Module Conventions1


Function calling conventions and other conventions regarding the use of machine registers and stack slots.

Require Import Coqlib Decidableplus.
Require Import AST Machregs Locations.

Classification of machine registers


Machine registers (type mreg in module Locations) are divided in the following groups: We follow the x86-32 and x86-64 application binary interfaces (ABI) in our choice of callee- and caller-save registers.

Definition is_callee_save (r: mreg) : bool :=
  match r with
  | AX | CX | DX => false
  | BX | BP => true
  | SI | DI => negb Archi.ptr64 (* callee-save in 32 bits but not in 64 bits *)
  | R8 | R9 | R10 | R11 => false
  | R12 | R13 | R14 | R15 => true
  | X0 | X1 | X2 | X3 | X4 | X5 | X6 | X7 => false
  | X8 | X9 | X10 | X11 | X12 | X13 | X14 | X15 => false
  | FP0 => false
  end.

Definition int_caller_save_regs :=
  if Archi.ptr64
  then AX :: CX :: DX :: SI :: DI :: R8 :: R9 :: R10 :: R11 :: nil
  else AX :: CX :: DX :: nil.

Definition float_caller_save_regs :=
  if Archi.ptr64
  then X0 :: X1 :: X2 :: X3 :: X4 :: X5 :: X6 :: X7 ::
       X8 :: X9 :: X10 :: X11 :: X12 :: X13 :: X14 :: X15 :: nil
  else X0 :: X1 :: X2 :: X3 :: X4 :: X5 :: X6 :: X7 :: nil.

Definition int_callee_save_regs :=
  if Archi.ptr64
  then BX :: BP :: R12 :: R13 :: R14 :: R15 :: nil
  else BX :: SI :: DI :: BP :: nil.

Definition float_callee_save_regs : list mreg := nil.

Definition destroyed_at_call :=
  List.filter (fun r => negb (is_callee_save r)) all_mregs.

Definition dummy_int_reg := AX. (* Used in Regalloc. *)
Definition dummy_float_reg := X0. (* Used in Regalloc. *)

Definition is_float_reg (r: mreg) :=
  match r with
  | AX | BX | CX | DX | SI | DI | BP
  | R8 | R9 | R10 | R11 | R12 | R13 | R14 | R15 => false
  | X0 | X1 | X2 | X3 | X4 | X5 | X6 | X7
  | X8 | X9 | X10 | X11 | X12 | X13 | X14 | X15 | FP0 => true
  end.

Function calling conventions


The functions in this section determine the locations (machine registers and stack slots) used to communicate arguments and results between the caller and the callee during function calls. These locations are functions of the signature of the function and of the call instruction. Agreement between the caller and the callee on the locations to use is guaranteed by our dynamic semantics for Cminor and RTL, which demand that the signature of the call instruction is identical to that of the called function. Calling conventions are largely arbitrary: they must respect the properties proved in this section (such as no overlapping between the locations of function arguments), but this leaves much liberty in choosing actual locations. To ensure binary interoperability of code generated by our compiler with libraries compiled by another compiler, we implement the standard x86-32 and x86-64 conventions.

Location of function result


In 32 bit mode, the result value of a function is passed back to the caller in registers AX or DX:AX or FP0, depending on the type of the returned value. We treat a function without result as a function with one integer result.

Definition loc_result_32 (s: signature) : rpair mreg :=
  match s.(sig_res) with
  | None => One AX
  | Some (Tint | Tany32) => One AX
  | Some (Tfloat | Tsingle) => One FP0
  | Some Tany64 => One X0
  | Some Tlong => Twolong DX AX
  end.

In 64 bit mode, he result value of a function is passed back to the caller in registers AX or X0.

Definition loc_result_64 (s: signature) : rpair mreg :=
  match s.(sig_res) with
  | None => One AX
  | Some (Tint | Tlong | Tany32 | Tany64) => One AX
  | Some (Tfloat | Tsingle) => One X0
  end.

Definition loc_result :=
  if Archi.ptr64 then loc_result_64 else loc_result_32.

The result registers have types compatible with that given in the signature.

Lemma loc_result_type:
  forall sig,
  subtype (proj_sig_res sig) (typ_rpair mreg_type (loc_result sig)) = true.
Proof.
  intros. unfold proj_sig_res, loc_result, loc_result_32, loc_result_64, mreg_type;
  destruct Archi.ptr64; destruct (sig_res sig) as [[]|]; auto.
Qed.

