This file develops the memory model that is used in the dynamic
semantics of all the languages used in the compiler.
It defines a type
mem of memory states, the following 4 basic
operations over memory states, and their properties:
-
load: read a memory chunk at a given address;
-
store: store a memory chunk at a given address;
-
alloc: allocate a fresh memory block;
-
free: invalidate a memory block.
Require Import Zwf.
Require Import Axioms.
Require Import Coqlib.
Require Intv.
Require Import Maps.
Require Archi.
Require Import AST.
Require Import Integers.
Require Import Floats.
Require Import Values.
Require Export Memdata.
Require Export Memtype.
Require Export MemPerm.
Require Export StackADT.
Local Unset Elimination Schemes.
Local Unset Case Analysis Schemes.
Close Scope nat_scope.
Lemma zle_zlt:
forall lo hi o,
zle lo o &&
zlt o hi =
true <->
lo <=
o <
hi.
Proof.
intros.
destruct (
zle lo o), (
zlt o hi);
intuition;
try congruence;
try omega.
Qed.
Section FORALL.
Variables P:
Z ->
Prop.
Variable f:
forall (
x:
Z), {
P x} + {~
P x}.
Variable lo:
Z.
Program Fixpoint forall_rec (
hi:
Z) {
wf (
Zwf lo)
hi}:
{
forall x,
lo <=
x <
hi ->
P x}
+ {~
forall x,
lo <=
x <
hi ->
P x} :=
if zlt lo hi then
match f (
hi - 1)
with
|
left _ =>
match forall_rec (
hi - 1)
with
|
left _ =>
left _ _
|
right _ =>
right _ _
end
|
right _ =>
right _ _
end
else
left _ _
.
Next Obligation.
red. omega.
Qed.
Next Obligation.
assert (x = hi - 1 \/ x < hi - 1) by omega.
destruct H2. congruence. auto.
Qed.
Next Obligation.
intro F. apply wildcard'. intros; apply F; eauto. omega.
Qed.
Next Obligation.
intro F. apply wildcard'. apply F. omega.
Qed.
Next Obligation.
omegaContradiction.
Defined.
End FORALL.
Local Notation "
a #
b" := (
PMap.get b a) (
at level 1).
Module Mem.
Export Memtype.Mem.
Definition perm_order' (
po:
option permission) (
p:
permission) :=
match po with
|
Some p' =>
perm_order p'
p
|
None =>
False
end.
Definition perm_order'' (
po1 po2:
option permission) :=
match po1,
po2 with
|
Some p1,
Some p2 =>
perm_order p1 p2
|
_,
None =>
True
|
None,
Some _ =>
False
end.
Definition in_bounds (
o:
Z) (
bnds:
Z*
Z) :=
fst bnds <=
o <
snd bnds.
Record stack_inv (
s:
StackADT.stack) (
thr:
block) (
P:
perm_type) :
Prop :=
{
stack_inv_valid':
forall b,
in_stack_all s b ->
Plt b thr;
stack_inv_norepet:
nodup s;
stack_inv_perms:
stack_agree_perms P s;
stack_inv_below_limit:
size_stack s <
stack_limit;
stack_inv_wf:
wf_stack P s;
}.
Lemma stack_inv_valid s thr P (
SI:
stack_inv s thr P):
forall b,
in_stack s b ->
Plt b thr.
Proof.
Record mem' :
Type :=
mkmem {
mem_contents:
PMap.t (
ZMap.t memval);
(* block -> offset -> memval *)
mem_access:
PMap.t (
Z ->
perm_kind ->
option permission);
nextblock:
block;
access_max:
forall b ofs,
perm_order'' (
mem_access#
b ofs Max) (
mem_access#
b ofs Cur);
nextblock_noaccess:
forall b ofs k, ~(
Plt b nextblock) ->
mem_access#
b ofs k =
None;
contents_default:
forall b,
fst mem_contents#
b =
Undef;
contents_default':
fst mem_contents =
ZMap.init Undef;
stack:
StackADT.stack;
mem_stack_inv:
stack_inv stack nextblock (
fun b o k p =>
perm_order' ((
mem_access#
b)
o k)
p);
mem_bounds:
PMap.t (
Z*
Z);
mem_bounds_perm:
forall b o k p,
perm_order' ((
mem_access#
b)
o k)
p ->
in_bounds o (
mem_bounds#
b);
}.
Definition mem :=
mem'.
