Library mcertikos.proc.QThreadGenLink
Require Import LinkTemplate.
Require Import PQThread.
Require Import QThreadGen.
Require Import QThreadGenLinkSource.
Require Import PThread.
Section WITHCOMPCERTIKOS.
Context `{compcertikos_prf: CompCertiKOS} `{real_params_prf: RealParams}.
Context `{multi_oracle_prop: MultiOracleProp}.
Context `{multi_oracle_link: !MultiOracleLink}.
Lemma init_correct:
init_correct_type PQThread_module pthread pqthread.
Proof.
init_correct.
- eapply relate_thread; eauto.
- constructor.
+ intros.
rewrite !ZMap.gi.
reflexivity.
+ intros.
rewrite !ZMap.gi.
constructor.
- constructor.
intros.
rewrite !ZMap.gi in Hlog.
discriminate.
Qed.
Lemma link_correct_aux:
link_correct_aux_type PQThread_module pthread pqthread.
Proof.
link_correct_aux.
- match goal with |- _ ?R ?x ?y ⇒ change (sim R x y) end.
match goal with |- _ ?R ?x ?y ⇒ assert (x ≤ ∅) by le_oplus end.
rewrite H.
apply lower_bound.
- apply passthrough_correct.
Qed.
Theorem cl_backward_simulation:
cl_backward_simulation_type PQThread_module pthread pqthread.
Proof.
cl_backward_simulation init_correct link_correct_aux.
Qed.
Theorem make_program_exists:
make_program_exist_type PQThread_module pthread pqthread.
Proof.
make_program_exists link_correct_aux.
Qed.
End WITHCOMPCERTIKOS.
Require Import PQThread.
Require Import QThreadGen.
Require Import QThreadGenLinkSource.
Require Import PThread.
Section WITHCOMPCERTIKOS.
Context `{compcertikos_prf: CompCertiKOS} `{real_params_prf: RealParams}.
Context `{multi_oracle_prop: MultiOracleProp}.
Context `{multi_oracle_link: !MultiOracleLink}.
Lemma init_correct:
init_correct_type PQThread_module pthread pqthread.
Proof.
init_correct.
- eapply relate_thread; eauto.
- constructor.
+ intros.
rewrite !ZMap.gi.
reflexivity.
+ intros.
rewrite !ZMap.gi.
constructor.
- constructor.
intros.
rewrite !ZMap.gi in Hlog.
discriminate.
Qed.
Lemma link_correct_aux:
link_correct_aux_type PQThread_module pthread pqthread.
Proof.
link_correct_aux.
- match goal with |- _ ?R ?x ?y ⇒ change (sim R x y) end.
match goal with |- _ ?R ?x ?y ⇒ assert (x ≤ ∅) by le_oplus end.
rewrite H.
apply lower_bound.
- apply passthrough_correct.
Qed.
Theorem cl_backward_simulation:
cl_backward_simulation_type PQThread_module pthread pqthread.
Proof.
cl_backward_simulation init_correct link_correct_aux.
Qed.
Theorem make_program_exists:
make_program_exist_type PQThread_module pthread pqthread.
Proof.
make_program_exists link_correct_aux.
Qed.
End WITHCOMPCERTIKOS.