g ◦ f given

above otherwise corresponds to the traditional de�nition of strategy composition. The identity

strategy is given by IE : E ! E.

Lemma 6.7. Consider the e�ect signatures E,F,G,H and the morphisms f : E ! F , g : F ! G

and h : G! H . The following properties hold:

IF ◦ f = f ◦ IE = f

h ◦ (g ◦ f) = (h ◦ g) ◦ f

Composition preserves all extrema on the left, and all non-empty extrema on the right.

Proof. Using properties of FCD and inductions on plays.

Having established the relevant properties, we can de�ne a category of games and strategies.

De�nition 6.8. The category Gibv has e�ect signatures as objects. Morphisms, identities and com-

position have been de�ned above. The hom-sets Gibv(E,F ) are completely distributive lattices,

with composition preserving all extrema on the left, and all non-empty extrema on the right.
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6.7 Products

De�nition 4.13 in §4.3.1 introduces the sum
⊕

i∈I Ei of a family of signatures (Ei)i∈I . As demon-

strated below, this construction can be used to de�ne products in the category Gibv .

Theorem 6.9. The category Gibv has all products. Objects are given by the sum of signatures, so that

∏
i∈I

Ei :=
⊕
i∈I

Ei .

Projection arrows are given for each i ∈ I by the morphism de�ned as:

πi :
∏
j∈I

Ej ! Ei πmi := (i,m) .

Proof. We need to show that for an e�ect signatureX and a collections of morphisms (fi)i∈I with

fi : X ! Ei, there is a unique 〈fi〉i∈I : X !
∏
i ∈ IEi such that for all i ∈ I :

fi = πi ◦ 〈fj〉j∈I .

Note that for x : X !
∏
i ∈ IEi, i ∈ I and m ∈ Ei, we have:

(πi ◦ x)m = πmi [x] = (i,m)[x] = x(i,m)

Hence, 〈fi〉i∈I is uniquely de�ned as:

〈fi〉(j,m)
i∈I := fmj .

Note in particular that the empty signature ∅ is the terminal object. Hence, I will write 1 when

I refer to the empty signature as an object of Gibv .

6.8 Certi�ed abstraction layers

Certi�ed abstraction layers can be embedded into the category Gibv as follows.
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6.8.1 Layer implementations

A layer implementation M with an underlay signature E and an overlay signature F can be in-

terpreted as a strategy JMK : E ! F in Gibv in a straightforward manner:

JMKm := M.m[IE ]

Expanding slightly, the computation M.m ∈ TE(N) is mapped to (M.m)[IE ] ∈ IE using the

monad homomorphism (−)[IE ] : TE ! IE described by:

m(tn)n∈N [IE ] := n ImE ; tn[IE ] ∈ IE(N) (m :N) ∈ E

Remark 6.10. A strategy f : E ! F in Gibv corresponds to a monad homomorphism TF ! IE .

Above, the strategy JMK is obtained as the composite monad homomorphism IE ◦M , where IE is

seen as a monad homomorphism of type TE ! IE andM is seen as TF ! TE .

6.8.2 Layer interfaces

To embed layer interfaces, we need to make their abstract states visible in the interaction by ex-

tending signatures in the following way:

E@S := {m@k : N × S | (m :N) ∈ E, k ∈ S}

Since the speci�cations in a layer interface L = 〈E,S, σ〉 have the type σm : S ! P1(N × S),

they then be interpreted as a morphism JLK : 1! E@S almost directly, using the join operation

in I∅(N × S) to interpret ∅ as ⊥ and a singleton {n@k′} as the corresponding outcome:

JLKm@k :=
⊔

n@k′∈σm(k)

n@k′

6.8.3 Keeping state

For a morphism f : E ! F , we construct f@S : E@S ! F@S which keeps updating a state

k ∈ S as it performs e�ects in E@S, then adjoins the �nal state to any answer returned by f . For
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a set A, we �rst de�ne −#− : P̄E(A)× S ! IE@S(A× S):

v#k := v@k

m#k := m@k

mns#k :=
⊔
k′∈S

m@k n@k′ s#k′ ,

and extend it to morphisms as (f@S)m@k := fm#k. Then in particular, running a layer im-

plementation JMK : E ! F on top of a layer interface JLK : 1 ! E@S yields the morphism

JMK@S ◦ JLK : 1! F@S.

Note that (g ◦ f)@S = g@S ◦ f@S and IE@S = IE@S , so that −@S : Gibv ! Gibv is in fact a

functor.

6.8.4 Simulation relations

The most interesting aspect of our embedding is the representation of simulation relations. We

will see that dual nondeterminism allows us to represent them as regular morphisms.

Recall the de�nition of the judgmentL1 `R M : L2, which means that a layer implementation

M correctly implements L2 on top of L1 through a simulation relation R ⊆ S2 × S1. If we write

L′1 := JMK@S1 ◦ JL1K for the layer interface obtained by interpreting M on top of L1, then:

L1 `R M : L2 ⇔ ∀m ∈ E2 · Lm2 [R! P≤(=×R)] L′1
m

I will use the families of morphisms R∗E : E@S2 ! E@S1 and RE∗ : E@S1 ! E@S2 to encode

this judgment:

(R∗E)m@k1 :=
⊔

k2∈R−1(k1)

n@k′2  Im@k2
E@S2

;
l

k′1∈R(k′2)

n@k′1

(RE∗ )m@k2 :=
l

k1∈R(k2)

n@k′1  Im@k1
E@S1

;
⊔

k′2∈R−1(k′1)

n@k′2

They yield two equivalent ways to encode layer correctness as re�nement properties.

In the �rst case, R∗E is intended to translate a high-level speci�cation σ which uses overlay
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states k2, k
′
2 ∈ S2 into a low-level speci�cation R∗E ◦ σ which uses underlay states k1, k

′
1 ∈

S1. The client calls into R∗E with an underlay state k1, with the expectation that if there is any

corresponding overlay state, then R∗E ◦ σ will behave accordingly (it is angelic with respect to its

choice of k2). On the other hand, R∗E ◦ σ is free to choose any underlay representation k′1 for the

outcome k′2 produced by σ, and the client must be ready to accept it (it is demonic with respect to

its choice of k′1).

In the second case,RE∗ ◦τ is the strongest high-level speci�cation which a low-level component

τ implements with respect to R. For an overlay state k2 ∈ S2, τ may behave in various ways

depending on the corresponding underlay state k1 ∈ S1 it is invoked with, and so the speci�cation

must allow them using demonic choice. On the other hand, when τ returns with a new underlay

state k′1, the environment is free to choose how to interpret it as an overlay state k′2.

Theorem 6.11. For σ := JL2K and τ := JMK@S1 ◦ JL1K:

R∗E2
◦ σ v τ ⇔ L1 `R M : L2 ⇔ σ v RE2

∗ ◦ τ .

Proof. The proof is straightforward but requires Thm. 5.3 from Morris and Tyrrell [2008].



Chapter 7

Stateful and reentrant strategies

The model presented in Chapter 6 is designed to be simple but general enough to embed CompCert

semantics, certi�ed abstraction layers, and interaction trees. I now sketch a more general model

which allows strategies to retain state across successive activations. I explain how the new model

Gbv can embed the morphisms of Gibv , and how it can be used to characterize certi�ed abstraction

layers independently of the states used in their description.

7.1 Overview

As discussed in §6.6, the morphisms of Gibv(E,F ) correspond to the well-bracketed strategies for

the game !E ( F . As such, they can be promoted to well-bracketed strategies for the more

general game !E ( !F , which allows the environment to ask multiple question of F in a row, and

to ask nested questions whenever it is in control.

More precisely, strategies promoted in this way correspond to the innocent well-bracketed

strategies for !E ( !F , meaning that they will behave in the same way in response to the same

question, regardless of the history of the computation. The model I introduce in this section relaxes

this constraint, allowing strategies to maintain internal state.

After outlining the construction of a new category Gbv of games and strategies (§7.2–§7.5), I

de�ne an embedding of Gibv into Gbv (§7.6), and show how the states used by a strategy σ : E@S !

F@S can be internalized and hidden from its interactions (§7.7).

117
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7.2 Games

To facilitate reasoning, and make it easier to describe operators on strategies in a systematic way,

I will describe games as a speci�c kind of graph where vertices represent players and edges deter-

mine which questions can be asked by one player to another. Generalizing from e�ect signatures,

questions are assigned an arity which gives the type of the answer.

De�nition 7.1. A game signature Γ is a set of players with a distinguished element O, together

with an e�ect signature Γ(u, v) for all u, v ∈ Γ. The operations (m : N) ∈ Γ(u, v) are called the

questions of u to v, and the elements n ∈ N are called answers to the question m.

I depict game signatures as directed graphs where vertices are the players and where edges are

labeled by the corresponding e�ect signature. Missing edges correspond to the empty signature.

For example, the game !E ( !F is generated by the game signature:

[E,F ] = OP

E

F

When we consider the ways in which questions propagate through a game signature, the dis-

tinguished player O serves the role of both a source and sink. As such, it is visually useful to depict

O as two nodes, one capturing the incoming edges of O, and one capturing its outgoing edges. For

example, the following game signature generates the global interaction sequences used to de�ne

the composition of the strategies σ : E ! F and τ : F ! G. The player P1 corresponds to σ, the

player P2 corresponds to τ , and the strategies are made to interact over the intermediate game F :

[E,F,G] = OP2P1O
GFE

As another example of a game signature, a situation where σ1 : E1 ! F1 and σ2 : E2 ! F2
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interact with the environment independently of one another can be described as:

[E1, F1] ∨ [E2, F2] = OO

P1

P2

F1E1

F2E2

The signature above will be used to compute tensor products of strategies. These constructions

generalize as follows.

De�nition 7.2 (Constructions on game signatures). For a collection of e�ect signature (Ei)1≤i≤n

and an e�ect signature F , the game signature [E1, . . . , En, F ] has the players O,P1, . . . ,Pn and

the following edges:

[E1, . . . , En, F ] := O P1
. . . Pn O

E1 E2 En F

For a collection of game signatures (Γi)i∈I , the wedge sum
∨
i∈I Γi has the players:

{O} ∪ {(i, p) | i ∈ I ∧ p ∈ Γi \ {O}}

For i ∈ I and p ∈ Γi, the corresponding player in
∨
j∈I Γj is:

ιi(p) :=


O if p = O

(i, p) otherwise.

Then for each question m : u ! v in Γi, the wedge sum has a corresponding question ιi(m) :

ιi(u)! ιi(v).

7.3 Plays and strategies

The well-bracketing requirement enforces a kind of stack discipline on the succession of questions

and answers. A well-bracketed play can be interpreted as an activation tree, where questions are

understood as function calls and answers are understood as corresponding returns. At any point
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in a play over a signature Γ, its possible evolutions are characterized by the stack of pending

questions.

De�nition 7.3. For a game signature Γ and a player p ∈ Γ, a p-stack over Γ is a path:

O = p0
m1−−! p1

m2−−! · · · mn−−! pn = p

where pi ∈ Γ and mi ∈ Γ(pi−1, pi). I will write this path as κ = m′1 · · ·m′n : O� p ∈ Γ.

Such stacks can in turn be arranged in a graph Γ̂ over which the game associated with Γ will

be played.

De�nition 7.4 (Strategy speci�cations). For a signature Γ, the graph Γ̂ is de�ned as follows. The

vertices of Γ̂ are pairs (u, κ) in which u ∈ Γ and κ is a u-stack. For each question (m:N) ∈ Γ(u, v)

and stack κ : O� u, there is an edge:

m : (u, κ)! (v, κm) ∈ Γ̂ .

Then, for each answer n ∈ N there is an edge:

n : (v, κm)! (u, κ) ∈ Γ̂ .

The plays over Γ are paths of type (O, ε) � (O, κ) ∈ Γ̂, where κ : O � O ∈ Γ is an O-stack.

I will write P Γ for the poset of plays over Γ under the pre�x ordering. The strategy speci�cations

for Γ are given by the completion:

S Γ := FCD(P Γ) .

7.4 Operations on strategies

De�nition 7.5. A transformation from the game signature Γ1 to the game signature Γ2 associates

to each player p ∈ Γ1 a player f(p) ∈ Γ2 with f(O) = O, and to each question m ∈ Γ1(u, v) a
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path of questions in Γ2:

f(u) = p0
m′1−−! p1

m′2−−! · · · m
′
n−−! pn = f(v) ,

written as f(m) = m′1m
′
2 · · ·m′n : f(u)� f(v), and such that ar(m′1) = · · · = ar(m′n) = ar(m).

We can extend f itself to the paths in Γ1 by taking the image of m1 · · ·mn : u� v to be:

f(m1 · · ·mn) := f(m1) · · · f(mn) : f(u)� f(v) .

Game signatures and transformations form a category.

In other words, a transformation is a structure-preserving map on paths. Transformations can

be extended to plays.

De�nition 7.6 (Action on plays). A transformation f : Γ1 ! Γ2 induces a monotonic function

Pf : P Γ1 ! P Γ2 as follows. For each operation (m : N) ∈ Γ(u, v) and for a stack κ : O � u,

the image of the move m : (u, κ)! (v, κm) is the path:

f(m) : (f(u), f(κ))� (f(v), f(κ)f(m)) .

Then for n ∈ N , the image of n : (v, κm)! (u, κ) is the path:

n|f(m)| : (f(v), f(κ)f(m))� (f(u), f(κ)) ,

where the notation n|f(m)| corresponds to a sequence nn · · ·n of copies of the answer n ∈ N of

same length as the path f(m).

Operators on strategies will generally be de�ned by a game signature of global interaction

sequences, and will use transformations to project out the corresponding plays of the arguments

and the result.