Lemma mkmem_ext:
forall cont1 cont2 acc1 acc2 next1 next2
a1 a2 b1 b2 c1 c2 c1'
c2'
adt1 adt2 sinv1 sinv2 bnd1 bnd2 bndpf1 bndpf2,
cont1=
cont2 ->
acc1=
acc2 ->
next1=
next2 ->
adt1 =
adt2 ->
bnd1 =
bnd2 ->
mkmem cont1 acc1 next1 a1 b1 c1 c1'
adt1 sinv1 bnd1 bndpf1 =
mkmem cont2 acc2 next2 a2 b2 c2 c2'
adt2 sinv2 bnd2 bndpf2.
Proof.
intros.
subst.
f_equal;
apply proof_irr.
Qed.
Validity of blocks and accesses
A block address is valid if it was previously allocated. It remains valid
even after being freed.
Definition valid_block (
m:
mem) (
b:
block) :=
Plt b (
nextblock m).
Theorem valid_not_valid_diff:
forall m b b',
valid_block m b -> ~(
valid_block m b') ->
b <>
b'.
Proof.
intros; red; intros. subst b'. contradiction.
Qed.
Local Hint Resolve valid_not_valid_diff:
mem.
Permissions
Definition perm (
m:
mem) (
b:
block) (
ofs:
Z) (
k:
perm_kind) (
p:
permission) :
Prop :=
perm_order' (
m.(
mem_access)#
b ofs k)
p.
Theorem perm_implies:
forall m b ofs k p1 p2,
perm m b ofs k p1 ->
perm_order p1 p2 ->
perm m b ofs k p2.
Proof.
Local Hint Resolve perm_implies:
mem.
Theorem perm_cur_max:
forall m b ofs p,
perm m b ofs Cur p ->
perm m b ofs Max p.
Proof.
assert (
forall po1 po2 p,
perm_order'
po2 p ->
perm_order''
po1 po2 ->
perm_order'
po1 p).
unfold perm_order',
perm_order''.
intros.
destruct po2;
try contradiction.
destruct po1;
try contradiction.
eapply perm_order_trans;
eauto.
unfold perm;
intros.
generalize (
access_max m b ofs).
eauto.
Qed.
Theorem perm_cur:
forall m b ofs k p,
perm m b ofs Cur p ->
perm m b ofs k p.
Proof.
Theorem perm_max:
forall m b ofs k p,
perm m b ofs k p ->
perm m b ofs Max p.
Proof.
Local Hint Resolve perm_cur perm_max:
mem.
Theorem perm_valid_block:
forall m b ofs k p,
perm m b ofs k p ->
valid_block m b.
Proof.
Local Hint Resolve perm_valid_block:
mem.
Remark perm_order_dec:
forall p1 p2, {
perm_order p1 p2} + {~
perm_order p1 p2}.
Proof.
intros. destruct p1; destruct p2; (left; constructor) || (right; intro PO; inversion PO).
Defined.
Remark perm_order'
_dec:
forall op p, {
perm_order'
op p} + {~
perm_order'
op p}.
Proof.
intros.
destruct op;
unfold perm_order'.
apply perm_order_dec.
right;
tauto.
Defined.
Theorem perm_dec:
forall m b ofs k p, {
perm m b ofs k p} + {~
perm m b ofs k p}.
Proof.
unfold perm;
intros.
apply perm_order'
_dec.
Defined.
Definition range_perm (
m:
mem) (
b:
block) (
lo hi:
Z) (
k:
perm_kind) (
p:
permission) :
Prop :=
forall ofs,
lo <=
ofs <
hi ->
perm m b ofs k p.
Theorem range_perm_implies:
forall m b lo hi k p1 p2,
range_perm m b lo hi k p1 ->
perm_order p1 p2 ->
range_perm m b lo hi k p2.
Proof.
Theorem range_perm_cur:
forall m b lo hi k p,
range_perm m b lo hi Cur p ->
range_perm m b lo hi k p.
Proof.
Theorem range_perm_max:
forall m b lo hi k p,
range_perm m b lo hi k p ->
range_perm m b lo hi Max p.
Proof.
Local Hint Resolve range_perm_implies range_perm_cur range_perm_max:
mem.
Lemma range_perm_dec:
forall m b lo hi k p, {
range_perm m b lo hi k p} + {~
range_perm m b lo hi k p}.