The result locations are caller-save registers

Lemma loc_result_caller_save:
  forall (s: signature),
  forall_rpair (fun r => is_callee_save r = false) (loc_result s).
Proof.
  intros. unfold loc_result, loc_result_32, loc_result_64, is_callee_save;
  destruct Archi.ptr64; destruct (sig_res s) as [[]|]; simpl; auto.
Qed.

If the result is in a pair of registers, those registers are distinct and have type Tint at least.

Lemma loc_result_pair:
  forall sg,
  match loc_result sg with
  | One _ => True
  | Twolong r1 r2 =>
       r1 <> r2 /\ sg.(sig_res) = Some Tlong
    /\ subtype Tint (mreg_type r1) = true /\ subtype Tint (mreg_type r2) = true
    /\ Archi.splitlong = true
  end.
Proof.
  intros. change Archi.splitlong with (negb Archi.ptr64).
  unfold loc_result, loc_result_32, loc_result_64, mreg_type;
  destruct Archi.ptr64; destruct (sig_res sg) as [[]|]; auto.
  split; auto. congruence.
Qed.

The location of the result depends only on the result part of the signature

Lemma loc_result_exten:
  forall s1 s2, s1.(sig_res) = s2.(sig_res) -> loc_result s1 = loc_result s2.
Proof.
  intros. unfold loc_result, loc_result_32, loc_result_64.
  destruct Archi.ptr64; rewrite H; auto.
Qed.

Location of function arguments


In the x86-32 ABI, all arguments are passed on stack. (Snif.)

Fixpoint loc_arguments_32
    (tyl: list typ) (ofs: Z) {struct tyl} : list (rpair loc) :=
  match tyl with
  | nil => nil
  | ty :: tys =>
      match ty with
      | Tlong => Twolong (S Outgoing (ofs + 1) Tint) (S Outgoing ofs Tint)
      | _ => One (S Outgoing ofs ty)
      end
      :: loc_arguments_32 tys (ofs + typesize ty)
  end.

In the x86-64 ABI:

Definition int_param_regs := DI :: SI :: DX :: CX :: R8 :: R9 :: nil.
Definition float_param_regs := X0 :: X1 :: X2 :: X3 :: X4 :: X5 :: X6 :: X7 :: nil.

Fixpoint loc_arguments_64
    (tyl: list typ) (ir fr ofs: Z) {struct tyl} : list (rpair loc) :=
  match tyl with
  | nil => nil
  | (Tint | Tlong | Tany32 | Tany64) as ty :: tys =>
      match list_nth_z int_param_regs ir with
      | None =>
          One (S Outgoing ofs ty) :: loc_arguments_64 tys ir fr (ofs + 2)
      | Some ireg =>
          One (R ireg) :: loc_arguments_64 tys (ir + 1) fr ofs
      end
  | (Tfloat | Tsingle) as ty :: tys =>
      match list_nth_z float_param_regs fr with
      | None =>
          One (S Outgoing ofs ty) :: loc_arguments_64 tys ir fr (ofs + 2)
      | Some freg =>
          One (R freg) :: loc_arguments_64 tys ir (fr + 1) ofs
      end
  end.

loc_arguments s returns the list of locations where to store arguments when calling a function with signature s.

Definition loc_arguments (s: signature) : list (rpair loc) :=
  if Archi.ptr64
  then loc_arguments_64 s.(sig_args) 0 0 0
  else loc_arguments_32 s.(sig_args) 0.

size_arguments s returns the number of Outgoing slots used to call a function with signature s.

Fixpoint size_arguments_32
    (tyl: list typ) (ofs: Z) {struct tyl} : Z :=
  match tyl with
  | nil => ofs
  | ty :: tys => size_arguments_32 tys (ofs + typesize ty)
  end.

Fixpoint size_arguments_64 (tyl: list typ) (ir fr ofs: Z) {struct tyl} : Z :=
  match tyl with
  | nil => ofs
  | (Tint | Tlong | Tany32 | Tany64) :: tys =>
      match list_nth_z int_param_regs ir with
      | None => size_arguments_64 tys ir fr (ofs + 2)
      | Some ireg => size_arguments_64 tys (ir + 1) fr ofs
      end
  | (Tfloat | Tsingle) :: tys =>
      match list_nth_z float_param_regs fr with
      | None => size_arguments_64 tys ir fr (ofs + 2)
      | Some freg => size_arguments_64 tys ir (fr + 1) ofs
      end
  end.