7.4.1 Composition

When composing the strategy speci�cations σ ∈ S [E,F ] and τ ∈ S [F,G] to obtain τ ◦ σ ∈

S [E,G], the transformation ψcX : [E,F,G] ! [E,G] can be used to describe the externally
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observable behavior of interaction sequences in [E,F,G]:

ψcX(P1) = ψcX(P2) = P ψcX(O) = O

ψcX(m) =


ε if m ∈ F

m otherwise

This can be described concisely as ψcX = [1, 0, 1], with:

ψc1 := [1, 1, 0] : [E,F,G]! [E,F ]

ψc2 := [0, 1, 1] : [E,F,G]! [F,G]

de�ned similarly.

We can now formulate the composition of strategy speci�cations as follows. The “footprint”

of the plays s1 ∈ P [E,F ] and s2 ∈ P [F,G] can be de�ned as:

ψc(s1, s2) :=
⊔

s∈P [E,F,G]

{ψc1(s) v s1 ∧ ψc2(s) v s2};ψcX(s) .

In other words, the angel chooses a global play s matching s1 and s2 and produces its external

view. By extending ψc to strategy speci�cations in the expected way, we obtain:

τ ◦ σ = s σ; t τ ;ψc(s, t) .

7.4.2 Identity

The strategy idE ∈ S [E,E] uses the signature:

[E] = OE
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and the transformation:

ψid
X := [2] : [E]! [E,E]

ψid
X(O) := O ψid

X(m) := mm

Then idE is de�ned as:

idE :=
⊔

s∈P [E]

ψid
X(s) .

7.4.3 Tensor

The tensor product of the strategies σ1 ∈ S [E1, F1] and σ2 ∈ S [E2, F2] is a strategy σ1 ⊗ σ2 ∈

S [E1⊕E2, F1⊕F2] de�ned using interaction sequences in Γ = [E1, F1]∨ [E2, F2]. The external

projection ψ⊗X : Γ! [E1 ⊕ E2, F1 ⊕ F2] is:

ψ⊗X(O) = O ψ⊗X(P1) = ψ⊗X(P2) = P

ψ⊗X(ιi(m)) = ιi(m)

The internal projections ψ⊗i : Γ! [Ei, Fi] are given by:

ψ⊗i (p) =


P if p = Pi

O otherwise

ψ⊗i (ιj(m)) =


m if i = j

ε otherwise

The footprint of the plays s1 ∈ P [E1, F1] and s2 ∈ P [E2, F2] is:

ψ⊗(s1, s2) :=
⊔
s∈PΓ

{ψ⊗1 (s) v s1 ∧ ψ⊗2 (s) v s2};ψ⊗X(s)

The tensor product can then be de�ned as:

σ1 ⊗ σ2 := s1  σ1; s2  σ2;ψ⊗(s1, s2)
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7.5 Category

The category Gbv has e�ect signatures as objects, and has the elements of S [E,F ] as morphisms

σ : E ! F . The categorical structure is de�ned in the previous section.

The associator, unitor and braiding associated with ⊗ can be obtained by embedding the cor-

responding morphisms of Gibv using the process outlined in §7.6 below. Note however that unlike

that of Gibv , the symmetric monoidal structure of Gibv is not cartesian, because the interactions of

a strategy σ : E ! F1 ⊗ F2 which involve only one of the games F1 and F2 are not su�cient to

characterize the behavior of σ in interactions that involve both of them.

7.6 Embedding Gibv

Since a morphism f ∈ Gibv(E,F ) de�ned using the interaction speci�cation monad only describes

the behavior of a component for a single environment question, to construct a corresponding

strategyWf ∈ Gbv(E,F ) we must duplicate the component’s behavior, compounding the angelic

and demonic choices of each copy.

We proceed as follows. For a stack κ : O � O, the set P κΓ contains partial plays of type

(O, κ) � (O, κ′) ∈ Γ̂, and for a question q ∈ F , the set P̄ κqΓ contains partial plays of type

(P, κq)� (O, κ′) ∈ Γ̂. We will de�ne an operator

ωκ : P κΓ ! FCD(P κΓ )

which prepends an arbitrary number of copies of f to a play of P κΓ . Starting with ωκ0 (t) := t, we

construct a series of approximations:

ωκi+1(t) := t t
⊔
q∈F

q ω̄κqi (f q, ωκi (t))

For (q :R) ∈ F , the auxiliary construction ω̄κq of type

ω̄κq : P̄E(R)× P κΓ ! FCD(P̄ κqΓ )

embeds an interaction s ∈ P̄E(R), inserting reentrant calls as appropriate, and continues with the
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play t if s terminates:

ω̄κqi (v, t) = vt

ω̄κqi (m, t) = mωκqmi (ε)

ω̄κqi (mns, t) = mωκqmi (n ω̄κqi (s, t))

The index i limits both the number of sequential and reentrant copies of f which are instantiated.

The strategy speci�cation associated to f in Gbv is:

Wf :=
⊔
i∈N

ωi(ε) .

7.7 Hiding state

The functor W : Gibv ! Gbv can be used to embed the layer theory de�ned in §6.8 as-is. In

addition, the state of layer interfaces can be propagated across consecutive calls and eliminated

from the representation.

De�nition 7.7. The state-free observation at k0 ∈ S of a partial play s : (O, κ) � (O, κ′) over

the signature [E@S, F@S] is written s/k0 and de�ned recursively as:

ε/k0 := ε

(m@k1 n@k2 s)/k0 := {k0 = k1};mn(s/k2)

For σ : E@S ! F@S, the strategy σ/k0 : E ! F is obtained using the FCD extension of the

operator above.

When the strategy σ/k0 is �rst activated, σ is passed the initial state k0. Then, whenever σ

makes a move m@k, σ/k0 removes k from the visible interaction, but remember it in order to

adjoin it to the next incoming move.
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Chapter 8

Semantics in CompCert

This chapter describes the semantic model used in CompCert [Leroy, 2009], as well as extensions

which have been proposed to make it more compositional. There is no novelty in the technical

material presented, however game semantics and dual nondeterminism provide a powerful lens

through which the existing design and extensions can be examined and their more sophisticated

aspects understood.

Going beyond the idea of a certi�ed compiler, I then identify a set of requirements for using

CompCert as a compiler of certi�ed components.

8.1 Whole-program semantics

The semantics of CompCert languages are given in terms of a simple notion of process behavior.

By process, I mean a self-contained computation which can be characterized by the sequence of

system calls it performs. For a C program to be executed as a process, its translation units must

be compiled to object �les, then linked together into an executable binary loaded by the system.

whole-program.s

M1.c M2.c . . . Mn.c

M1.s M2.s . . . Mn.s

Compilation

Linking

Figure 8.1: CompCert’s approximation of the C toolchain
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The model used for verifying CompCert accounts for this in the way depicted in Figure 8.1.

Linking is approximated by merging programs, seen as sets of global de�nitions. The execution

of a program composed of the translation units M1.c . . . Mn.c which compile to M1.s . . . Mn.s is

modeled as:

Ltgt := Asm[M1.s + · · ·+ Mn.s] .

Here, + denotes CompCert’s linking operator and Asm maps an assembly program to its semantics.

Note that the loading process is encoded as part of the de�nition of Asm, which constructs a global

environment laying out the program’s code and static data into the runtime address space, and

models the conventional invocation of main. To formulate compiler correctness, we must also

specify the behavior of the source program. To this end, CompCert de�nes a linking operator and

semantics for the language Clight,1 allowing the desired behavior to be speci�ed as:

Lsrc := Clight[M1.c + · · ·+ Mn.c] .

Given an appropriate notion of re�nement, the correctness of CompCert can then be stated as:

Lsrc v Ltgt .

8.1.1 Transition systems

Language semantics are given as labelled transition systems (LTS), which characterize a program’s

behavior in terms of sequences of observable events taken from a �xed set E.

Schematically, a CompCert LTS is a tuple L = 〈S, I,!, F 〉 consisting of a set of states S, a

subset I ⊆ S of initial states, a labelled transition relation! ⊆ S×E∗×S, and a set F ⊆ S× int

of �nal states associated with exit statuses. The relation s t
! s′ indicates that the state s may

transition to the state s′ with the externally observable interaction t ∈ E∗.

The execution of L starts by selecting an initial state s0, then uses the transition relation to
1Although CompCert features a frontend for a richer version of the C language, the simpli�ed intermediate dialect

Clight is usually used as the source language when using CompCert to build certi�ed artifacts.
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repeatedly update the state, until a �nal state is reached:

I 3 s0
t1−! s1

ε
−! s2

t2−! s3 F r

Roughly speaking, the externally observable behavior of the program consists of the sequence of

events generated by transitions (t1t2 in the execution above), together with the exit status of the

process (r in the execution above). See the next section for a more detailed account.

Note that nondeterministic choices are potentially involved at every step of the execution: the

selection of an initial state from the set I , the selection of a possible transition {(t, s′) | s t
−! s′},

and the selection of an outcome {r | s F r}. If there is a possible transition out of a �nal state s,

there will also be a choice of whether the execution should terminate or continue.

The angelic, demonic, or mixed nature of these choices is key to understanding CompCert’s

notions of determinacy and receptiveness of transition systems, and the distinction and correspon-

dence between CompCert’s notions of forward and backward simulations.

8.1.2 Behaviors

I outlined above the execution of a labelled transition system in terms of terminating traces. The

model used in CompCert is more general, and de�nes four kinds of behaviors:

• As before, an execution reaching a �nal state is said to terminate. For example, the following

execution generates the event trace t1t2 · · · tn−1 and terminates with status r:

I 3 s1
t1! s2

t2! · · · tn−1
! sn F r

I will write this behavior as

t1t2 · · · tn−1 ⇓ r .

• An execution reaching an in�nite sequence of ε transitions is said to silently diverge. The

following execution diverges after generating the trace t1t2 · · · tn−1:

I 3 s1
t1! s2

t2! · · · tn−1
! sn

ε
! sn+1

ε
! · · ·
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I will write the corresponding behavior as

t1t2 · · · tn−1 ⇑ .

• By contrast, in�nite executions which keep interacting are said to exhibit reactive behavior.

The following execution is reactive if and only if ∀i · ∃j ≥ i · tj 6= ε:

I 3 s1
t1! s2

t2! s3
t3! · · ·

Then the behavior of the transition system is represented by the in�nite sequence

t1t2t3 · · · .

• Finally, an execution which reaches a stuck state is said to go wrong. It will have the shape

I 3 s1
t1! s2

t2! · · · tn−1
! sn ,

with no t, s′ such that sn
t
! s′ and no r such that sn F r. The corresponding, partially

de�ned behavior is written

t1t2 · · · tn−1 .

It can be re�ned by any behavior admitting t1t2 · · · tn−1 as a pre�x.

A transition system with no initial state (I = ∅) immediately goes wrong. In this case, the tran-

sition system will admit the single unde�ned behavior ε .

Summing up, the traces used by CompCert to de�ne the possible behaviors of transition sys-

tems are taken from the following language:

b ∈ B = E∗{⇓r,⇑, | r ∈ int} ∪ Eω .

I will write v ⊆ B×B for CompCert’s notion of behavior improvement, which allows behaviors
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which go wrong to be re�ned by more de�ned ones. It can be de�ned as

v := {(b, b) | b ∈ B} ∪ {(t , tb) | t ∈ E∗, b ∈ B} .

Then the overall external behavior of a transition system L is characterized as a set Beh(L) ⊆ B

of possible individual behaviors. In the remainder of this section I will describe the techniques

used in CompCert to de�ne and establish corresponding notions of re�nement.

8.1.3 Events

The events used in the traces above are taken from the following set:

e ∈ E ::= syscall[u,~v]/v | vload[i, o]/v | vstore[i, o, v] | annot[u,~v]

They correspond to system calls (syscall), volatile loads and stores (vload, vstore), and annotations

(annot). The data involved are strings (u ∈ string), global identi�ers (i ∈ ident), pointer o�sets

(o ∈ Z) and event values (v ∈ eval, ~v ∈ eval∗). Crucially, these data are invariant between the

source and target programs, so that the corresponding traces can be compared directly. For the

purposes of this discussion, the exact nature and use of these events are not important, but they

correspond to the external interactions which need to be preserved between the execution of the

source and target program.

Events involve both an output component, chosen by the program and written here to the left

of the oblique bar (/), and a (possibly trivial) input component, chosen by the environment and

written to the right of the oblique. In CompCert, this distinction is formulated as a “match_traces”

relation which identi�es events that have the same output component. It can be described as the

smallest equivalence relation ' containing:

syscall[u,~v]/v′1 ' syscall[u,~v]/v′2 vload[i, o]/v1 ' vload[i, o]/v2

Equivalently, the set of events can be described as an e�ect signature and used to interpret the

behaviors of transition systems in terms of strategies.
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Nondeterminism Transition systems Sets of traces
Angelic interpretation Forward simulations (≤) Trace inclusion (P≤(v ))

Demonic interpretation Backward simulations (≥) Trace containment (P≥(v ))

Table 8.1: Notions of re�nement in CompCert semantics

8.1.4 Games

Although CompCert semantics are not formulated explicitly as game semantics, understanding

them in that framework will be useful when we consider the extensions I present in §8.2 and in

Chapter 9. Event traces correspond to an interaction over the signature

E := {syscall : string × eval∗ ! eval,

vload : ident× Z! eval,

vstore : ident× Z× eval! 1,

annot : string × eval∗ ! 1} .

Likewise, the initial invocation of a program and its ultimate outcome can be understood as an

interaction over the signatureW := {∗ : {⇓r,⇑ | r ∈ int}}. Overall, the external behavior of a

CompCert transition system corresponds to a strategy for the game E !W .

However, the precise behavior of a transition system as a strategy of this kind depends on how

nondeterminism is interpreted:

• The angelic interpretation is used implicitly in the context of forward simulations, which

entail a trace inclusion property for the corresponding sets of behaviors.