Proof.
intros.
induction lo using (
well_founded_induction_type (
Zwf_up_well_founded hi)).
destruct (
zlt lo hi).
destruct (
perm_dec m b lo k p).
destruct (
H (
lo + 1)).
red.
omega.
left;
red;
intros.
destruct (
zeq lo ofs).
congruence.
apply r.
omega.
right;
red;
intros.
elim n.
red;
intros;
apply H0;
omega.
right;
red;
intros.
elim n.
apply H0.
omega.
left;
red;
intros.
omegaContradiction.
Defined.
valid_access m chunk b ofs p holds if a memory access
of the given chunk is possible in
m at address
b, ofs
with current permissions
p.
This means:
-
The range of bytes accessed all have current permission p.
-
The offset ofs is aligned.
Definition valid_access (
m:
mem) (
chunk:
memory_chunk) (
b:
block) (
ofs:
Z) (
p:
permission):
Prop :=
range_perm m b ofs (
ofs +
size_chunk chunk)
Cur p
/\ (
align_chunk chunk |
ofs)
/\ (
perm_order p Writable ->
stack_access (
stack m)
b ofs (
ofs +
size_chunk chunk)).
Theorem valid_access_implies:
forall m chunk b ofs p1 p2,
valid_access m chunk b ofs p1 ->
perm_order p1 p2 ->
valid_access m chunk b ofs p2.
Proof.
intros.
destruct H as (
A &
B &
C).
split; [|
split];
eauto with mem.
intros;
apply C.
eapply perm_order_trans;
eauto.
Qed.
Theorem valid_access_freeable_any:
forall m chunk b ofs p,
valid_access m chunk b ofs Freeable ->
valid_access m chunk b ofs p.
Proof.
Local Hint Resolve valid_access_implies:
mem.
Theorem valid_access_valid_block:
forall m chunk b ofs,
valid_access m chunk b ofs Nonempty ->
valid_block m b.
Proof.
Local Hint Resolve valid_access_valid_block:
mem.
Lemma valid_access_perm:
forall m chunk b ofs k p,
valid_access m chunk b ofs p ->
perm m b ofs k p.
Proof.
Lemma valid_access_compat:
forall m chunk1 chunk2 b ofs p,
size_chunk chunk1 =
size_chunk chunk2 ->
align_chunk chunk2 <=
align_chunk chunk1 ->
valid_access m chunk1 b ofs p->
valid_access m chunk2 b ofs p.
Proof.
intros.
inv H1.
rewrite H in H2.
constructor;
auto.
destruct H3.
split.
-
eapply Zdivide_trans;
eauto.
eapply align_le_divides;
eauto.
-
rewrite <-
H.
auto.
Qed.
Lemma non_writable_private_stack_access_dec :
forall p m b ofs chunk,
{(
perm_order p Writable ->
stack_access m b ofs (
ofs +
size_chunk chunk))}
+ {~ (
perm_order p Writable ->
stack_access m b ofs (
ofs +
size_chunk chunk))}.
Proof.
Lemma valid_access_dec:
forall m chunk b ofs p,
{
valid_access m chunk b ofs p} + {~
valid_access m chunk b ofs p}.
Proof.
valid_pointer m b ofs returns true if the address b, ofs
is nonempty in m and false if it is empty.
Definition valid_pointer (
m:
mem) (
b:
block) (
ofs:
Z):
bool :=
perm_dec m b ofs Cur Nonempty.
Theorem valid_pointer_nonempty_perm:
forall m b ofs,
valid_pointer m b ofs =
true <->
perm m b ofs Cur Nonempty.
Proof.
Theorem valid_pointer_valid_access:
forall m b ofs,
valid_pointer m b ofs =
true <->
valid_access m Mint8unsigned b ofs Nonempty.
Proof.
intros.
rewrite valid_pointer_nonempty_perm.
split;
intros.
split.
simpl;
red;
intros.
replace ofs0 with ofs by omega.
auto.
split.
simpl.
apply Zone_divide.
intros.
inversion H0.
destruct H.
apply H.
simpl.
omega.
Qed.
C allows pointers one past the last element of an array. These are not
valid according to the previously defined valid_pointer. The property
weak_valid_pointer m b ofs holds if address b, ofs is a valid pointer
in m, or a pointer one past a valid block in m.
Definition weak_valid_pointer (
m:
mem) (
b:
block) (
ofs:
Z) :=
valid_pointer m b ofs ||
valid_pointer m b (
ofs - 1).