Definition size_arguments (s: signature) : Z :=
  if Archi.ptr64
  then size_arguments_64 s.(sig_args) 0 0 0
  else size_arguments_32 s.(sig_args) 0.

Argument locations are either caller-save registers or Outgoing stack slots at nonnegative offsets.

Definition loc_argument_acceptable (l: loc) : Prop :=
  match l with
  | R r => is_callee_save r = false
  | S Outgoing ofs ty => ofs >= 0 /\ (typealign ty | ofs)
  | _ => False
  end.

Definition loc_argument_32_charact (ofs: Z) (l: loc) : Prop :=
  match l with
  | S Outgoing ofs' ty => ofs' >= ofs /\ typealign ty = 1
  | _ => False
  end.

Definition loc_argument_64_charact (ofs: Z) (l: loc) : Prop :=
  match l with
  | R r => In r int_param_regs \/ In r float_param_regs
  | S Outgoing ofs' ty => ofs' >= ofs /\ (2 | ofs')
  | _ => False
  end.

Remark loc_arguments_32_charact:
  forall tyl ofs p,
  In p (loc_arguments_32 tyl ofs) -> forall_rpair (loc_argument_32_charact ofs) p.
Proof.
  assert (X: forall ofs1 ofs2 l, loc_argument_32_charact ofs2 l -> ofs1 <= ofs2 -> loc_argument_32_charact ofs1 l).
  { destruct l; simpl; intros; auto. destruct sl; auto. intuition omega. }
  induction tyl as [ | ty tyl]; simpl loc_arguments_32; intros.
- contradiction.
- destruct H.
+ destruct ty; subst p; simpl; omega.
+ apply IHtyl in H. generalize (typesize_pos ty); intros. destruct p; simpl in *.
* eapply X; eauto; omega.
* destruct H; split; eapply X; eauto; omega.
Qed.

Remark loc_arguments_64_charact:
  forall tyl ir fr ofs p,
  In p (loc_arguments_64 tyl ir fr ofs) -> (2 | ofs) -> forall_rpair (loc_argument_64_charact ofs) p.
Proof.
  assert (X: forall ofs1 ofs2 l, loc_argument_64_charact ofs2 l -> ofs1 <= ofs2 -> loc_argument_64_charact ofs1 l).
  { destruct l; simpl; intros; auto. destruct sl; auto. intuition omega. }
  assert (Y: forall ofs1 ofs2 p, forall_rpair (loc_argument_64_charact ofs2) p -> ofs1 <= ofs2 -> forall_rpair (loc_argument_64_charact ofs1) p).
  { destruct p; simpl; intuition eauto. }
  assert (Z: forall ofs, (2 | ofs) -> (2 | ofs + 2)).
  { intros. apply Z.divide_add_r; auto. apply Zdivide_refl. }
Opaque list_nth_z.
  induction tyl; simpl loc_arguments_64; intros.
  elim H.
  assert (A: forall ty, In p
      match list_nth_z int_param_regs ir with
      | Some ireg => One (R ireg) :: loc_arguments_64 tyl (ir + 1) fr ofs
      | None => One (S Outgoing ofs ty) :: loc_arguments_64 tyl ir fr (ofs + 2)
      end ->
      forall_rpair (loc_argument_64_charact ofs) p).
  { intros. destruct (list_nth_z int_param_regs ir) as [r|] eqn:E; destruct H1.
    subst. left. eapply list_nth_z_in; eauto.
    eapply IHtyl; eauto.
    subst. split. omega. assumption.
    eapply Y; eauto. omega. }
  assert (B: forall ty, In p
      match list_nth_z float_param_regs fr with
      | Some ireg => One (R ireg) :: loc_arguments_64 tyl ir (fr + 1) ofs
      | None => One (S Outgoing ofs ty) :: loc_arguments_64 tyl ir fr (ofs + 2)
      end ->
      forall_rpair (loc_argument_64_charact ofs) p).
  { intros. destruct (list_nth_z float_param_regs fr) as [r|] eqn:E; destruct H1.
    subst. right. eapply list_nth_z_in; eauto.
    eapply IHtyl; eauto.
    subst. split. omega. assumption.
    eapply Y; eauto. omega. }
  destruct a; eauto.
Qed.