• The demonic interpretation is used implicitly in the context of backward simulations, which

entail under some receptiveness assumptions a corresponding trace containment property.

This is outlined in Table 8.1 and explained in the following sections.

8.1.5 Angelic interpretation

Under an angelic interpretation of nondeterminism, we look at the choice between two possible

transitions s t1−! s1 and s t2−! s2 purely as a choice of the environment. In terms of sets of
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behaviors, the corresponding notion of re�nement is the trace inclusion relation P≤(v ), which

guarantees that all choices available to the environment in the source program are available in the

target program as well.

Formally speaking, the angelic treatment of nondeterminism yields a more homogeneous the-

ory than its demonic counterpart. A behavior b ∈ B can be interpreted in IE as:

J⇓rK := η(⇓r) J K := ⊥

J⇑K := η(⇑) Jm/n · bK := mnJbK

Then Beh(L) can be interpreted as a strategy in E !W given by:

JBeh(L)K∗ :=
⊔

b∈Beh(L)

JbK ,

where ∗ ∈ W◦ denotes the only question in the signatureW . Trace inclusion and re�nement then

coincide in the following way:

Beh(L1) [P≤(v )] Beh(L2) ⇔ JBeh(L1)K v JBeh(L2)K .

Often, the angelic interpretation of nondeterminism is also the most convenient one when it

comes to proving re�nement between two transition systems, as in the case of correctness proofs

for a speci�c compiler pass. For transition systems, correctness can be proved using simulations

of the following kind, which assert that every transition of the source program is matched by a

corresponding transition sequence in the target program. Note that the target sequence may be

empty, but in order to ensure the preservation of silent divergence, we must ensure this happens

for at most �nitely many steps in the source program.

De�nition 8.1. A forward simulation of a transition system L1 = 〈S1, I1,!1, F1〉 by a transition

system L2 = 〈S2, I2,!2, F2〉 is given by a relation R ⊆W ×S1×S2 indexed by a well-founded

order (W,<) such that the following properties hold:

• For all s1 ∈ I1, there exist i ∈W and s2 ∈ I2 such that (i, s1, s2) ∈ R.

• For all (i, s1, s2) ∈ R and for every transition s1
t
!1 s

′
1, there exist i′ ∈ W and s′2 ∈ S2
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such that (i′, s′1, s
′
2) ∈ R and either s2

t
!+

2 s′2 or s2 = s′2 ∧ i′ < i.

• For all (i, s1, s2) ∈ R and every result r such that s1 F1 r, there exists s′2 such that s2
ε
!∗2 s

′
2

and s′2 F2 r.

I will write L1 ≤ L2.

CompCert also includes in common/Smallstep.v a number of simpli�ed formulations which

can be used to establish forward simulations in simpler situations. Forward simulations imply

trace inclusion:

L1 ≤ L2 ⇒ Beh(L1) [P≤(v )] Beh(L2)

This is proved as forward_simulation_behavior_improves in common/Behaviors.v.

While the angelic interpretation of nondeterminism is the most convenient one to work with,

it does not correspond to the intended interpretation of CompCert transition systems, detailed

in the next section, where multiple possible transitions correspond primarily to choices of the

system. However, under some conditions the two interpretations coincide. This makes it possible

to use forward simulations to prove semantic preservation properties for most of CompCert’s

compilation passes.

8.1.6 Demonic interpretation

Under a demonic interpretation of nondeterminism, we look at the choice between two possible

transitions s t1−! s1 and s t2−! s2 as a choice of the system. In terms of traces, the corresponding

notion of re�nement is the trace containment relation P≥(v ), which guarantees that all possible

behaviors of the target program are permitted by the speci�cation (source program).

This elegant story is complicated by two phenomena involving angelic as well as demonic

nondeterminism:

• While the choice between multiple possible transitions should be interpreted as demonic,

stuck states should still denote unde�ned behaviors. In other words, when there are no

possible transitions, the “choice” between them should be interpreted angelically as⊥, rather

than demonically as >.
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• When interactions with the environment are involved in the form of non-empty event traces,

outputs should be interpreted as demonic, but inputs should still correspond to choices of

the environment.

The �rst phenomenon creates a discontinuity in the interpretation of sets of possible actions, as

illustrated by the following example.

Example 8.2. Consider the following family of transition systems, where the initial state i may admit

zero, one, or more transitions to the �nal state f :

S := {i, f} L0 := {S, I,!0, F} !0 := ∅

I := {i} L1 := {S, I,!1, F} !1 :=!0 ∪ {(i, e1, f)}

F := {(f, 42)} L2 := {S, I,!2, F} !2 :=!1 ∪ {(i, e2, f)}
...

...

The corresponding sets of behaviors are as follows:

Beh(L0) = { }

Beh(L1) = {e1 ⇓ 42}

Beh(L2) = {e1 ⇓ 42, e2 ⇓ 42}
...

. . .

As a consequence of the discontinuity introduced by  , we obtain the ordering

L0 v · · · v L3 v L2 v L1

where L0 is pushed to the bottom.

While so far I have only mentioned choices between transitions introduced by the step relation

!, initial and �nal states also participate in this phenomenon. In general, we can consider the

way CompCert interprets nondeterminism in a set of possible actions A, depending on the set’s
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cardinality. When |A| ≤ 1, nondeterminism is interpreted as angelic:

⊔
A

When |A| ≥ 1, nondeterminism is interpreted as demonic:

l
A

In other words, CompCert uses the following form of discontinuous choice:

⊕
A :=


⊥ if A = ∅
d
A otherwise

Concretely, this manifests in the form of additional safety clauses in the de�nition of backward

simulations as given below. A state s ∈ S in a transition system 〈S, I,!, F 〉 is called safe if it

does not go wrong. A state s ∈ S goes wrong if there exists s ε
!∗ s′ such that s′ is stuck (it has no

successor and is not a �nal state).

De�nition 8.3. A backward simulation of a transition system L1 = 〈S1, I1,!1, F1〉 by a tran-

sition system L2 = 〈S2, I2,!2, F2〉 is given by a relation R ⊆ W × S1 × S2 indexed by a

well-founded order (W,<) such that the following properties hold:

• If I1 6= ∅, then I2 6= ∅.

• If I1 6= ∅ and s2 ∈ I2, there exist i ∈W and s1 ∈ I1 such that (i, s1, s2) ∈ R.

• For all (i, s1, s2) ∈ R with s1 a safe state, s2 either has a successor or is a �nal state.

• For all (i, s1, s2) ∈ R with s1 a safe state, and for every transition s2
t
!2 s

′
2, there exist

i′ ∈W and s′1 ∈ S1 such that (i′, s′1, s
′
2) ∈ R and either s1

t
!+

1 s′1 or s1 = s′1 ∧ i′ < i.

• For all (i, s1, s2) ∈ R with s1 a safe state, and every result r such that s2 F2 r, there exists

s′1 such that s1
ε
!∗1 s

′
1 and s′1 F1 r.

I will write L1 ≥ L2.
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As with forward simulations, stronger but simpli�ed versions of these criteria are provided in

common/Smallstep.v. Backward simulations imply trace containment:

L1 ≥ L2 ⇒ Beh(L1) [P≥(v )] Beh(L2)

This is proved as backward_simulation_behavior_improves in common/Behaviors.v.

8.1.7 Dual interpretation

To formulate a proper game semantics for CompCert transition systems, we must also address the

distinction between outputs and inputs mentioned at the beginning of the previous section. In

fact, this underscores that the notions of re�nement formulated in CompCert are only satisfactory

under some conditions:

• The trace inclusion property Beh(L1) P≤(v ) Beh(L2) is only appropriate when the tar-

get transition system L2 is determinate, in other words only contains nondeterminism over

environment inputs.

• The trace containment property Beh(L1) P≥(v ) Beh(L2) is only appropriate when the

target transition system L2 is receptive, in other words is maximally nondeterministic over

environment inputs.

By eliminating variation in one kind of nondeterminism, these conditions allow trace re�nement

properties to focus on the other kind and to work in one direction only.

Expressing these properties at the level of individual states is made complicated when transi-

tions can include traces of variable and mismatching lengths. For this reason the corresponding

de�nitions below require transitions to have at most one event.

De�nition 8.4 (Determinacy and receptiveness). A transition system 〈S, I,!, F 〉 has single-event

transitions when |t| ≤ 1 for all s t
! s′.

A single-event transition system is called determinate if whenever s e1−! s1 and s e2−! s2 the

properties e1 ' e2 and e1 = e2 ⇒ s1 = s2 hold.

A single-event transition system is called receptive if for all transitions s e1−! s1 and all events

e2 ' e1, there exists s2 such that s e2−! s2.
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Game semantics For a single-event transition systemL = 〈S,!, I, F 〉, the associated strategy

can be formulated as follows. First, to compute the behavior JsK ∈ IE(W•) of a state s ∈ S, we

examine the sets of possible actions which can be taken by L for the state s, then perform a

discontinuous choice between them. This is formalized as the least JsK satisfying the equations:

JsK =
⊕ (

Aε(s) ∪Aint(s) ∪A⇓(s) ∪A⇑(s)
)

Aε(s) = {Js′K | s ε
! s′}

Aint(s) =
{
n m ;

l

s
m/n
−!s′

Js′K
∣∣∣ m ∈ E◦ ∧ ∃n s′ · s m/n−! s′

}

A⇓(s) = {η(⇓r) | r ∈ int ∧ s F r}

A⇑(s) = {⇑ | s silently diverges}

Note that since IE(W•) is a complete lattice, we can compute the applicable �xpoint without

di�culty. Then, the overall behavior JLK : E !W can be obtained by de�ning

JLK∗ =
⊕
s∈I

JsK .

Again, here ∗ denotes the only question in the signatureW .

Converting forward to backward simulations WhenL1 is receptive andL2 is determinate, a

forward simulationL1 ≤ L2 can be converted into a backward simulationL1 ≥ L2. This is proved

in CompCert as forward_to_backward_simulation in the �le common/Smallstep.v. Note that

in this case, the states of L2 which correspond to safe states of L1 will be receptive as well, so that

the backward simulation will entail re�nement:

L1 ≤ L2 ⇒ L1 ≥ L2 ⇒ JL1K v JL2K

8.1.8 Memory model

The construction of states in CompCert language semantics follows common patterns. In partic-

ular, all languages start with the same notion of memory state.
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v ∈ val ::= undef | int(n) | long(n) | float(x) | single(x) | vptr(b, o)

(b, o) ∈ ptr = block× Z (b, l, h) ∈ ptrrange = block× Z× Z

alloc : mem! Z! Z! mem× block

free : mem! ptrrange! option(mem)

load : mem! ptr! option(val)

store : mem! ptr! val! option(mem)

Figure 8.2: Outline of the CompCert memory model

The CompCert memory model [Leroy et al., 2012; Leroy and Blazy, 2008] is the core algebraic

structure underlying the semantics of CompCert’s languages. Some of its operations are shown

in Figure 8.2. The idealized version presented here involves the type of memory states mem, the

type of runtime values val, and the types of pointers ptr and address ranges ptrrange. To keep our

exposition concise and clear, we gloss over the technical details associated with modular arithmetic

and over�ow constraints.

The memory is organized into a �nite number of blocks. Each memory block has a unique iden-

ti�er b ∈ block and is equipped with its own linear address space. Block identi�ers and o�sets are

often manipulated together as pointers p = (b, o) ∈ ptr = block×Z. New blocks are created with

prescribed boundaries using the primitive alloc. A runtime value v ∈ val can be stored at a given

address using the primitive store, and retrieved using the primitive load. Values can be integers

(int, long) and �oating point numbers (float, single) of di�erent sizes, as well as pointers (vptr). The

special value undef represents an unde�ned value. Simulation relations often allow undef to be re-

�ned into a more concrete value; we write value re�nement as≤v := {(undef, v), (v, v) | v ∈ val}.

The memory model is shared by all of the languages in CompCert. States always consist of

a memory component m ∈ mem, alongside language-speci�c components which may contain

additional values (val).

8.2 Compositional extensions

The model outlined above describes only the behavior of whole programs, and makes no attempt

to describe interactions across components. Likewise, the compiler correctness property given
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in §8.1 only considers uses which follow the pattern approximated in Figure 8.1. This makes it

challenging to reason about the behavior of individual compilation units. To formulate a more

�ne-grained and �exible version of the correctness theorem of CompCert, we need an account of

the behavior of individual translation units.

The model I introduce in Chapter 9 achieves this by modeling control transfers explicitly as part

of the external behavior of components, and serves as the basis for a new extension of CompCert

named CompCertO. However, there already exists multiple extensions to the semantic model and

correctness theorem of CompCert which address some of limitations in the original approach.

I present some of them in this section. The conceptual framework of game semantics can be used

to classify these extensions. By reinterpreting these models in terms of games and strategies, we

can establish the taxonomy presented in Table 8.2.

While I focus here on CompCert, a more general survey, discussion and synthesis of various

compositional compiler correctness results is provided by Patterson and Ahmed [2019].

8.2.1 CompCert and SepCompCert

As noted in §9.1, the whole-program semantics used by CompCert can be interpreted in terms of

strategies for the game 1 � W . CompCert’s original correctness theorem stated the re�nement

property C[p] v Asm[p′], where C[−] and Asm[−] denote the source and target whole-program se-

mantics. SepCompCert [Kang et al., 2016] later introduced the linking operator + and generalized

the correctness theorem to the form discussed in §8.1.

Since external calls are not accounted for explicitly in this semantic model, they are interpreted

using a common global parameter χ specifying their behavior. The correctness proof assumes that

χ is deterministic and that it satis�es a number of healthiness requirements with respect to the

memory transformations used in CompCert’s correctness proof.