Lemma weak_valid_pointer_spec:
forall m b ofs,
weak_valid_pointer m b ofs =
true <->
valid_pointer m b ofs =
true \/
valid_pointer m b (
ofs - 1) =
true.
Proof.
Lemma valid_pointer_implies:
forall m b ofs,
valid_pointer m b ofs =
true ->
weak_valid_pointer m b ofs =
true.
Proof.
Operations over memory stores
The initial store
Lemma stack_perm m:
stack_agree_perms (
perm m) (
stack m).
Proof.
Hint Resolve stack_norepet stack_perm.
Program Definition empty:
mem :=
mkmem (
PMap.init (
ZMap.init Undef))
(
PMap.init (
fun ofs k =>
None))
1%
positive _ _ _ _ nil _ (
PMap.init (0,0))
_.
Next Obligation.
repeat rewrite PMap.gi.
red;
auto.
Qed.
Next Obligation.
Next Obligation.
Next Obligation.
Next Obligation.
Allocation of a fresh block with the given bounds. Return an updated
memory state and the address of the fresh block, which initially contains
undefined cells. Note that allocation never fails: we model an
infinite memory.
Lemma stack_valid:
forall m b,
in_stack (
stack m)
b ->
Plt b (
nextblock m).
Proof.
Lemma in_tframes_in_stack_all:
forall s f a b,
In f (
snd a) ->
In a s ->
in_frame f b ->
in_stack_all s b.
Proof.
induction s; simpl; intros; eauto.
destruct H0; subst.
- left. red. right. eauto.
- right; eauto.
Qed.
Lemma stack_inv_alloc:
forall m lo hi,
stack_inv (
stack m) (
Pos.succ (
nextblock m))
(
fun (
b :
block) (
o :
Z) (
k :
perm_kind) (
p :
permission) =>
perm_order'
((
PMap.set (
nextblock m) (
fun (
ofs :
Z) (
_ :
perm_kind) =>
if zle lo ofs &&
zlt ofs hi then Some Freeable else None) (
mem_access m))
#
b o k)
p).
Proof.
Program Definition alloc (
m:
mem) (
lo hi:
Z) : (
mem *
block) :=
(
mkmem (
PMap.set m.(
nextblock)
(
ZMap.init Undef)
m.(
mem_contents))
(
PMap.set m.(
nextblock)
(
fun ofs k =>
if zle lo ofs &&
zlt ofs hi then Some Freeable else None)
m.(
mem_access))
(
Psucc m.(
nextblock))
_ _ _ _
(
stack m)
_ (
PMap.set m.(
nextblock) (
lo,
hi)
m.(
mem_bounds))
_,
m.(
nextblock)).
Next Obligation.
Next Obligation.
Next Obligation.
Next Obligation.
apply contents_default'.
Qed.
Next Obligation.
Next Obligation.
Freeing a block between the given bounds.
Return the updated memory state where the given range of the given block
has been invalidated: future reads and writes to this
range will fail. Requires freeable permission on the given range.
Lemma stack_inv_free:
forall m (
P:
perm_type),
(
forall b o k p,
P b o k p ->
perm m b o k p) ->
stack_inv (
stack m) (
nextblock m)
P.
Proof.
intros m P PERMS.
destruct (
mem_stack_inv m).
constructor;
auto.
-
red.
red.
intros tf INS f AIN b fi o k p INFR PERM.
eapply stack_inv_perms0;
eauto.
eapply PERMS;
eauto.
-
eapply Forall_impl. 2:
eauto.
intros a INS WTF b fr IFRS INFR o k p PERM.
eapply WTF;
eauto.
eapply PERMS;
eauto.
Qed.
Program Definition unchecked_free (
m:
mem) (
b:
block) (
lo hi:
Z):
mem :=
mkmem m.(
mem_contents)
(
PMap.set b
(
fun ofs k =>
if zle lo ofs &&
zlt ofs hi then None else m.(
mem_access)#
b ofs k)
m.(
mem_access))
m.(
nextblock)
_ _ _ _ (
stack m)
_ m.(
mem_bounds)
_.
Next Obligation.
Next Obligation.
Next Obligation.
Next Obligation.
apply contents_default'.
Qed.
Next Obligation.
Next Obligation.