Lemma loc_arguments_acceptable:
  forall (s: signature) (p: rpair loc),
  In p (loc_arguments s) -> forall_rpair loc_argument_acceptable p.
Proof.
  unfold loc_arguments; intros. destruct Archi.ptr64 eqn:SF.
- (* 64 bits *)
  assert (A: forall r, In r int_param_regs -> is_callee_save r = false) by (unfold is_callee_save; rewrite SF; decide_goal).
  assert (B: forall r, In r float_param_regs -> is_callee_save r = false) by decide_goal.
  assert (X: forall l, loc_argument_64_charact 0 l -> loc_argument_acceptable l).
  { unfold loc_argument_64_charact, loc_argument_acceptable.
    destruct l as [r | [] ofs ty]; auto. intros [C|C]; auto.
    intros [C D]. split; auto. apply Zdivide_trans with 2; auto.
    exists (2 / typealign ty); destruct ty; reflexivity.
  }
  exploit loc_arguments_64_charact; eauto using Zdivide_0.
  unfold forall_rpair; destruct p; intuition auto.
- (* 32 bits *)
  assert (X: forall l, loc_argument_32_charact 0 l -> loc_argument_acceptable l).
  { destruct l as [r | [] ofs ty]; simpl; intuition auto. rewrite H2; apply Z.divide_1_l. }
  exploit loc_arguments_32_charact; eauto.
  unfold forall_rpair; destruct p; intuition auto.
Qed.

Hint Resolve loc_arguments_acceptable: locs.

The offsets of Outgoing arguments are below size_arguments s.

Remark size_arguments_32_above:
  forall tyl ofs0, ofs0 <= size_arguments_32 tyl ofs0.
Proof.
  induction tyl; simpl; intros.
  omega.
  apply Zle_trans with (ofs0 + typesize a); auto.
  generalize (typesize_pos a); omega.
Qed.

Remark size_arguments_64_above:
  forall tyl ir fr ofs0,
  ofs0 <= size_arguments_64 tyl ir fr ofs0.
Proof.
  induction tyl; simpl; intros.
  omega.
  assert (A: ofs0 <=
    match list_nth_z int_param_regs ir with
    | Some _ => size_arguments_64 tyl (ir + 1) fr ofs0
    | None => size_arguments_64 tyl ir fr (ofs0 + 2)
    end).
  { destruct (list_nth_z int_param_regs ir); eauto.
    apply Zle_trans with (ofs0 + 2); auto. omega. }
  assert (B: ofs0 <=
    match list_nth_z float_param_regs fr with
    | Some _ => size_arguments_64 tyl ir (fr + 1) ofs0
    | None => size_arguments_64 tyl ir fr (ofs0 + 2)
    end).
  { destruct (list_nth_z float_param_regs fr); eauto.
    apply Zle_trans with (ofs0 + 2); auto. omega. }
  destruct a; auto.
Qed.

Lemma size_arguments_above:
  forall s, size_arguments s >= 0.
Proof.
  intros; unfold size_arguments. apply Zle_ge.
  destruct Archi.ptr64; [apply size_arguments_64_above|apply size_arguments_32_above].
Qed.

Lemma loc_arguments_32_bounded:
  forall ofs ty tyl ofs0,
  In (S Outgoing ofs ty) (regs_of_rpairs (loc_arguments_32 tyl ofs0)) ->
  ofs + typesize ty <= size_arguments_32 tyl ofs0.
Proof.
  induction tyl as [ | t l]; simpl; intros x IN.
- contradiction.
- rewrite in_app_iff in IN; destruct IN as [IN|IN].
+ apply Zle_trans with (x + typesize t); [|apply size_arguments_32_above].
  Ltac decomp :=
  match goal with
  | [ H: _ \/ _ |- _ ] => destruct H; decomp
  | [ H: S _ _ _ = S _ _ _ |- _ ] => inv H
  | [ H: False |- _ ] => contradiction
  end.
  destruct t; simpl in IN; decomp; simpl; omega.
+ apply IHl; auto.
Qed.