8.2.2 Contextual compilation

CompCertX [Gu et al., 2015] and Stack-Aware CompCert [Wang et al., 2019] generalize the in-

coming interface of programs from W to C, and as such characterizes the behavior not only of

main but of any function of the program, called with any argument values. As discussed in §4.4,

this allows CompCertX and its correctness theorem to be used in the layer-based veri�cation of
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the CertiKOS kernel: once the code of a given abstraction layer has been veri�ed and compiled

using CompCertX, that layer’s speci�cation can be used as the new χ when the next layer is ver-

i�ed. However, this approach does not support mutually recursive components, and requires the

healthiness conditions on χ to be proved before the next layer is added.

8.2.3 Compositional CompCert

The interaction semantics of Compositional CompCert [Stewart et al., 2015] provide a form of game

semantics for program components, by extending the transition systems of CompCert to describe

cross-component interactions, and adapting forward simulations to function with the new model.

Compositional CompCert introduces a notion of semantic linking similar to the horizontal

composition operator which I will present in §9.2.1. Semantic linking is shown to preserve simu-

lations, but is not related to syntactic linking of assembly programs, and this was later shown to

be problematic [Song et al., 2019].

Another limitation of Compositional CompCert is the complexity of the theory and the proof

e�ort required. To take into account cross-components interactions, the notions of memory in-

jections and simulations used in Compositional CompCert are signi�cantly more complex than

the original ones, and simulation proofs essentially had to be rewritten and adapted to �t the new

framework.

8.2.4 CompCertM

The most recent extension of CompCert is CompCertM [Song et al., 2019], which shares common

themes and was developed concurrently with my work. While its correctness is ultimately stated

in terms of closed semantics, CompCertM uses a notion of open semantics as an intermediate

construction to enable compositional compilation and veri�cation.

The open semantics used in CompCertM builds on interaction semantics by incorporating an

assembly language interface. The resulting semantic model can be characterized as C × A �

C ×A. Simulations are parameterized by Kripke relations similar to CKLRs (§10.1) and predicates

similar to my invariants (§10.2). While simulations do not directly compose, a new technique

called re�nement under self-related context (RUSC) can nonetheless be used to derive a contextual

re�nement theorem for the whole compiler with minimal overhead.
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This approach has many advantages. CompCertM avoids much of the complexity of Compo-

sitional CompCert when it comes to composing passes, and the �exibility of the simulations used

makes updating the correctness proofs of passes much easier. CompCertM also charts new ground

in several directions. The RUSC relation used to state the �nal theorem is shown to be adequate

with respect to the trace semantics of closed programs. CompCertM has improved support for

static variables and the veri�cation of the assembly runtime function utod is demonstrated.

Nevertheless, because the correctness theorem is only expressed in terms of closed semantics,

it is di�cult to deploy CompCertM in the context of an open-ended framework based on game

semantics. The following section articulates some of these obstacles.

8.3 Limitations

8.3.1 Decomposing heterogeneous systems

The work summarized above turns CompCert into a platform enabling compositional veri�cation.

However, in most cases, the horizon is a completed assembly program to be run as a user-level

process. This becomes a limitation in the context of heterogeneous systems.

For example, consider the problem of verifying a network interface card (NIC) driver. The NIC

and its driver are closely coupled, but the details of their interaction are irrelevant to the rest of

the system and should not leak into our reasoning at larger scales. Instead, we wish to treat them

as a unit and establish a direct relationship between calls into the driver’s C interface and network

communication. Together, the NIC and driver implement a speci�cation σ : Net ! C (see §7).

The driver code would be speci�ed (σdrv) and veri�ed at the level of CompCert semantics, whereas

device I/O primitives (σio) and the NIC (σNIC) would be speci�ed as additional components:

σNIC : Net! IO σio : IO! C σdrv : C ! C

By reasoning about their interaction, it would be possible to establish a relationship between the

overall speci�cation σ and the composition σdrv◦σio◦σNIC. Then a compiler of certi�ed components

would help us transport speci�cations and proofs obtained with respect to the driver’s C code to

the compiled code operating at the level of assembly (σ′ : Net! A).
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Variant Semantic model (1) (2) (3) (4) (5)
(Sep)CompCert [Kang et al., 2016; Leroy, 2009] χ : 1� C ` 1�W X X
CompCertX [Gu et al., 2015] χ : 1� C × A ` 1� C × A X X X
Compositional CompCert [Stewart et al., 2015] C � C X X
CompCertM [Song et al., 2019] C × A� C × A X X X X
CompCertO A� A (A ∈ L) X X X X X

Table 8.2: Taxonomy of CompCert extensions in terms of the corresponding game models (§7)
and the requirements they satisfy (§8.3.2). The parameter χ : 1 � C pre-speci�es the behavior
of external functions, whereas games on the left of arrows correspond to dynamic interactions.
As a distinguishing feature, CompCertO’s model is parameterized by a generic notion of language
interface A ∈ L ⊇ {C,A}. See §8.2 for details.

I will show in the next chapter how to adapt the semantic model and correctness proofs of

CompCert so that they can be used in this way. My model is not intended to reach the level of

generality required to handle all aspects of the problem above; indeed it should remain tailored

to CompCert’s veri�cation as much as possible. Instead, it su�ces to provide a model which

can be soundly embedded into more general ones, where CompCert components can be made

interoperable with components of other kinds and high-level reasoning can be carried out.

Yet, to make it possible for CompCert to be used in this context, the ability to treat the driver

code as an independent component is crucial. This excludes approaches to compositional compiler

correctness which are formulated in terms of completed programs.

8.3.2 Requirements

To handle use cases like the one I have presented above, the compiler’s correctness proof should

satisfy the following requirements:

1. The semantics of the source and target languages should characterize the behavior of open

components in terms of their interactions with the rest of the program.

2. The correctness theorem should go beyond re�nement under a �xed notion of program

context, and relate the interactions of the source and target modules directly.

3. The abstraction gap between C and assembly-level interactions should be made explicit.

4. Some form of certi�ed linking should be provided as well as certi�ed compilation.
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5. To facilitate integration into the o�cial release, changes to the existing proofs of CompCert

should be minimal.

As outlined in Table 8.2, each of these requirements is ful�lled by some existing CompCert exten-

sion, however none satis�es them all.

The next chapter introduces CompCertO, the �rst extension of CompCert to address all of

these requirements simultaneously.



Chapter 9

CompCertO

This chapter presents the high-level design of CompCertO, the �rst extension of CompCert which

satis�es all of the requirements I have identi�ed in §8.3.2. The key to this achievement is the

expressivity of the semantic model, based on game semantics and certi�ed abstraction layers.

9.1 Overview

CompCertO generalizes the semantic model of CompCert to express interactions between com-

pilation units, using language interfaces to describe the form of these interactions and simulation

conventions to describe the correspondence between the interfaces of source and target languages.

The behavior of composite programs is speci�ed by a horizontal composition operator which is

shown to be correctly implemented by the existing linking operator for assembly programs. To

combine and reason about simulation proofs, we introduce a rich simulation convention algebra

and use it to derive our main compiler correctness statement.

9.1.1 Language interfaces

The games used in CompCertO have a particularly simple structure. I will call each one a language

interface. Their moves are partitioned into questions and answers, where questions correspond to

function invocations and answers return control to the caller.

De�nition 9.1. A language interface is a tuple A = 〈A◦, A•〉, where A◦ is a set of questions and

A• is a set of answers.

145



146

A.c int mult(int n, int p) { A.s mult: %eax := %ebx
return n * p; %eax *= %ecx

} ret

B.c int sqr(int n) { B.s sqr: %ecx := %ebx
return mult(n, n); call mult

} L1: ret

Figure 9.1: Two simple C compilation units and corresponding assembly code. For this example,
the calling convention stores arguments in the registers %ebx and %ecx and return values in the
register %eax.

CompCertO uses games of the form A ! B, where A and B are language interfaces. In this

setting, the valid positions of A! B are sequences of the form:

q ·m1 · n1 · · ·mk · nk · r ∈ B◦(A◦A•)∗B•

and all their pre�xes. This describes a program component responding to an incoming call q: the

component performs a series of external calls m1 . . .mk yielding the results n1 . . . nk, and �nally

returns from the top-level call with the result r. The arrows show the correspondence between

questions and answers but are not part of the model.

Example 9.2. I will use a simpli�ed version of C and assembly to illustrate some of the principles

behind this model. Consider the program components in Figure 9.1. The behavior of B.c as it interacts

with A.c is described by plays of the form:

sqr(3) ·mult(3, 3) · 9 · 9 (9.1)

This corresponds to the game C̃ ! C̃ for a language interface C̃ := 〈ident × val∗, val〉. Questions

specify the function to invoke and its arguments; answers carry the value returned by the function.

The behavior of A.s and B.s, is described using a set of registers R := {pc, eax, ebx, ecx} which

include a program counter pc, together with a stack of pending return addresses. The corresponding
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language interface can be de�ned as Ã := 〈valR × val∗, valR × val∗〉. A possible execution of B.s is:



pc 7! sqr

eax 7! 42

ebx 7! 3

ecx 7! 7

stack: x · ~k


·



pc 7! mult

eax 7! 42

ebx 7! 3

ecx 7! 3

stack: L1 · x · ~k


·



pc 7! L1

eax 7! 9

ebx 7! 3

ecx 7! 3

stack: x · ~k


·



pc 7! x

eax 7! 9

ebx 7! 3

ecx 7! 3

stack: ~k


(9.2)

The correspondence between (9.1) and (9.2) is determined by the C calling convention in use. I discuss

this point in more detail in §9.1.4.

As mentioned in §8.1.4, the semantic model of CompCert corresponds to a game E ! W .

Programs are run without any parameters and produce a single integer denoting their exit status.

This is described by the language interfaceW := 〈1, int〉, where 1 = {∗} is the unit set and int

is the set of machine integers. Interaction with the environment is captured as a trace of events

from a prede�ned set, each with an output and input component. These events, described by the

game E , correspond to system calls and accesses to volatile variables.

9.1.2 Semantic model

In order to model open components and cross-component interactions, I generalize CompCert’s

labelled transition systems to describe strategies for games of the form:

A� B := A× E ! B .

The language interface B describes how a component can be activated, and the ways in which

it can return control to the caller. The language interface A describes the external calls that the

component may perform in the course of its execution.

This �exibility allows us to treat interactions at a level of abstraction adapted to each language.

For example, CompCertO’s source language Clight uses the game C � C. The questions of C

specify a function to call, argument values, and the state of the memory at the time of invocation;

the answers specify a return value and an updated memory state. On the other hand, the target
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language Asm uses A � A, where A describes control transfers in terms of processor registers

rather than function calls. The language interfaces used in CompCertO are described in §9.2.1.

9.1.3 Simulations

CompCert uses simulation proofs to establish a correspondence between the externally observable

behaviors of the source and target programs of each compilation pass. The internal details of

simulation relations have no bearing on this correspondence, so these details can remain hidden to

�t a uniform and transitive notion of pass correctness. This makes it easy to derive the correctness

of the whole compiler from the correctness of each pass.

To achieve compositionality across compilation units, the model must reveal details about

component interactions which were previously internal. Since many passes transform these in-

teractions in specialized ways, this breaks the uniformity of pass correctness properties.

Existing work attempts to recover this uniformity by devising a general notion of correctness

covering all passes, or by delaying pass composition so that it operates on closed semantics only.

Unfortunately, these techniques either con�ict with requirement #2, make proofs more complex,

or cascade into subtle “impedance mismatch” problems requiring their own solutions (see §8.2).

By contrast, CompCertO captures the particularities of each simulation proof by introducing

a notion of simulation convention expressing the correspondence between source- and target-level

interactions. To describe simulation conventions and reason about them compositionally, I will

use logical relations.

9.1.4 Simulation conventions

The framework of Kripke relations allows us to de�ne simulation conventions as follows. The

worlds ensure that corresponding pairs of questions and answers are related consistently.

De�nition 9.3. A simulation convention between the language interfaces A1 = 〈A◦1, A•1〉 and

A2 = 〈A◦2, A•2〉 is a tuple R = 〈W,R◦,R•〉 with R◦ ∈ RW (A◦1, A
◦
2) and R• ∈ RW (A•1, A

•
2). I will

write R : A1 ⇔ A2. In particular, for a language interface A, the identity simulation convention

is de�ned as idA := 〈1,=,=〉 : A⇔ A. The subscript A will usually be omitted.

A simulation between the transition systems L1 : A1 � B1 and L2 : A2 � B2 is then
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Notation Examples Description
R ∈ R(S1, S2) ≤v Simple relation
R ∈ RW (S1, S2) ↪!m Kripke relation (Def. 2.13)
w 
 R Kripke relation at world w
w 
 x R y x and y related at world w
A,B,C C,A,1 Language interface (Def. 9.1)
R : A1 ⇔ A2 alloc Simulation convention (Def. 9.3)
L : A� B Clight(p) LTS for A� B (Def. 9.5)
L1 ⊕ L2 Horizontal composition (Def. 9.6)
L1 ≤R�S L2 Thm. 9.16 Simulation property (Def. 9.7)

Table 9.1: Summary of notations

assigned a type RA � RB , where RA : A1 ⇔ A2 and RB : B1 ⇔ B2 are simulation conventions

relating the corresponding language interfaces. We write L1 ≤RA�RB L2.

Table 9.1 presents a summary of notations. Simulation conventions will often be derived from

more elementary relations, following the internal structure of questions and answers (see §10.1).