Definition free (
m:
mem) (
b:
block) (
lo hi:
Z):
option mem :=
if range_perm_dec m b lo hi Cur Freeable
then Some(
unchecked_free m b lo hi)
else None.
Fixpoint free_list (
m:
mem) (
l:
list (
block *
Z *
Z)) {
struct l}:
option mem :=
match l with
|
nil =>
Some m
| (
b,
lo,
hi) ::
l' =>
match free m b lo hi with
|
None =>
None
|
Some m' =>
free_list m'
l'
end
end.
Memory reads.
Reading N adjacent bytes in a block content.
Fixpoint getN (
n:
nat) (
p:
Z) (
c:
ZMap.t memval) {
struct n}:
list memval :=
match n with
|
O =>
nil
|
S n' =>
ZMap.get p c ::
getN n' (
p + 1)
c
end.
load chunk m b ofs perform a read in memory state m, at address
b and offset ofs. It returns the value of the memory chunk
at that address. None is returned if the accessed bytes
are not readable.
Definition load (
chunk:
memory_chunk) (
m:
mem) (
b:
block) (
ofs:
Z):
option val :=
if valid_access_dec m chunk b ofs Readable
then Some(
decode_val chunk (
getN (
size_chunk_nat chunk)
ofs (
m.(
mem_contents)#
b)))
else None.
loadv chunk m addr is similar, but the address and offset are given
as a single value addr, which must be a pointer value.
Definition loadv (
chunk:
memory_chunk) (
m:
mem) (
addr:
val) :
option val :=
match addr with
|
Vptr b ofs =>
load chunk m b (
Ptrofs.unsigned ofs)
|
_ =>
None
end.
loadbytes m b ofs n reads n consecutive bytes starting at
location (b, ofs). Returns None if the accessed locations are
not readable.
Definition loadbytes (
m:
mem) (
b:
block) (
ofs n:
Z):
option (
list memval) :=
if range_perm_dec m b ofs (
ofs +
n)
Cur Readable
then Some (
getN (
nat_of_Z n)
ofs (
m.(
mem_contents)#
b))
else None.
Memory stores.
Writing N adjacent bytes in a block content.
Definition memval_eq (
m1 m2:
memval): {
m1 =
m2 } + {
m1 <>
m2 }.
Proof.
Fixpoint setN (
vl:
list memval) (
p:
Z) (
c:
ZMap.t memval) {
struct vl}:
ZMap.t memval :=
match vl with
|
nil =>
c
|
v ::
vl' =>
setN vl' (
p + 1) (
if memval_eq (
ZMap.get p c)
v then c else ZMap.set p v c)
end.
Remark setN_other:
forall vl c p q,
(
forall r,
p <=
r <
p +
Z_of_nat (
length vl) ->
r <>
q) ->
ZMap.get q (
setN vl p c) =
ZMap.get q c.
Proof.
induction vl;
intros;
simpl.
auto.
simpl length in H.
rewrite inj_S in H.
rewrite IHvl.
destr.
apply ZMap.gso.
apply not_eq_sym.
apply H.
omega.
intros;
apply H.
omega.
Qed.
Remark setN_outside:
forall vl c p q,
q <
p \/
q >=
p +
Z_of_nat (
length vl) ->
ZMap.get q (
setN vl p c) =
ZMap.get q c.
Proof.
Remark getN_setN_same:
forall vl p c,
getN (
length vl)
p (
setN vl p c) =
vl.
Proof.
induction vl;
intros;
simpl.
auto.
decEq.
rewrite setN_outside.
destr.
apply ZMap.gss.
omega.
apply IHvl.
Qed.
Remark getN_exten:
forall c1 c2 n p,
(
forall i,
p <=
i <
p +
Z_of_nat n ->
ZMap.get i c1 =
ZMap.get i c2) ->
getN n p c1 =
getN n p c2.
Proof.
induction n;
intros.
auto.
rewrite inj_S in H.
simpl.
decEq.
apply H.
omega.
apply IHn.
intros.
apply H.
omega.
Qed.
Remark getN_setN_disjoint:
forall vl q c n p,
Intv.disjoint (
p,
p +
Z_of_nat n) (
q,
q +
Z_of_nat (
length vl)) ->
getN n p (
setN vl q c) =
getN n p c.
Proof.
intros.
apply getN_exten.
intros.
apply setN_other.
intros;
red;
intros;
subst r.
eelim H;
eauto.
Qed.