Lemma loc_arguments_64_bounded:
  forall ofs ty tyl ir fr ofs0,
  In (S Outgoing ofs ty) (regs_of_rpairs (loc_arguments_64 tyl ir fr ofs0)) ->
  ofs + typesize ty <= size_arguments_64 tyl ir fr ofs0.
Proof.
  induction tyl; simpl; intros.
  contradiction.
  assert (T: forall ty0, typesize ty0 <= 2).
  { destruct ty0; simpl; omega. }
  assert (A: forall ty0,
             In (S Outgoing ofs ty) (regs_of_rpairs
              match list_nth_z int_param_regs ir with
              | Some ireg =>
                  One (R ireg) :: loc_arguments_64 tyl (ir + 1) fr ofs0
              | None => One (S Outgoing ofs0 ty0) :: loc_arguments_64 tyl ir fr (ofs0 + 2)
              end) ->
             ofs + typesize ty <=
             match list_nth_z int_param_regs ir with
             | Some _ => size_arguments_64 tyl (ir + 1) fr ofs0
             | None => size_arguments_64 tyl ir fr (ofs0 + 2)
             end).
  { intros. destruct (list_nth_z int_param_regs ir); simpl in H0; destruct H0.
  - discriminate.
  - eapply IHtyl; eauto.
  - inv H0. apply Zle_trans with (ofs + 2). specialize (T ty). omega. apply size_arguments_64_above.
  - eapply IHtyl; eauto. }
  assert (B: forall ty0,
             In (S Outgoing ofs ty) (regs_of_rpairs
              match list_nth_z float_param_regs fr with
              | Some ireg =>
                  One (R ireg) :: loc_arguments_64 tyl ir (fr + 1) ofs0
              | None => One (S Outgoing ofs0 ty0) :: loc_arguments_64 tyl ir fr (ofs0 + 2)
              end) ->
             ofs + typesize ty <=
             match list_nth_z float_param_regs fr with
             | Some _ => size_arguments_64 tyl ir (fr + 1) ofs0
             | None => size_arguments_64 tyl ir fr (ofs0 + 2)
             end).
  { intros. destruct (list_nth_z float_param_regs fr); simpl in H0; destruct H0.
  - discriminate.
  - eapply IHtyl; eauto.
  - inv H0. apply Zle_trans with (ofs + 2). specialize (T ty). omega. apply size_arguments_64_above.
  - eapply IHtyl; eauto. }
  destruct a; eauto.
Qed.

Lemma loc_arguments_bounded:
  forall (s: signature) (ofs: Z) (ty: typ),
  In (S Outgoing ofs ty) (regs_of_rpairs (loc_arguments s)) ->
  ofs + typesize ty <= size_arguments s.
Proof.
  unfold loc_arguments, size_arguments; intros.
  destruct Archi.ptr64; eauto using loc_arguments_32_bounded, loc_arguments_64_bounded.
Qed.

Lemma loc_arguments_main:
  loc_arguments signature_main = nil.
Proof.
  unfold loc_arguments; destruct Archi.ptr64; reflexivity.
Qed.

Lemma loc_arguments_32_charact':
  forall tyl ofs p,
    In p (regs_of_rpairs (loc_arguments_32 tyl ofs)) ->
    loc_argument_32_charact ofs p.
Proof.
  intros tyl ofs p IN.
  apply in_regs_of_rpairs_inv in IN. destruct IN as (P & IN & IN').
  apply loc_arguments_32_charact in IN.
  destruct P; simpl in *; auto.
  destruct IN'; subst; auto. easy.
  destruct IN' as [A|[A|A]]; inv A; intuition.
Qed.

Lemma loc_arguments_64_charact':
  forall tyl ir fr ofs p,
    (2|ofs) ->
    In p (regs_of_rpairs (loc_arguments_64 tyl ir fr ofs)) ->
    loc_argument_64_charact ofs p.
Proof.
  intros tyl ir fr ofs p DIV IN.
  apply in_regs_of_rpairs_inv in IN. destruct IN as (P & IN & IN').
  apply loc_arguments_64_charact in IN; auto.
  destruct P; simpl in *; auto.
  destruct IN'; subst; auto. easy.
  destruct IN' as [A|[A|A]]; inv A; intuition.
Qed.