Example 9.4. The calling convention we used in Example 9.2 can be formalized as a simulation

convention C̃ := 〈val∗, C̃◦, C̃•〉 : C̃ ⇔ Ã. The set of worlds val∗ is used to relate the stack in

assembly questions to the stack in the corresponding answers. The relations C̃◦, C̃• are de�ned by:

rs[pc] = f ~v is is contained in rs[ebx, ecx]

x~k 
 f(~v) C̃◦ rs@x~k

rs[eax] = v′ rs[pc] = x

x~k 
 v′ C̃• rs@~k

For a C-level function invocation f(~v), the register pc is expected to point to the beginning of the

function f , and the registers ebx and ecx to contain the �rst and second arguments (if applicable).

Other registers may contain arbitrary values. The stack x~k has no relationship to the C question,

however the assembly answer is expected to pop the return address and branch to it, setting the program

counter pc accordingly. In addition, the return value v′ must be stored in the register eax.

The expressive power of simulation conventions makes the adaptation of existing correctness

proofs for the various passes of CompCert straightforward. Instead of forcing all passes into a

single one-size-�ts-all mold, we can choose conventions matching the simulation relation and

invariants used in each pass. Simulations for each pass can then be composed in the way shown

in Figure 9.2.
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id : A⇔ A L ≤id�id L

R : A1 ⇔ A2 S : A2 ⇔ A3

R · S : A1 ⇔ A3

L1 ≤RA�RB L2 L2 ≤SA�SB L3

L1 ≤RA·SA�RB ·SB L3

A1

A2

A3

B1

B2

B3

L1

L2

L3

RA RB

SA SB

Figure 9.2: Simulation identity and vertical composition

9.1.5 Simulation convention algebra

CompCert’s injection passes (see §10.1) pose a particular challenge, already encountered in the

work on Compositional CompCert [Stewart et al., 2015]: injection passes make stronger assump-

tions on external calls than they guarantee for incoming calls. In CompCertO, this situation can be

expressed by using di�erent simulation conventions for external and incoming calls (injp � inj).

However, since the external calls of one component and the incoming calls of another will not be

related in compatible ways, this asymmetry breaks horizontal compositionality (Thm. 9.8).

I rectify this imbalance outside of the simulation proof itself. Simulations for individual passes

are not always horizontally compositional, but we can derive a symmetric simulation convention

for the compiler as a whole. Properties of the Clight and RTL languages allow us to strengthen

the correctness proof. These properties are encoded as self-simulations and inserted as pseudo-

passes. We can then perform algebraic manipulations on simulation statements to rewrite the

overall simulation convention used by the compiler into a symmetric one.

These algebraic manipulations are based on a notion of simulation convention re�nement (�)

allowing a simulation convention to replace another in all simulation statements. We construct

a typed Kleene algebra [Kozen, 1998] based on this order, and use it to ensure that our compiler

correctness statement is both compositional and insensitive to the inclusion of optional passes.

9.2 Operational semantics

9.2.1 Open semantics in CompCertO

The memory model also plays a central role when describing interactions between program com-

ponents. In our approach, the memory state is passed alongside all control transfers.
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Name Question Answer Description
C vf [sg ](~v)@m v′@m′ C calls
L vf [sg ](ls)@m ls ′@m′ Abstract locations
M vf (sp, ra, rs)@m rs ′@m′ Machine registers
A rs@m rs ′@m′ Arch-speci�c
1 n/a n/a Empty interface
W * r Whole-program

Table 9.2: Language interfaces used in CompCertO

Language interfaces Our models of cross-component interactions in CompCert languages are

shown in Table 9.2. At the source level (C), questions consist of the address of the function being

invoked (vf ∈ val), its signature (sg ∈ signature), the values of its arguments (~v ∈ val∗), and the

state of the memory at the point of entry (m ∈ mem); answers consist of the function’s return

value and the state of the memory at the point of exit. This language interface is used for Clight

and for the majority of CompCert’s intermediate languages.

As we move towards lower-level languages, this is re�ected in language interfaces: function

arguments are �rst mapped into abstract locations alongside local temporary variables (L, used by

LTL and Linear). These locations are eventually split between in-memory stack slots and a �xed

number of machine registers (M, used by Mach). Finally, the target assembly language Asm stores

the program counter, stack pointer, and return address into their own machine registers, which is

re�ected in its interface A.

The interface of whole-program execution can also be described in this setting: the language

interface 1 contains no move; per §9.1, the interface W has a single trivial question ∗, and the

answers r ∈ int give the exit status of a process. Hence the original CompCert semantics described

in §8.1 can be seen to de�ne strategies for 1�W : the process can only be started in a single way,

cannot perform any external calls, and indicates an exit status upon termination.

Transition systems To account for the cross-component interactions described by language

interfaces, CompCertO extends the transition systems described in §8.1 as follows.

De�nition 9.5. Given an incoming language interface B and an outgoing language interface A, a

labelled transition system for the game A � B is a tuple L = 〈S,!, D, I,X, Y, F 〉. The relation

! ⊆ S × E∗ × S is a transition relation on the set of states S. The set D ⊆ B◦ speci�es which



152

questions the component accepts; I ⊆ D × S then assigns to each one a set of initial states.

F ⊆ S × B• designates �nal states together with corresponding answers. External calls are

speci�ed by X ⊆ S × A◦, which designates external states together with a question of A, and

Y ⊆ S × A• × S, which is used to select a resumption state to follow an external state based on

the answer provided by the environment. We write L : A � B when L is a labelled transition

system for A� B.

I will use in�x notation for the various transition relations I,X, Y, F . In particular I write

n Y s s′ to denote that n ∈ A• resumes the suspended external state s to continue with state s′.

The interpretation of the transition systems described above follows the one given in §8.1, with

interactions over the game A as a new source of observable actions. The main reason for treating

events e ∈ E and external calls mn ∈ A◦A• di�erently is that while events are expected to be

the same between the source and target programs, the form of external calls varies signi�cantly

across languages and the simulation convention they follow must be de�ned explicitly. In addition,

while events and event traces bundle together the output and input components of the interaction,

our representation of external calls separates them, which simpli�es the formulation of horizontal

composition and open simulations.

Horizontal composition To model linking, we need to express the external behavior of a col-

lection of components in terms of the behaviors of individual components.

Consider the components L1, L2 : A� A. When L1 is running and performs an external call

to one of the functions implemented byL2, the execution ofL1 is suspended. The question ofL1 to

L2 is used to initialize a new state forL2, andL2 becomes the active component. OnceL2 reaches a

�nal state, the corresponding answer is used to resume the execution of L1. In the process L2 may

itself perform cross-component calls, instantiating new executions of L1. Therefore, in addition to

the state of the active component, we need to maintain a stack of suspended states for component

instances awaiting resumption. The corresponding transition system is described in Figure 9.3.

De�nition 9.6 (Horizontal composition). For two transition systems L1, L2 : A� A with Li =

〈Si,!i, Di, Ii, Xi, Yi, Fi〉, the horizontal composition of L1 and L2 is de�ned as:

L1 ⊕ L2 := 〈(S1 + S2)∗,!, D1 ∪D2, I,X, Y, F 〉
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L1

L2

incext

push/pop

q ∈ Di q Ii s
inc◦

q I (i, s)

s
t
!i s

′
run

(i, s) k
t
! (i, s′) k

s Fi r
inc•

(i, s) F r

s Xi q q ∈ Dj q Ij s
′

push

(i, s) k
ε
! (j, s′) (i, s) k

s′ Fj r r Y s
i s
′′

pop

(j, s′) (i, s) k
ε
! (i, s′′) k

s Xi q ∀j . q /∈ Dj
ext◦

(i, s) k X q

r Y s
i s
′

ext•

r Y (i,s) k (i, s′) k

Figure 9.3: Horizontal composition of open semantics. The state is a stack of alternating acti-
vations of the two components, initialized as a singleton by an incoming question (inc◦). During
normal execution (run), the top-level state is updated. Calls into the other component push a new
state onto the stack (push), initialized to handle the call in question. If a �nal state is reached while
there are suspended activations (pop), the result is used to resume the most recent one. External
calls which are provided by neither component (ext◦, ext•), and �nal states encountered at the top
level (inc•), are simply passed along to the environment.

where the components!, I , X , Y , F are de�ned by the rules shown in Figure 9.3.

9.2.2 Open simulations

CompCert is proved correct using a simulation between the transition semantics of the source and

target programs. This forward1 simulation is used to establish a backward simulation. Backward

simulations are in turn proved to be sound with respect to trace containment. I have updated

forward and backward simulations to work with CompCertO’s semantic model. In this section

I present forward simulations, which are used as the primary notion of re�nement.

Forward simulations As explained in §8.1.5, a forward simulation asserts that any transition

in the source program has a corresponding transition sequence in the target. The sequence may

be empty, but to ensure the preservation of silent divergence this can only happen for �nitely

many consecutive source transitions. This is enforced by indexing the simulation relation over a

well-founded order, and requiring the index to decrease whenever an empty transition sequence

is used. This mechanism is unchanged in CompCertO and is largely orthogonal to the techniques

I introduce, so I omit this aspect of forward simulations in the exposition below.

The transition systems of CompCertO introduce various forms of external communication,
1In this usage, forward pertains to the compilation process, rather than the execution of programs.
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′
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s2
∗
2 s
′
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t

wB
R wB
R

t

s1 r1

s2 s′2

F1

wB
R wB
R•B

F2

I1 [
 R◦B ! P≤(R)] I2 !1 [
 R! =! P≤(R)]!∗2 F1 [
 R! P≤(R•B)] F2

(a) Initial states (b) Internal states (c) Final states

Figure 9.4: Forward simulation properties for initial, internal and �nal states. (a) When the exe-
cution is initiated by two related questions, any initial state of L1 is matched by a related initial
state of L2. (b) Every internal transition of L1 is then matched by a sequence of transitions of L2,
preserving the simulation relation. (c) When a �nal state is eventually reached by L1, any related
state in L2 is �nal as well and produces a related answer. The indexing of the relations R◦B , R,
R•B by the Kripke world wB guarantees that the original questions and their eventual answers are
related in a consistent way.

which must be taken into account by our notions of simulation. In CompCertO, a forward simula-

tion between the small-step semantics L1 : A1 ! B1 and L2 : A2 ! B2 operates in the context

of the simulation conventions RA : A1 ⇔ A2 and RB : B1 ⇔ B2.

As depicted in Figure 9.4, if questions of B1 and B2 respectively used to activate L1 and L2

are related by the simulation convention RB at a world wB , simulations guarantee that the corre-

sponding answers will be related by RB as well: the diagrams can be pasted together horizontally

to follow the executions of L1 and L2. Note that the simulation relationR ∈ RWB
(S1, S2) is itself

indexed by wB to ensure that answers are related consistently with the corresponding questions.

The simulation convention RA determines the correspondence between outgoing questions

triggered by the transition systems’ external states. The corresponding simulation properties are

shown in Figure 9.5. Compared with the treatment of incoming questions, the roles of the sys-

tem and environment are reversed: the simulation proof can choose wA to relate the outgoing

questions, and the environment guarantees that any corresponding answers will be related at that

world.

De�nition 9.7 (Forward simulation). Given two simulation conventions RA : A1 ⇔ A2 and RB :

B1 ⇔ B2, and given the transition systems L1 : A1 � B1 = 〈S1,!1, D1, I1, X1, Y1, F1〉 and

L2 : A2 � B2 = 〈S2,!2, D2, I2, X2, Y2, F2〉, a forward simulation between L1 and L2 consists
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s1 m1 n1 s′1

s2 m2 n2 s2

X1
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R wA
R◦A

Y
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1
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X2 Y
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∀wB s1 s2m1 . wB 
 s1 R s2 ∧ s1 X1 m1 ⇒
∃wAm2 . wA 
 m1 R◦A m2 ∧ s2 X2 m2 ∧
∀n1 n2 s

′
1 . wA 
 n1 R•A n2 ∧ n1 Y

s1
1 s′1 ⇒

∃ s′2 . wB 
 s′1 R s′2 ∧ n2 Y
s2

2 s′2

Figure 9.5: Forward simulation property for external states. When L1 assigns a question m1 to
an external state s1, L2 assigns a corresponding questionm2 to any related state s2. The questions
are related according to the simulation convention RA, at a world wA chosen by the simulation.
When L1 is resumed by an answer n1, then a related answer n2 also resumes L2, and reestablishes
the simulation relation between resulting states.

of a relation R ∈ RWB
(S1, S2) satisfying the properties shown in Figure 9.4 and Figure 9.5. In

addition, the domains of L1 and L2 must satisfy:

(λq1 . (q1 ∈ D1)) [
 R◦B !⇔] (λq2 . (q2 ∈ D2))

I will write L1 ≤RA�RB L2.

Horizontal composition The horizontal composition operator described by Def. 9.6 preserves

simulations. Informally, whenever new component instances are created by cross-component

calls, the simulation property for the new components can be stitched in-between the two halves

of the callers’ simulation property described in Figure 9.5.

Theorem 9.8 (Horizontal composition of simulations). For a simulation convention R : A1 ⇔ A2

and transition systems L1, L
′
1 : A1 � A1 and L2, L

′
2 : A2 � A2, the following property holds:

L1 ≤R�R L2 L′1 ≤R�R L
′
2

L1 ⊕ L′1 ≤R�R L2 ⊕ L′2

Proof. See common/SmallstepLinking.v in the Coq development.

One interesting and novel aspect of the proof is the way worlds are managed. Externally,

only the worlds corresponding to incoming and outgoing questions and answers are observed.
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Internally, the proof of Thm. 9.8 maintains a stack of worlds to relate the corresponding stack of

activations in the source and target composite semantics. See also §10.1.7.

Horizontal composition of simulations allows us to decompose the veri�cation of a complex

program into the veri�cation of its parts. To establish the correctness of the linked assembly

program, we can then use the following result.

Theorem 9.9. Linking Asm programs yields a correct implementation of horizontal composition:

∀p1p2 .Asm(p1)⊕ Asm(p2) ≤id�id Asm(p1 + p2)

Proof. See x86/AsmLinking.v in the Coq development.