Remark getN_setN_outside:
forall vl q c n p,
p +
Z_of_nat n <=
q \/
q +
Z_of_nat (
length vl) <=
p ->
getN n p (
setN vl q c) =
getN n p c.
Proof.
Remark setN_default:
forall vl q c,
fst (
setN vl q c) =
fst c.
Proof.
induction vl; simpl; intros. auto. rewrite IHvl. destr.
Qed.
store chunk m b ofs v perform a write in memory state m.
Value v is stored at address b and offset ofs.
Return the updated memory store, or None if the accessed bytes
are not writable.
Program Definition store (
chunk:
memory_chunk) (
m:
mem) (
b:
block) (
ofs:
Z) (
v:
val):
option mem :=
if valid_access_dec m chunk b ofs Writable then
Some (
mkmem (
PMap.set b
(
setN (
encode_val chunk v)
ofs (
m.(
mem_contents)#
b))
m.(
mem_contents))
m.(
mem_access)
m.(
nextblock)
_ _ _ _ (
stack m)
_ m.(
mem_bounds)
_)
else
None.
Next Obligation.
Next Obligation.
Next Obligation.
Next Obligation.
apply contents_default'.
Qed.
Next Obligation.
destruct m; eauto.
Qed.
Next Obligation.
storev chunk m addr v is similar, but the address and offset are given
as a single value addr, which must be a pointer value.
Definition storev (
chunk:
memory_chunk) (
m:
mem) (
addr v:
val) :
option mem :=
match addr with
|
Vptr b ofs =>
store chunk m b (
Ptrofs.unsigned ofs)
v
|
_ =>
None
end.
storebytes m b ofs bytes stores the given list of bytes bytes
starting at location (b, ofs). Returns updated memory state
or None if the accessed locations are not writable.
Program Definition storebytes (
m:
mem) (
b:
block) (
ofs:
Z) (
bytes:
list memval) :
option mem :=
if range_perm_dec m b ofs (
ofs +
Z_of_nat (
length bytes))
Cur Writable then
if stack_access_dec (
stack m)
b ofs (
ofs +
Z_of_nat (
length bytes))
then
Some (
mkmem
(
PMap.set b (
setN bytes ofs (
m.(
mem_contents)#
b))
m.(
mem_contents))
m.(
mem_access)
m.(
nextblock)
_ _ _ _ (
stack m)
_ m.(
mem_bounds)
_)
else None
else
None.
Next Obligation.
Next Obligation.
Next Obligation.
Next Obligation.
apply contents_default'.
Qed.
Next Obligation.
destruct m; auto.
Qed.
Next Obligation.
drop_perm m b lo hi p sets the max permissions of the byte range
(b, lo) ... (b, hi - 1) to p. These bytes must have current permissions
Freeable in the initial memory state m.
Returns updated memory state, or None if insufficient permissions.
Program Definition drop_perm (
m:
mem) (
b:
block) (
lo hi:
Z) (
p:
permission):
option mem :=
if range_perm_dec m b lo hi Cur Freeable then
Some (
mkmem m.(
mem_contents)
(
PMap.set b
(
fun ofs k =>
if zle lo ofs &&
zlt ofs hi then Some p else m.(
mem_access)#
b ofs k)
m.(
mem_access))
m.(
nextblock)
_ _ _ _ (
stack m)
_ m.(
mem_bounds)
_)
else None.
Next Obligation.
Next Obligation.
Next Obligation.
Next Obligation.
apply contents_default'.
Qed.
Next Obligation.
Next Obligation.
Record mem_inj {
injperm:
InjectPerm} (
f:
meminj) (
g:
frameinj) (
m1 m2:
mem) :
Prop :=
mk_mem_inj {
mi_perm:
forall b1 b2 delta ofs k p,
f b1 =
Some(
b2,
delta) ->
perm m1 b1 ofs k p ->
inject_perm_condition p ->
perm m2 b2 (
ofs +
delta)
k p;
mi_align:
forall b1 b2 delta chunk ofs p,
f b1 =
Some(
b2,
delta) ->
range_perm m1 b1 ofs (
ofs +
size_chunk chunk)
Max p ->
(
align_chunk chunk |
delta);
mi_memval:
forall b1 ofs b2 delta,
f b1 =
Some(
b2,
delta) ->
perm m1 b1 ofs Cur Readable ->
memval_inject f (
ZMap.get ofs m1.(
mem_contents)#
b1) (
ZMap.get (
ofs+
delta)
m2.(
mem_contents)#
b2);
mi_stack_blocks:
stack_inject f g (
perm m1) (
stack m1) (
stack m2);
}.