Lemma loc_arguments_32_norepet sg z:
  Loc.norepet (regs_of_rpairs (loc_arguments_32 sg z)).
Proof.
  revert z.
  induction sg; simpl; auto using Loc.norepet_nil.
  intros z.
  assert (H32: forall ty,
             Loc.norepet
               (regs_of_rpair (One (S Outgoing z ty)) ++
                regs_of_rpairs (loc_arguments_32 sg (z + typesize ty)))).
  {
    simpl. intros ty. apply Loc.norepet_cons; auto.
    rewrite Loc.notin_iff.
    intros l' H.
    apply loc_arguments_32_charact' in H.
    destruct l' ; try contradiction. simpl in H.
    destruct sl; try contradiction.
    right. simpl. omega.
  }
  destruct a; auto.
  simpl in *. apply Loc.norepet_cons.
  - rewrite Loc.notin_iff.
    inversion 1; subst.
    simpl; right; omega.
    apply loc_arguments_32_charact' in H0.
    destruct l' ; try contradiction.
    destruct sl; try contradiction.
    destruct H0.
    red.
    right; simpl in *; omega.
  - apply Loc.norepet_cons; auto.
    rewrite Loc.notin_iff.
    intros l' H0.
    apply loc_arguments_32_charact' in H0.
    destruct l' ; try contradiction.
    destruct sl; try contradiction.
    destruct H0.
    red; right; simpl in *; omega.
Qed.

Definition loc_argument_64_charact' ofs ir fr l :=
  match l with
  | R r => (In r int_param_regs /\ exists i, i >= ir /\ list_nth_z int_param_regs i = Some r)
          \/ (In r float_param_regs /\ exists i, i >= fr /\ list_nth_z float_param_regs i = Some r)
  | S Local _ _ => False
  | S Incoming _ _ => False
  | S Outgoing ofs' _ => ofs' >= ofs /\ (2 | ofs')
  end.

Remark loc_arguments_64_charact'':
  forall tyl ir fr ofs p,
  In p (loc_arguments_64 tyl ir fr ofs) -> (2 | ofs) -> forall_rpair (loc_argument_64_charact' ofs ir fr) p.
Proof.
  assert (X: forall ofs1 ofs2 ir fr l, loc_argument_64_charact' ofs2 ir fr l -> ofs1 <= ofs2 -> loc_argument_64_charact' ofs1 ir fr l).
  { destruct l; simpl; intros; auto. destruct sl; auto. intuition omega. }
  assert (Y: forall ofs1 ofs2 ir fr p, forall_rpair (loc_argument_64_charact' ofs2 ir fr) p -> ofs1 <= ofs2 -> forall_rpair (loc_argument_64_charact' ofs1 ir fr) p).
  { destruct p; simpl; intuition eauto. }
  assert (Z: forall ofs, (2 | ofs) -> (2 | ofs + 2)).
  { intros. apply Z.divide_add_r; auto. apply Zdivide_refl. }
  assert (C: forall ofs ir1 ir2 fr l, loc_argument_64_charact' ofs ir2 fr l -> ir1 <= ir2 -> loc_argument_64_charact' ofs ir1 fr l).
  {
    Opaque int_param_regs float_param_regs.
    destruct l; simpl; intros; auto. destruct H.
    - destruct H.
      left; split; auto. destruct H1 as (i & LE & NTH); exists i; split; eauto. omega.
    - destruct H.
      right; split; auto.
  }
  assert (D: forall ofs ir1 ir2 fr p, forall_rpair (loc_argument_64_charact' ofs ir2 fr) p -> ir1 <= ir2 -> forall_rpair (loc_argument_64_charact' ofs ir1 fr) p).
  { destruct p; simpl; intuition eauto.
  }
  assert (E: forall ofs ir fr1 fr2 l, loc_argument_64_charact' ofs ir fr2 l -> fr1 <= fr2 -> loc_argument_64_charact' ofs ir fr1 l).
  {
    Opaque int_param_regs float_param_regs.
    destruct l; simpl; intros; auto. destruct H.
    - destruct H.
      left; split; auto.
    - destruct H.
      right; split; auto.
      destruct H1 as (i & LE & NTH). exists i; split; eauto. omega.
  }
  assert (F: forall ofs ir fr1 fr2 p, forall_rpair (loc_argument_64_charact' ofs ir fr2) p -> fr1 <= fr2 -> forall_rpair (loc_argument_64_charact' ofs ir fr1) p).
  { destruct p; simpl; intuition eauto.
  }
Opaque list_nth_z.
  induction tyl; simpl loc_arguments_64; intros.
  elim H.
  assert (A: forall ty, In p
      match list_nth_z int_param_regs ir with
      | Some ireg => One (R ireg) :: loc_arguments_64 tyl (ir + 1) fr ofs
      | None => One (S Outgoing ofs ty) :: loc_arguments_64 tyl ir fr (ofs + 2)
      end ->
      forall_rpair (loc_argument_64_charact' ofs ir fr) p).
  { intros. destruct (list_nth_z int_param_regs ir) as [r|] eqn:G; destruct H1.
    subst. left. split. eapply list_nth_z_in; eauto. exists ir; split. omega. auto.
    eapply D.
    eapply IHtyl. eauto. auto. omega.
    subst. split. omega. assumption.
    eapply Y; eauto. omega. }
  assert (B: forall ty, In p
      match list_nth_z float_param_regs fr with
      | Some ireg => One (R ireg) :: loc_arguments_64 tyl ir (fr + 1) ofs
      | None => One (S Outgoing ofs ty) :: loc_arguments_64 tyl ir fr (ofs + 2)
      end ->
      forall_rpair (loc_argument_64_charact' ofs ir fr) p).
  { intros. destruct (list_nth_z float_param_regs fr) as [r|] eqn:I; destruct H1.
    subst. right. split. eapply list_nth_z_in; eauto. exists fr; split. omega. auto.
    eapply F. eapply IHtyl; eauto. omega.
    subst. split. omega. assumption.
    eapply Y; eauto. omega. }
  destruct a; eauto.
Qed.