Vertical composition Simulations also compose vertically, combining the simulation proper-

ties for successive compilation passes into a single one. The convention used by the resulting

simulation can be described as follows.

De�nition 9.10 (Composition of simulation conventions). The composition of two Kripke rela-

tionsR ∈ RWR
(X,Y ) and S ∈ RWS

(Y, Z) is the Kripke relationR·S ∈ RWR×WS
(A,C) de�ned

by:

(wR, wS) 
 x [R · S] z ⇔ ∃y ∈ Y .wR 
 x R y ∧ wS 
 y R z .

Then for the simulation conventions R : A⇔ B and S : B ⇔ C , we de�ne R · S : A⇔ C as:

R · S := 〈WR ×WS, R◦ · S◦, R• · S•〉

Theorem 9.11. Simulations compose vertically in the way depicted in Figure 9.2.

Proof. Visually speaking, the diagrams shown in Figs. 9.4 and 9.5 can be pasted vertically. For

details, see the Coq proofs identity_forward_simulation and compose_forward_simulations

in the �le common/Smallstep.v.
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9.3 Simulation convention algebra

Now that I have described the structures used in CompCertO to model and relate the execution of

program components, I will explain how to derive a correctness statement for the whole compiler

from the correctness properties of each pass.

9.3.1 Re�nement of simulation conventions

As discussed in §9.1.5, the composite simulation conventions obtained when we vertically compose

the passes of CompCertO are not immediately satisfactory. In the remainder of this section, I de-

scribe the algebraic infrastructure used to rewrite them into an acceptable form, centered around

a notion of re�nement for simulation conventions.

A re�nement R � S captures the idea that the convention S is more general than R, so that

any simulation accepting S as its incoming convention can accept R as well. The shape of the

symbol illustrates its meaning: related questions of R can be transported to related question of S;

when we get a response, the related answers of S can be transported back to related answers of R.

De�nition 9.12 (Simulation convention re�nement). Given two simulation conventions R,S :

A1 ⇔ A2, we say that R re�nes S and write R � S when the following holds:

∀wm1m2 . w 
 m1 R
◦ m2 ⇒ ∃ v . (v 
 m1 S

◦ m2 ∧

∀n1 n2 . v 
 n1 S
• n2 ⇒ w 
 n1 R

• n2) .

We write R ≡ S when both R � S and S � R.

Theorem 9.13. For R : A1 ⇔ A2, S : A2 ⇔ A3, T : A3 ⇔ A4, the following properties hold:

(·) :: �×�! � (R · S) · T ≡ R · (S · T) R · id ≡ id · R ≡ R

In addition, when R � R′ : A1 ⇔ A2 and S′ � S : B1 ⇔ B2, for all L1 : A1 � B1 and

L2 : A2 � B2:

L1 ≤R�S L2 ⇒ L1 ≤R′�S′ L2 .

Proof. See open_fsim_ccref in common/CallconvAlgebra.v.
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In CompCert, the passes Cshmgen, Renumber, Linearize, CleanupLabels and Debugvar restrict

the source and target memory states and values to be identical. Their simulation proofs require

very few changes and can be assigned the convention id� id (see Table 9.3). The properties above

ensure that these passes have no impact on the overall simulation convention of CompCertO.

9.3.2 Kleene algebra

Given a collection of simulation conventions, it is possible to combine them by allowing questions

to be related by any one of them. This is the additive operation of our Kleene algebra. The Kleene

star combines all possible �nite iterations of a simulation convention.

This construction is key to the treatment of injection passes (injp� inj). The details of inj and

injp are discussed in §10.1, but are not an essential part of the technique. Schematically, by pre-

and post-composing injection passes with self-simulations of types injp∗ � injp∗ and inj � inj,

we obtain the simulation conventions:

injp∗ · injp · inj� injp∗ · inj · inj

The property injp∗ ·injp � injp∗ on the left-hand side, and the idempotency of inj on the right-hand

side (Thm. 10.5) allow us to rewrite the above into a symmetric simulation convention.

De�nition 9.14. Consider (Ri)i∈I a family of conventions with Ri = 〈Wi, R
◦
i , R

•
i 〉 : A1 ⇔ A2

for all i ∈ I . The simulation convention
∑

i∈I Ri := 〈W,R◦, R•〉 is de�ned by:

W :=
∑
i∈I

Wi

(i, w) 
 R◦ := w 
 R◦i

(i, w) 
 R• := w 
 R•i .

I will write R1 + · · · + Rn for the �nitary case
∑n

i=1 Ri. Then for R : A1 ⇔ A2, we can de�ne

R∗ :=
∑

n∈NRn, where R0 := id and Rn+1 := Rn · R.

Theorem 9.15 (Kleene iteration of simulations). The constructions �, ·,+, ∗ work together as a

typed Kleene algebra. Moreover, the following properties hold:

∀i . L1 ≤R�Si L2

L1 ≤R�
∑
i Si L2

L ≤R�S L

L ≤R∗�S∗ L
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Language/Pass Outgoing� Incoming SLOC See also
Clight C� C +17 (+3%)
Thm. 10.5 (ext + injp)∗� (ext + injp)∗ §10.1.8
SimplLocals injp� inj -4 (-1%) §10.1.6
Cshmgen id� id +0 (+0%) §9.3.1
Csharpminor C� C +15 (+4%)
Cminorgen injp� inj -21 (-2%) §10.1.6
Cminor C� C +27 (+3%)
Selection wt · ext� wt · ext +43 (+0%) §10.2.3
CminorSel C� C +15 (+3%)
RTLgen ext� ext +8 (+0%) §10.1.5
RTL C� C +11 (+2%)
Tailcall† ext� ext -1 (-1%) §10.1.5
Inlining injp� inj +58 (+3%) §10.1.6
Renumber id� id -14 (-7%) §9.3.1
Thm. 10.5 inj� inj §10.1.8
Constprop† va · ext� va · ext -17 (-2%) §10.2.4
CSE† va · ext� va · ext +3 (+0%) §10.2.4
Deadcode† va · ext� va · ext -7 (-1%) §10.2.4
Allocation wt · alloc� wt · alloc +13 (+0%) §10.3.1
LTL L� L +15 (+6%)
Tunneling ext� ext +2 (+0%) §10.1.5
Linearize id� id -15 (-3%) §9.3.1
Linear L� L +16 (+7%)
CleanupLabels id� id -10 (-4%) §9.3.1
Debugvar id� id -12 (-3%) §9.3.1
Stacking stacking� stacking +291 (+11%) §10.3.2
Mach M�M +100 (+26%)
Asmgen asmgen� asmgen +179 (+6%) §10.3.3
Asm A�A +53 (+5%)

Total: +765 (+2%)

Table 9.3: Languages and passes of CompCertO. Passes are grouped by their source language.
† indicates an optional optimization pass. The simulation conventions ext, inj, injp are explained
in §10.1. The invariants wt, va are explained in §10.2. The conventions alloc, stacking, asmgen
are explained in §10.3. To handle the asymmetry of injection passes (injp � inj), self-simulation
properties are inserted as pseudo-passes (Thm. 10.5). Signi�cant lines of code (SLOC) measured
by coqwc, compared to CompCert v3.6.
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Proof. See cc_star_fsim and the preceding de�nitions in common/CallconvAlgebra.v.

9.3.3 Compiler correctness

I will now present the central result. The passes of CompCertO are shown in Table 9.3. The

techniques outlined above make it possible to formulate a simulation convention C : C ⇔ A for

the whole compiler, and to establish the following correctness property.

Theorem 9.16 (Compositional Correctness of CompCertO). For a Clight program p and an Asm

program p′ such that CompCert(p) = p′, the following simulation holds:

Clight(p) ≤C�C Asm(p′) ,

where the simulation convention C is de�ned as:

C := (ext + injp)∗ · inj · (va · ext)3 · wt · alloc · ext · stacking · asmgen .

Proof. Use Thm. 9.11 to compose the correctness proofs of the compiler passes and self-simulations

shown in Table 9.3. By properties of the Kleene star, the outgoing simulation convention of each of

the passes SimplLocals–Renumber can be folded into (ext + injp)∗ to obtain the overall outgoing

convention C. Likewise, by properties of inj and ext their incoming simulation conventions can be

folded into inj to obtain the overall incoming convention C. For details, see driver/Compiler.v.

9.3.4 Compositional compilation and veri�cation

Consider the translation units M1.c, . . . , Mn.c compiled and linked to M1.s + . . . + Mn.s = M.s.

We can use Thms. 9.8, 9.9 and 9.16 to establish the following separate compilation property:

Clight(M1.c)⊕ · · · ⊕ Clight(Mn.c) ≤C�C Asm(M.s) (9.3)

That is, the linked Asm program M.s faithfully implements the horizontal composition of the source

modules’ behaviors, following the simulation convention C.
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Additionally, suppose we wish to verify that the overall program satis�es a speci�cation Σ,

also expressed as a transition system for C � C. We must �rst decompose Σ into:

Σ ≤id�id Σ1 ⊕ · · · ⊕ Σn .

Then for each module, we prove that Σi ≤id�id Clight(Mi.c). This can be combined with Thm. 9.8

and Eqn. 9.3 to establish the correctness property Σ ≤C�C Asm(M.s).

Note that Eqn. 9.3 can be established as long as the property Clight(Mi.c) ≤C�C Asm(Mi.s)

holds independently for each module. It is possible for the di�erent Mi.s to be obtained by di�erent

compilers, as long as each one satis�es a correctness property following the simulation convention

in Thm. 9.16. Indeed this is the case for versions of CompCertO obtained by enabling di�erent

optimization passes. Moreover, if some of the Mi.s are hand-written assembly modules satisfying

C-style speci�cations, then we can prove on a case-by-case basis that Σi ≤C�C Asm(Mi.s) and

proceed with the rest of the proof as before.

Using C functions from arbitrary assembly contexts is also possible, because the compiler’s

simulation convention C captures all of the guarantees provided by CompCertO and directly spec-

i�es the behavior of the compiled assembly code. A proof involving an arbitrary assembly context

which invokes a function compiled by CompCertO must establish that the call is performed ac-

cording to the C calling convention. Then Thm. 9.16 can be used to reason about the behavior of

the call in terms of the semantics of the source code or a C speci�cation that it satis�es.

9.4 Evaluation

To give a sense of the overall complexity of CompCertO, I list in Table 9.4 the increase in signi�cant

lines of code it introduces compared to CompCert v3.6. As shown in Table 9.3, the methodology

comes with a negligible increase in the complexity of most simulation proofs. Although SLOC is

an imperfect measure, and a 1:1 comparison between developments which prove di�erent things is

di�cult, our numbers represent a drastic improvement over Compositional CompCert, and com-

pare favorably or are on par with the corresponding sections of CompCertM.

The use of the simulation conventions injp, alloc, stacking and asmgen in particular under-
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Component SLOC
Semantic framework (§9.2) +782 (+14%)
Horizontal composition (§9.2.1) 676
Simulation convention algebra (§9.3) 1,052
CKLR theory and instances (§10.1) 1,807
Clight and RTL parametricity (§10.1.5) 2,741
Invariant preservation proofs (§10.2) +549 (+7%)
Pass correctness proofs (Tbl. 9.3) +765 (+2%)
Total 8372

Table 9.4: Signi�cant lines of code in CompCertO relative to CompCert v3.6. See Table 9.3 for
a per-pass breakdown of the increase in size of pass correctness proofs, and overhead.py in the
Coq development for the list of �les included in each group.

scores the bene�ts of the approach. The corresponding passes are the root of much complexity

in Compositional CompCert, CompCertX and CompCertM. For instance, to express the require-

ment on the areas protected by injp, both Compositional CompCert and CompCertM introduce

general mechanisms for tracking ownership of di�erent regions of memory as part of an extended

notion of memory injection. The approach taken here demonstrates that the requirements placed

on external functions by the original CompCert are already good enough for the job! Because

the framework is expressive enough to capture them, the corresponding passes barely need any

modi�cations, and the associated issues are resolved before they even show up.

Likewise, the preservation of callee-save registers ensured by the Allocation pass, and the sub-

tle issues associated with argument-passing in the Stacking pass have been the cause of much pain

in previous CompCert extensions. The ease with which they are addressed here demonstrates the

power of an explicit treatment of abstraction, made possible by our notions of language interface

and simulation convention.



Chapter 10

Passes of CompCertO

Having described the overall design of CompCertO in Chapter 9, I turn to the details of the simu-

lation conventions and techniques I used to update the correctness proofs of compilation passes:

• Compositional relational reasoning within CompCertO is explained in §10.1: CompCert

Kripke logical relations unify CompCert’s memory transformations as structure-preserving

relations over the memory model. They can be used to de�ne simulation conventions for

most of the compiler’s passes, and to derive parametricity theorems which capture impor-

tant properties of CompCert languages.

• Several passes of CompCert use typing and soundness invariants. §10.2 explains how these

invariants �t into the simulation framework of CompCertO and how the techniques used to

verify these passes can be rei�ed into a notion of simulation modulo invariants.

• Finally, §10.3 discusses the more specialized simulation conventions used for the passes of

CompCert which signi�cantly transform the shape of interactions across compilation units.

The simulation proofs for most of CompCert’s passes can be updated with minimal e�ort. In

the case of more complex passes, simulation conventions can be de�ned which capture the internal

invariants used by existing proofs, avoiding many sources of complexity found in previous work.

163
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10.1 Logical relations for the CompCert memory model

The questions, answers and states used to describe the semantics of CompCert languages all con-

tain a memory state and surrounding runtime values. Likewise, simulation conventions and rela-

tions are constructed around memory transformations and relate the surrounding components in

ways that are compatible with the chosen memory transformation.