Memory extensions
A store m2 extends a store m1 if m2 can be obtained from m1
by increasing the sizes of the memory blocks of m1 (decreasing
the low bounds, increasing the high bounds), and replacing some of
the Vundef values stored in m1 by more defined values stored
in m2 at the same locations.
Record extends' {
injperm:
InjectPerm} (
m1 m2:
mem) :
Prop :=
mk_extends {
mext_next:
nextblock m1 =
nextblock m2;
mext_inj:
mem_inj inject_id (
flat_frameinj (
length (
stack m1)))
m1 m2;
mext_perm_inv:
forall b ofs k p,
perm m2 b ofs k p ->
perm m1 b ofs k p \/ ~
perm m1 b ofs Max Nonempty;
mext_length_stack:
length (
stack m2) =
length (
stack m1);
}.
Definition extends {
injperm:
InjectPerm} :=
extends'.
Memory injections
A memory state
m1 injects into another memory state
m2 via the
memory injection
f if the following conditions hold:
-
each access in m2 that corresponds to a valid access in m1
is itself valid;
-
the memory value associated in m1 to an accessible address
must inject into m2's memory value at the corersponding address;
-
unallocated blocks in m1 must be mapped to None by f;
-
if f b = Some(b', delta), b' must be valid in m2;
-
distinct blocks in m1 are mapped to non-overlapping sub-blocks in m2;
-
the sizes of m2's blocks are representable with unsigned machine integers;
-
pointers that could be represented using unsigned machine integers remain
representable after the injection.
Definition meminj_no_overlap (
f:
meminj) (
m:
mem) :
Prop :=
forall b1 b1'
delta1 b2 b2'
delta2 ofs1 ofs2,
b1 <>
b2 ->
f b1 =
Some (
b1',
delta1) ->
f b2 =
Some (
b2',
delta2) ->
perm m b1 ofs1 Max Nonempty ->
perm m b2 ofs2 Max Nonempty ->
b1' <>
b2' \/
ofs1 +
delta1 <>
ofs2 +
delta2.
Record inject' {
injperm:
InjectPerm} (
f:
meminj) (
g:
frameinj) (
m1 m2:
mem) :
Prop :=
mk_inject {
mi_inj:
mem_inj f g m1 m2;
mi_freeblocks:
forall b, ~(
valid_block m1 b) ->
f b =
None;
mi_mappedblocks:
forall b b'
delta,
f b =
Some(
b',
delta) ->
valid_block m2 b';
mi_no_overlap:
meminj_no_overlap f m1;
mi_representable:
forall b b'
delta,
f b =
Some(
b',
delta) ->
delta >= 0
/\
forall ofs,
perm m1 b (
Ptrofs.unsigned ofs)
Max Nonempty
\/
perm m1 b (
Ptrofs.unsigned ofs - 1)
Max Nonempty ->
0 <=
Ptrofs.unsigned ofs +
delta <=
Ptrofs.max_unsigned;
mi_perm_inv:
forall b1 ofs b2 delta k p,
f b1 =
Some(
b2,
delta) ->
perm m2 b2 (
ofs +
delta)
k p ->
perm m1 b1 ofs k p \/ ~
perm m1 b1 ofs Max Nonempty
}.
Definition inject {
injperm:
InjectPerm} :=
inject'.
Local Hint Resolve mi_mappedblocks:
mem.
Weak Memory injections
A weak memory injection is a memory injection whose
domain may contain invalid blocks
Record weak_inject {
injperm:
InjectPerm} (
f:
meminj) (
g:
frameinj) (
m1 m2:
mem) :
Prop :=
mk_weak_inject {
mwi_inj:
mem_inj f g m1 m2;
mwi_mappedblocks:
forall b b'
delta,
f b =
Some(
b',
delta) ->
valid_block m2 b';
mwi_no_overlap:
meminj_no_overlap f m1;
mwi_representable:
forall b b'
delta,
f b =
Some(
b',
delta) ->
delta >= 0
/\
forall ofs,
perm m1 b (
Ptrofs.unsigned ofs)
Max Nonempty
\/
perm m1 b (
Ptrofs.unsigned ofs - 1)
Max Nonempty ->
0 <=
Ptrofs.unsigned ofs +
delta <=
Ptrofs.max_unsigned;
mwi_perm_inv:
forall b1 ofs b2 delta k p,
f b1 =
Some(
b2,
delta) ->
perm m2 b2 (
ofs +
delta)
k p ->
perm m1 b1 ofs k p \/ ~
perm m1 b1 ofs Max Nonempty
}.