Remark loc_arguments_64_charact''':
  forall tyl ir fr ofs p,
    In p (regs_of_rpairs (loc_arguments_64 tyl ir fr ofs)) ->
    (2 | ofs) ->
    loc_argument_64_charact' ofs ir fr p.
Proof.
  intros.
  apply in_regs_of_rpairs_inv in H.
  destruct H as (p0 & IN & ROR).
  exploit loc_arguments_64_charact''; eauto.
  intros.
  destruct p0; simpl in *.
  destruct ROR; subst; auto. easy.
  intuition subst; auto.
Qed.


Lemma list_nth_z_rew:
  forall {A} (l: list A) a n,
    list_nth_z (a::l) n =
    if zeq n 0
    then Some a
    else list_nth_z l (Z.pred n).
Proof.
simpl; intros. reflexivity. Qed.

Lemma list_nth_z_norepet_same:
  forall {A} (l: list A) (lnr: list_norepet l) r i1 i2,
    list_nth_z l i1 = Some r ->
    list_nth_z l i2 = Some r ->
    i1 = i2.
Proof.
  induction 1; simpl; intros; eauto.
  discriminate.
  rewrite list_nth_z_rew in H0, H1.
  destruct (zeq i1 0). inv H0.
  destruct (zeq i2 0). auto. apply list_nth_z_in in H1. congruence.
  destruct (zeq i2 0). inv H1. apply list_nth_z_in in H0. congruence.
  eapply IHlnr in H0. 2: exact H1. apply f_equal with (f:=Z.succ) in H0.
  rewrite <- ! Zsucc_pred in H0.
  eauto.
Qed.

Lemma loc_arguments_64_norepet sg:
  forall ir fr ofs,
    (2 | ofs) ->
  Loc.norepet (regs_of_rpairs (loc_arguments_64 sg ir fr ofs)).
Proof.
  Opaque int_param_regs float_param_regs.
  induction sg; simpl; auto using Loc.norepet_nil.
  assert (H64: forall ty ofs ir fr,
             (2 | ofs + 2) ->
             Loc.norepet
               (regs_of_rpair (One (S Outgoing ofs ty)) ++
                              regs_of_rpairs (loc_arguments_64 sg ir fr (ofs + 2(* typesize ty *))))).
  {
    simpl. intros ty ofs ir fr DIV.
    apply Loc.norepet_cons; auto.
    - rewrite Loc.notin_iff.
      intros l' H.
      apply loc_arguments_64_charact' in H; auto.
      destruct l' ; try contradiction. simpl. auto.
      destruct sl; try contradiction. simpl.
      simpl in H.
      right. simpl.
      cut (typesize ty <= 2). omega.
      destruct ty ; simpl; omega.
  }
  