10.1.1 Memory extensions

For passes where strict equality is too restrictive, but where the source and target programs use

similar memory layouts, CompCert uses the memory extension relation, which allows the values

stored in the target memory state to re�ne the values stored in the source memory at the same

location.

By analogy with the value re�nement relation v1 ≤v v2 introduced in §8.1.8, I will write

m1 ≤m m2 to signify that the source memorym1 is extended by the target memorym2. Together,

the relations≤v and≤m constitute a logical relation for the memory model, in the sense that loads

from memory states related by extension yield values related by re�nement, writing values related

by re�nement preserves memory extension, and similarly for the remaining memory operations.

10.1.2 Memory injections

The most complex simulation relations of CompCert allow memory blocks to be dropped, added,

or mapped at a given o�set within a larger block. These transformations of the memory structure

are speci�ed by partial functions of type:

meminj := block ⇀ block× Z

I will call f ∈ meminj an injection mapping. An entry f(b) = (b′, o) means that the source memory

block with identi�er b is mapped into the target block b′ at o�set o.

As with re�nement and extension, an injection mapping determines both a relation on values

and a relation on memory states, which work together as a logical relation for the CompCert

memory model. The relation f 
 v1 ↪!v v2 allows v2 to re�ne v1, but also requires any pointer
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present in v1 to be transformed according to f . The relation f 
 m1 ↪!m m2 requires that the

corresponding addresses of m1 and m2 hold values that are related by f 
 ↪!v.

Note that corresponding memory allocations in the source and target states cause f to evolve

into a more de�ned injection mapping f ⊆ f ′ relating the two newly allocated blocks. To handle

this, we introduce the following constructions.

10.1.3 World transitions

The de�nition of simulation relations uses Kripke worlds to ensure that questions and answers are

related consistently. To formulate CompCert Kripke logical relations, I will also use the notion of

Kripke frame and the relator ♦ de�ned in §2.3.4. The following example illustrates their use in the

context of memory injections.

Example 10.1 (Injection simulation diagrams). Building on Ex. 2.12, consider once again the simple

transition systems α : A ! P(A) and β : B ! P(B). An injection-based simulation relation

between them will be a Kripke relation R ∈ Rmeminj(A,B) satisfying the property:

s1 s′1

s2 s′2

α

f
R f ′
R (f⊆f ′)
β

∀f s1 s2 s
′
1 . f 
 s1 R s2 ∧ α(s1) 3 s′1 ⇒

∃f ′ s′2 . f ⊆ f ′ ∧ β(s2) 3 s′2 ∧ f ′ 
 s′1 R s′2

(10.1)

The new states may be related according to a new injection mapping f ′, but in order to preserve

existing relationships between any surrounding source and target pointers, the new mapping must

include the original one (f ⊆ f ′). This pattern is very common in CompCert and appears in a variety

of contexts. By using 〈meminj,⊆〉 as a Kripke frame, we can express (10.1) as:

α [
 R! P≤(♦R)] β .

10.1.4 CompCert Kripke logical relations

The idea that extensions and injections constitute logical relations for the CompCert memory

model can be formalized in the following way.

De�nition 10.2 (CompCert Kripke Logical Relation). For a tuple R = (W, , f, Rmem), where
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 is re�exive and transitive
w  w′ ⇒ f(w) ⊆ f(w′)

alloc :: 
 Rmem ! =! =! ♦(Rmem ×Rblock)

free :: 
 Rmem ! Rptrrange ! option≤(♦Rmem)

load :: 
 Rmem ! Rptr ! option≤(Rval)

store :: 
 Rmem ! Rptr ! Rval ! option≤(♦Rmem)

Figure 10.1: De�ning properties of CKLRs. Note the correspondence with the types of operations
in Figure 8.2.

〈W, 〉 is a Kripke frame, f : W ! meminj associates an injection mapping to each world, and

where Rmem ∈ RW (mem) is a Kripke relation on memory states, the Kripke relations Rptr ∈

RW (ptr) and Rptrrange ∈ RW (ptrrange) are de�ned by the rules:

fw(b) = (b′, δ)

w 
 (b, o) Rptr (b′, o+ δ)

w 
 (b1, l1) Rptr (b2, l2) h1 − l1 = h2 − l2
w 
 (b1, l1, h1) Rptrrange (b2, l2, h2)

and Rval ∈ RW (val) is the smallest Kripke relation satisfying:

∀ v ∈ val . 
 undef Rval v vptr :: 
 Rptr ! Rval

int, long, float, single :: 
 =! Rval .

I will say that R is a CompCert Kripke logical relation when the properties shown in Figure 10.1

are satis�ed.

Rationale The relationRmem is given as a component ofR. We expectRptr to map each source

pointer to at most one target pointer and to be shift-invariant in the following sense:

w 
 (b1, o1) Rptr (b2, o2)

w 
 (b1, o1 + δ) Rptr (b2, o2 + δ)

Any such relation can be uniquely speci�ed by the injection mapping f . We expect the other

relations to be consistent with Rptr and undef to act as a least element for Rval, which determines
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them completely.

Note thatRmem is the central component driving world transitions, as witnessed by the uses of

♦ in Figure 10.1. The surrounding relations are monotonic inw, so that any extra state constructed

from pointers and runtime values will be able to “follow along” when world transitions occur.

Theorem 10.3. Extensions and injections correspond to the CompCert Kripke logical relations:

ext := 〈{∗}, {(∗, ∗)}, ∗ 7! (b 7! (b, 0)), ≤m〉 inj := 〈meminj,⊆, f 7! f, ↪!m〉

Proof. The correspondence between Rval
inj and ↪!v is easily veri�ed, as is the correspondence be-

tween ∗ 
 Rval
ext and ≤v. The properties of Figure 10.1 reduce to well-known properties of the

memory model already proven in CompCert. See cklr/Extends.v and cklr/Inject.v for de-

tails.

10.1.5 From CKLRs to simulation conventions

In simulations, the accessibility relation allows us to update the world after each step in the pro-

gram’s execution. Transitivity allows us to combine multiple steps in one:

q · s1 · s2 · · · sk · r ⇒ q · s1 · s2 · · · sk · r

In our approach to simulation conventions, the accessibility relation is not part of the interface of

simulations. Instead, a single world is used to formulate the 4-way relationship between pairs of

questions and answers. As shown below, in the case of simulation conventions based on CKLRs,

this relation does involve the accessibility relations which CKLRs introduce.

Given a speci�c language interface X , the components of any CKLR R = 〈W, , f, Rmem〉

can be used to construct a simulation relation RX : X ⇔ X . For instance:

RC := 〈W, (Rval ×=× ~Rval ×Rmem), ♦(Rval ×Rmem)〉 .

I will often implicitly promote R to RC . Furthermore, since the semantics of CompCert languages

are built out of the operations of the memory model, they are well-behaved with respect to CKLRs

and we can prove the following parametricity theorems.
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Theorem 10.4 (Relational parametricity of Clight and RTL). For all programs p and CKLR R:

Clight(p) ≤R�R Clight(p) RTL(p) ≤R�R RTL(p)

Proof. See cklr/*rel.v in the Coq development, in particular Clightrel.v and RTLrel.v.

The passes of CompCert which use memory extensions do not feature complex invariants

which must be preserved at call sites; it is enough for external calls to preserve the memory ex-

tension. Consequently, they are not much more di�cult to update than identity passes, and can

be assigned the type ext� ext. By contrast, injection passes are trickier to handle.

10.1.6 External calls in injection passes

Passes which alter the block structure of the memory use memory injections (§10.1.2). The con-

vention inj can be used for incoming calls, but it is insu�cient for outgoing calls.

Consider the SimplLocals pass, which removes some local variables from the memory. The

corresponding values are instead stored as temporaries in the target function’s local environment,

and the correspondence between the two is enforced by the simulation relation. To maintain it,

we need to know that external calls do not modify the corresponding source memory blocks.

More generally, as depicted in Figure 10.2, injection passes expect external calls to leave regions

outside of the injection’s footprint untouched. This expectation is reasonable because external calls

should behave uniformly between the source and target executions. These requirements can be

formalized as the following CompCert Kripke logical relation:

injp := 〈meminj×mem×mem,  injp, π1, R
mem
injp 〉

f 
 m1 ↪!m m2

(f,m1,m2) 
 m1 R
mem
injp m2

where (f,m1,m2) injp (f ′,m′1,m
′
2) ensures that f ⊆ f ′ and that the memory states satisfy the

constraints in Figure 10.2 (for details, see cc_injp in common/LanguageInterface.v).

10.1.7 Discussion: world transitions and compositionality

The injp convention illustrates a key novelty in the granularity at which Kripke worlds are de-

ployed. In previous work, Kripke worlds are usually assumed to evolve linearly with the execution.
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m1

f

m2

m′1

f ′

m′2

(f,m1,m2) injp (f ′,m′1,m
′
2)

Figure 10.2: External calls and memory injections. The source and target memory states are
depicted at the top and bottom of the �gure. Arrows describe the injection mapping. The memory
block on the left of the dashed line are present at the beginning of the call. Memory blocks on the
right are allocated during the call, adding a new entry to the injection mapping. The shaded areas
must not be modi�ed by the call.

Writing si for internal states, this can be depicted as:

q · s1 · s2 ·m · s′1 · s′2 · n · s3 · · · sk · r

To enable horizontal compositionality, the challenge is then to construct worlds, accessibility rela-

tions, and simulation relations which are sophisticated enough to express ownership constraints

like the ones discussed in §10.1.6, which evolve and shift as the execution switches between com-

ponents.

In our open simulations, worlds can be deployed independently for incoming and outgoing

calls, in a way which follows the structure of plays, as depicted here:

q ·m1 · n1 · · ·mk · nk · r

Internal steps are not part of a component’s observable behavior, and individual simulation proofs

are free to use any simulation relation establishing the simulation convention at interaction sites.

Two examples illustrate this �exibility. First, as explained in §9.2.2, to handle nested cross-

component calls, composite simulations use an internal stack of worlds. A situation where m1

and m2 are nested cross-component calls and m3 is an external call can be described as:

q ·m1 ·m2 ·m3 · n3 · n2 · n1 · r
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Second, in simulations which use CKLRs, the simulation relation is quali�ed as wB 
 ♦R to allow

the world to evolve as the execution progresses. The corresponding shape is:

q · s1 · s2 · s3 · · · sk · r

Since ♦♦R = ♦R, per-step world transitions can easily be folded into the overall constraint.

Moreover, this allows steps which do not individually conform to world transitions (
 R! ♦R),

but do maintain ♦R with respect to the initial world (wB 
 ♦R! ♦R).

For instance, the simulation convention of the Stacking pass is based on injp� injp. Stacking

stores the contents of some temporaries used by the source program into spilling locations of the

target in-memory stack frames. To prove correctness, we must ensure that spilling locations are

only accessed as intended, by enforcing their separation from the injected source memory. This

property is maintained by injp, which most internal steps and external calls conform to. On the

other hand, internal steps which do access spilling locations in the expected way do not conform

to injp at a granular level. However, since the stack frame is a new memory block allocated after

a function is called, these steps do maintain injp with respect to the initial world. This allows us

to encode CompCert’s original and “instantaneous” assumptions about external calls directly, and

existing simulation proofs relying on them can be updated with almost no changes.

Combined together, the two examples above are su�cient to express ownership constraints

which require sophisticated permission maps in other approaches, by using conditions already

present in CompCert.

10.1.8 Properties

Finally, I state some properties which are used to derive Thm. 9.16.

Theorem 10.5. For all Clight and RTL programs:

∀ p .Clight(p) ≤(ext+injp)∗�(ext+injp)∗ Clight(p)

∀ p .RTL(p) ≤inj�inj RTL(p)
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In addition, the simulation relations derived from ext and inj compose in the following way:

ext · inj ≡ inj · ext ≡ inj · inj ≡ inj .

Proof. The �rst statement is derived from Thms. 9.15 and 10.4; see driver/Compiler.v. For the

second statement, see ext_inj, inj_ext, inj_inj found under cklr/.

10.2 Invariants

Several passes of CompCert rely on the preservation of invariants by their source program: when

the semantics of a language preserves an invariant, the preservation properties can assist in prov-

ing forward simulations which use the language as their source. This makes it possible to decom-

pose invariant preservation from the simulation proof, and in the case of RTL the preservation

proofs can be reused for multiple passes.

In CompCert, this technique is deployed in an ad-hoc manner: for each pass using an invariant,

the simulation relation is strengthened to assert that the invariant holds on the source state, and

the preservation properties for the source language are used explicitly in the simulation proof

to maintain this invariant. In CompCertO, this becomes more involved, because the simulation

convention must be altered to ensure that invariants are preserved by external calls.

On the other hand, our simulation infrastructure o�ers the opportunity to capture and reason

about invariants explicitly, and to further decouple preservation and simulation proofs. In this

section, I give an overview of the treatment of invariants. For details, see common/Invariant.v

in the Coq development.

10.2.1 Invariants and language interfaces

First, I de�ne a sort of “invariant convention”, which describes how a given invariant impacts the

questions and answers of the language under consideration.

De�nition 10.6. An invariant for a language interface A is a tuple P = 〈W,P◦,P•〉, where W is

a set of worlds and P◦,P• are families of predicates on A◦, A• indexed by W .
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q1 s1 s1 s′1 s1 m1 n1 s′1 s1 r1

q1 s1 s1 s′1 s1 m1 n1 s′1 s1 r1

q2 s2 s2
∗ s′2 s2 m2 n2 s′2 s2 r2

I1 t X1 Y
s1
1 F1

I1 t X1 Y
s1
1 F1

I2 t X2 Y
s2
2

F1

Figure 10.3: Simulation with invariants. Circles indicate questions, answers and states which
satisfy the appropriate invariants. When the transition system L1 preserves the invariants in the
way shown in the top row, a simulation of L1 by L2 can be established through the weakened dia-
grams shown in the bottom row. The resulting simulation uses the convention PA ·RA � PB ·RB ,
ensuring that the environment establishes and preserves the appropriate invariants on questions
and answers. The simulation relation P ·R then ensures that the strengthened assumptions used
by the weakened simulation diagrams can be satis�ed.

Example 10.7. Typing constraints for the language interface C can be expressed as the invariant:

wt := 〈sig,P◦wt,P•wt〉
~v <: sg .args

sg 
 vf [sg ](~v)@m ∈ P◦wt

v′ <: sg .res

sg 
 v′@m′ ∈ P•wt

The proposition ~v <: sg .args asserts that the types of the arguments ~v match those speci�ed by the

signature sg . The proposition v′ <: sg .res asserts a similar property for the return value v′.

Invariants can be seen as a special case of simulation convention which constrain the source

and target questions and answers to be equal. This can be formalized as follows.

De�nition 10.8 (Simulation conventions for invariants). A W -indexed predicate P on a set X

can be promoted to a Kripke relation P̂ ∈ RW (X,X) de�ned by the rule:

w 
 x ∈ P
w 
 x P̂ x

Then an invariant P = 〈W,P◦,P•〉 can be promoted to a simulation convention: P̂ := 〈W, P̂◦, P̂•〉.

10.2.2 Simulations modulo invariants

The top row in Figure 10.3 illustrates the preservation of invariants by transition systems. In the

context of a transition systemL1 : A1 ! B1, we must consider three invariants working together:
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• an invariant PA for the language interface A1;

• an invariant PB for the language interface B1;

• a WB-indexed predicate P on the states of L1.

The preservation of 〈PA,PB, P 〉 is then analogous to a unary simulation property, where PA �

PB play the roles of the simulation conventions, and P plays the role of the simulation relation.

In fact, when L1 preserves these invariants, the following property holds:

L1 ≤P̂A�P̂B L1

Once we have established that the source language preserves the invariants, we wish to use this

fact to help prove the forward simulation for a given pass. To this end, we can de�ne a strengthened

transition system LP
1 : A1 � B1, with the property that L1 ≤P̂A�P̂B LP

1 . For a target transition

system L2 : A2 � B2, it then su�ces to show that LP
1 ≤RA�RB L2 to establish:

L1 ≤P̂A·RA�P̂B ·RB L2 .

Simulations of LP
1 are easier to prove, because LP

1 provides assumption that the invariants hold

on all source questions, answers and states. The simulation diagrams reduce to those shown in

the bottom row of Figure 10.3. However, since they are formulated in terms of De�nition 9.7, the

standard forward simulation techniques de�ned by CompCert in Smallstep.v remain available.

10.2.3 Typing invariants

The typing invariant described in Example 10.7 is used by the Selection and Allocation passes.

I have updated their correctness proofs as well as the preservation proofs in Cminortyping.v and

RTLtyping.v to use our framework.

The invariant wt satis�es one key property: when a simulation convention R consists of a

sequence of CKLRs and other invariants, the following property holds:

wt · R · wt ≡ R · wt
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This means CompCertO’s overall simulation convention can eliminate the typing invariant for the

Selection pass, retaining only that used for Allocation. In turn, this facilitates the simpli�cation of

the convention for the passes from Clight to Inlining.

10.2.4 Value analysis

The passes Constprop, CSE and Deadcode use CompCert’s value analysis framework. Abstract

interpretation is performed on their source program, and the resulting information is used to carry

out the corresponding optimizations. The correctness proofs for these passes then rely on the

invariant va, which asserts that the concrete runtime states satisfy the constraints encoded in the

corresponding abstract states.

I have updated the value analysis framework and associated pass correctness proofs to �t

the invariant infrastructure described in this section. Value analysis passes use the convention

va · ext � va · ext. Unfortunately, because it combines constraints with mixed variance, the

invariant va does not propagate in the same way as wt, so the compiler’s simulation convention

must retain the component (va · ext)3 as-is. When some of the corresponding optimization passes

are disabled, self-simulations of the RTL language are used to match this convention nonetheless.

10.3 Specialized simulation conventions

The Alloc, Stacking and Asmgen passes use more speci�c simulation conventions which express

the correspondence between the higher-level and lower-level representations of function calls and

returns. These passes use identical conventions for incoming and external calls.

10.3.1 The Allocation pass

The Allocation pass from RTL to LTL is the �rst pass to modify the interface of function calls.

LTL uses abstract locations which represent the stack slots and machine registers eventually used

in the target assembly program. Abstract locations contain arguments, temporaries and return

values. The contents are stored in a location map, passed across components by the interface L

alongside memory states. The compiler also expects the values of abstract locations designated as

callee-save to be preserved by function calls.
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To express the simulation convention used by the Allocation pass, I will use the following

notations. For a signature sg and a location map ls , we write args(sg , ls) to represent the argument

values stored in ls . Likewise, retval(sg , ls) extracts the contents of locations used to store the

return value. The relation ≡CS asserts that two location maps agree on callee-save locations.

The simulation convention alloc : C ⇔ L uses its worlds to remember the initial location map

and the signature associated with a call, and can then be de�ned by:

alloc := 〈signature× locmap, R◦alloc, R
•
alloc〉

~v ≤v args(sg , ls) m1 ≤m m2

(sg , ls) 
 vf [sg ](~v)@m1 R
◦
alloc vf [sg ](ls)@m2

v′ ≤v retval(sg, ls′) ls ≡CS ls
′ m′1 ≤m m′2

(sg, ls) 
 v′@m′1 R
•
alloc ls

′@m′2

10.3.2 The Stacking pass

The Stacking pass consolidates the information which Linear stores in abstract stack locations into

in-memory stack frames. The simulation proof uses a memory injection, and involves maintaining

separation properties ensuring that the source memory and the regions of stack frames introduced

by Stacking occupy disjoint areas of the target memory.

With regards to the memory state, the stacking simulation convention is essentially identical

to injp. Since the new regions of stack frames are outside the image of source memory, and most of

them are local to function activations, the properties of injp are largely su�cient (see also §10.1.7).

The exception to the rule pertains to argument passing. Loads from a function’s argument

locations access the caller’s stack frame. If the area used to store arguments overlaps with the

injected source memory state, then the source program and external calls may alter them in unex-

pected ways. In previous CompCert extensions, sophisticated techniques were required to prevent

this from happening.

In CompCertO, the required separation condition can be encoded in the simulation convention

stacking : L ⇔M. The convention asserts that the contents of argument locations are stored into

corresponding stack slots within the target memory. Additionally, it requires that the region of the

target memory used to store arguments within the caller’s stack must be disjoint from the injection
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m1

m2

~v1

~v2 ×

m1

m2

~v1

~v2 X

Figure 10.4: Separation of arguments in the stacking simulation convention

image of the source memory (Figure 10.4). For details, see cc_stacking in backend/Mach.v.

10.3.3 The Asmgen pass

The Asmgen pass from Mach to Asm uses a memory extension. Asm introduces explicit registers

for the program counter, stack pointer and return address. The corresponding simulation con-

vention asmgen : M ⇔ A ensures that the appropriate components of Mach-level queries are

mapped to the new registers. In addition, we must ensure that the call returns the stack pointer to

its original value, and set the program counter to the return address speci�ed by the caller.

This is expressed as:

asmgen := 〈val× val, R◦asmgen, R
•
asmgen〉

rs1 ] [sp := sp, ra := ra, pc := vf ] ≤v rs2 m1 ≤m m2

(sp, ra) 
 vf (sp, ra, rs1)@m1 R
◦
asmgen rs2@m2

rs ′1 ] [sp := sp, pc := ra] ≤v rs
′
2 m′1 ≤m m′2

(sp, ra) 
 rs ′1@m′1 R
•
asmgen rs ′2@m′2
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Chapter 11

Conclusion and future work

The goal of this thesis is to demonstrate that the concepts and formalisms which underpin game

semantics, the re�nement calculus, algebraic e�ects and other areas of programming language

theory can be combined in a fruitful manner. Their synthesis, which I call re�nement-based game

semantics, constitutes a plausible approach to the end-to-end veri�cation of large-scale, heteroge-

neous computer systems.

Taking �rst steps in this direction, I have shown how a simple theory of certi�ed abstraction

layers can be embedded into increasingly expressive models, and how the conceptual framework

of re�nement-based game semantics can be used to incorporate CompCert into this hierarchy

with minimal e�ort. A preliminary formalization in the Coq proof assistant of the game mod-

els presented in Part II demonstrates the advantages of the techniques I have used. In particular,

decoupling angelic and demonic nondeterminism from the structure of plays makes the de�ni-

tions simpler and facilitates proofs. The work on CompCertO presented in Part III has been fully

formalized in the Coq proof assistant.

In addition, the general approach I have outlined suggests several directions for future re-

search.

11.1 CertiKOS

A combination of re�nement-based game semantics and CompCertO should serve as a new basis

for the veri�cation of CertiKOS. This will allow us to extend the capabilities of certi�ed abstraction
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layers in various directions.

First, generalizing layer speci�cations from the type 1 ! F to E ! F will allow us to

model upcalls: calls from the code of a lower-level abstraction layer into a higher-level abstraction

layer. This is a very common pattern in system code. For example, in a typical network stack,

incoming packet are �rst processed by lower-level layers, which in turn invoke callback functions

in higher-level layers to handle the more abstract aspects of network communication. However,

the limitations of the veri�cation techniques used in the current version of CertiKOS have so far

prevented us from adopting this technique.

The new framework should also o�er a better separation of concerns. As explained in §4.4, our

existing model is intimately tied with the semantic model of CompCert. Conversely, the Comp-

CertX extension used for CertiKOS must maintain the abstract state used in certi�ed abstraction

layers as part of its memory model. Using re�nement-based game semantics, it is possible to for-

mulate layer interfaces which will only deal with abstract state, formulate CompCert semantics

which will only deal with memory states, and to interface them through their interactions. The

powerful abstraction mechanisms introduced by dual nondeterminism also allows us a great deal

of �exibility to translate these interactions themselves between representations at various levels

of abstraction.

By providing a more uniform algebraic framework, re�nement-based game semantics could

also facilitate the formulation of complex semantic transformations. For example, an important

primitive of operating system kernels is context switching, which saves the current register state,

loads the saved state of a di�erent process, then returns from that process’ invocation of cswitch.

This primitive must be written in assembly and can be described in terms of the language interface

A, but admits no C-style speci�cation. However, it may be possible to account for calls to cswitch

at the C level by giving a transformation of C semantics keeping track of the execution of multiple

processes and interpreting C calls to cswitch in that context.

11.2 Richer game models

In addition, there exists a wealth of game semantics research we can draw from to build more

general models for re�nement-based game semantics. For example, modeling concurrency is an
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important next step. Because of their order-theoretic formulation, concurrent and asynchronous

games [Abramsky and Melliès, 1999; Mellies, 2004] in particular seem amenable to dually nonde-

terministic extensions along the lines of Chapter 5. The more recently proposed template games

[Melliès, 2019] are similar in some aspects to the approach proposed in Chapter 7 and could con-

stitute the basis of a more principled and �exible approach to concurrency and state.

11.3 CompCertO and compositional compiler correctness

The main goal of CompCertO is to provide a version of the semantic model and correctness the-

orem of CompCert which can be readily embedded into re�nement-based game semantics, while

providing a granular view of program components. By contrast, existing work on compositional

compiler correctness usually focuses on the proof principles enabled by a given compiler correct-

ness theorem rather than the expressivity of the semantics as an end in itself.

Consequently, while §9.3.4 outlines some possible uses of CompCertO as a compositional com-

piler, its capabilities in that context remain limited. To an extent, this is a conscious design choice.

In the context of CertiKOS, CompCertX has served us well despite (and perhaps owing to) its

simplicity. This is in part because certi�ed abstraction layers “step in” to compensate for its lim-

itations, enabling for example the encapsulation of state. Although CompCertO aims to solve a

much more general problem compared to CompCertX, its design follows a similarly minimalistic

bent. Nevertheless, I believe the semantics and correctness theorem formulated in CompCertO can

be used to derive much more powerful reasoning principles, perhaps by adapting existing work.

For example, a distinguishing feature of CompCertM is the cohabitation of open and closed

semantics. In CompCertO, we could adapt this idea by providing loaders for various language in-

terfaces. Given a transition system L : X � X , we can derive the corresponding closed semantics

loadX : 1 � W by constructing an initial memory state and modeling the conventional invoca-

tion of main in the context of the language interface X . This corresponds roughly to a component

ιX : X ! W . On the other hand, external calls could be interpreted using CompCert’s original

parameter χ : 1 ! C, as long as the loader translates between the language interfaces C and X .

This would allow us to recover the original closed semantics de�ned in CompCert. The construc-

tions ι and χ would be compatible with all components of the simulation convention C used in
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CompCertO, in the sense that for R ∈ {ext, inj, injp,wt, va}, the following properties would hold:

L1 ≤R L2 ⇒ loadC(L1) ≤id loadC(L2)

L1 ≤alloc L2 ⇒ loadC(L1) ≤id loadL(L2)

L1 ≤stacking L2 ⇒ loadL(L1) ≤id loadM(L2)

L1 ≤asmgen L2 ⇒ loadM(L1) ≤id loadA(L2)

This would allow us to derive a correctness theorem for the closed semantics as well.

More generally, to facilitate horizontal composition and compositional veri�cation, it may be

advantageous to reformulate C to take a simpler form. This should be possible without modi�-

cation to the existing correctness proof, by leveraging the simulation convention algebra and the

properties of the simulation conventions involved to give a simpler but equivalent overall simula-

tion convention C′ ≡ C.
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