  generalize (loc_arguments_64_charact''' sg).
  unfold loc_argument_64_charact'.
  assert ( forall r, In r int_param_regs -> In r float_param_regs -> False).
  {
    Transparent int_param_regs float_param_regs.
    simpl. intuition congruence.
  }
  assert( list_norepet int_param_regs).
  repeat (constructor; [ simpl; intuition congruence | ]); constructor.
  assert( list_norepet float_param_regs).
  repeat (constructor; [ simpl; intuition congruence | ]); constructor.
  revert H H0 H1.
  generalize int_param_regs as IPR, float_param_regs as FPR.
  intros IPR FPR DISJ LNR1 LNR2 CHARACT.
  assert (H64_reg: forall ir fr ofs ireg,
             (2 | ofs ) ->
             list_nth_z IPR ir = Some ireg ->
             Loc.norepet
               (regs_of_rpair (One (R ireg)) ++
                              regs_of_rpairs (loc_arguments_64 sg (ir + 1) fr ofs))).
  {
    simpl. intros ir fr ofs ireg DIV NTH.
    apply Loc.norepet_cons; auto.
    rewrite Loc.notin_iff.
    intros l' H.
    apply CHARACT in H; auto. simpl.
    destruct l'; auto.
    destruct H as [(IN & (i & SUP & EQ)) | (IN & (i & SUP & EQ))].
    intro; subst.
    exploit (list_nth_z_norepet_same (A:=mreg)). 2: apply NTH. 2: apply EQ. auto. intro; subst. omega.
    apply list_nth_z_in in NTH. intro; subst. eauto.
  }
  assert (H64_freg: forall ir fr ofs ireg,
             (2 | ofs ) ->
             list_nth_z FPR fr = Some ireg ->
             Loc.norepet
               (regs_of_rpair (One (R ireg)) ++
                              regs_of_rpairs (loc_arguments_64 sg ir (fr + 1) ofs))).
  {
    simpl. intros ir fr ofs ireg DIV NTH.
    apply Loc.norepet_cons; auto.
    rewrite Loc.notin_iff.
    intros l' H.
    apply CHARACT in H; auto. simpl.
    destruct l'; auto.
    destruct H as [(IN & (i & SUP & EQ)) | (IN & (i & SUP & EQ))].
    intro; subst. apply list_nth_z_in in NTH. eauto.
    intro; subst.
    exploit (list_nth_z_norepet_same (A:=mreg)). 2: apply NTH. 2: apply EQ. auto. intro; subst. omega.
  }
  intros.
  destruct a; auto.
  - destruct (list_nth_z IPR ir) eqn:EQ.
    + simpl in *. apply H64_reg. auto. auto.
    + simpl in *. apply H64. apply Z.divide_add_r; auto. apply Zdivide_refl.
  - destruct (list_nth_z FPR fr) eqn:EQ.
    + simpl in *. apply H64_freg. auto. auto.
    + simpl in *. apply H64. apply Z.divide_add_r; auto. apply Zdivide_refl.
  - destruct (list_nth_z IPR ir) eqn:EQ.
    + simpl in *. apply H64_reg. auto. auto.
    + simpl in *. apply H64. apply Z.divide_add_r; auto. apply Zdivide_refl.
  - destruct (list_nth_z FPR fr) eqn:EQ.
    + simpl in *. apply H64_freg. auto. auto.
    + simpl in *. apply H64. apply Z.divide_add_r; auto. apply Zdivide_refl.
  - destruct (list_nth_z IPR ir) eqn:EQ.
    + simpl in *. apply H64_reg. auto. auto.
    + simpl in *. apply H64. apply Z.divide_add_r; auto. apply Zdivide_refl.
  - destruct (list_nth_z IPR ir) eqn:EQ.
    + simpl in *. apply H64_reg. auto. auto.
    + simpl in *. apply H64. apply Z.divide_add_r; auto. apply Zdivide_refl.
Qed.

Lemma loc_arguments_norepet:
  forall sg,
    Loc.norepet (regs_of_rpairs (loc_arguments sg)).
Proof.
  unfold loc_arguments; intros.
  destruct Archi.ptr64.
  apply loc_arguments_64_norepet. apply Z.divide_0_r.
  apply loc_arguments_32_norepet.
Qed.