The magree predicate is a variant of extends where we
allow the contents of the two memory states to differ arbitrarily
on some locations. The predicate P is true on the locations whose
contents must be in the lessdef relation.
Definition locset :=
block ->
Z ->
Prop.
Record magree' {
injperm:
InjectPerm} (
m1 m2:
mem) (
P:
locset) :
Prop :=
mk_magree {
ma_perm:
forall b ofs k p,
perm m1 b ofs k p ->
inject_perm_condition p ->
perm m2 b ofs k p;
ma_perm_inv:
forall b ofs k p,
perm m2 b ofs k p ->
perm m1 b ofs k p \/ ~
perm m1 b ofs Max Nonempty;
ma_memval:
forall b ofs,
perm m1 b ofs Cur Readable ->
P b ofs ->
memval_lessdef (
ZMap.get ofs (
PMap.get b (
mem_contents m1)))
(
ZMap.get ofs (
PMap.get b (
mem_contents m2)));
ma_nextblock:
nextblock m2 =
nextblock m1;
ma_stack:
stack_inject inject_id (
flat_frameinj (
length (
stack m1))) (
perm m1) (
stack m1) (
stack m2);
ma_length_stack:
length (
stack m2) =
length (
stack m1);
}.
Definition magree {
injperm:
InjectPerm} :=
magree'.
Injecting a memory into itself.
Definition flat_inj (
thr:
block) :
meminj :=
fun (
b:
block) =>
if plt b thr then Some(
b, 0)
else None.
Definition inject_neutral {
injperm:
InjectPerm} (
thr:
block) (
m:
mem) :=
mem_inj (
flat_inj thr) (
flat_frameinj (
length (
stack m)))
m m.
Record unchanged_on' (
P:
block ->
Z ->
Prop) (
m_before m_after:
mem) :
Prop :=
mk_unchanged_on {
unchanged_on_nextblock:
Ple (
nextblock m_before) (
nextblock m_after);
unchanged_on_perm:
forall b ofs k p,
P b ofs ->
valid_block m_before b ->
(
perm m_before b ofs k p <->
perm m_after b ofs k p);
unchanged_on_contents:
forall b ofs,
P b ofs ->
perm m_before b ofs Cur Readable ->
ZMap.get ofs (
PMap.get b m_after.(
mem_contents)) =
ZMap.get ofs (
PMap.get b m_before.(
mem_contents));
}.
Definition unchanged_on :=
unchanged_on'.
Definition valid_frame f m :=
forall b,
in_frame f b ->
valid_block m b.
Definition valid_block_dec m b: {
valid_block m b } + { ~
valid_block m b }.
Proof.
Definition valid_block_dec_eq m b: {
forall b0,
b0 =
b ->
valid_block m b0 } + { ~ (
forall b0,
b0 =
b ->
valid_block m b0) }.
Proof.
destruct (
valid_block_dec m b); [
left|
right].
intros;
subst;
auto.
intro X;
apply n.
apply X;
auto.
Qed.
Definition valid_block_list_dec m l: {
forall b,
In b l ->
valid_block m b } + { ~ (
forall b,
In b l ->
valid_block m b) }.
Proof.
induction l;
simpl;
intros.
left;
tauto.
destruct IHl, (
valid_block_dec m a);
intuition.
left;
intros;
intuition subst;
auto.
Qed.
Definition valid_frame_dec f m: {
valid_frame f m } + { ~
valid_frame f m }.
Proof.
Definition sumbool_not {
A} (
x: {
A} + {~
A}): {~
A} + {~ (~
A)}.
Proof.
destruct x. right; intro NA. apply NA. apply a.
left; auto.
Defined.
Definition in_bounds_inside (
orng:
option (
Z*
Z)) (
z1 z2:
Z) :
Prop :=
match orng with
Some (
lo,
hi) =>
lo <=
z1 /\
z2 <=
hi
|
None =>
True
end.
Lemma in_bounds_inside_dec:
forall (
o:
option Z) (
p:
Z *
Z),
{
in_bounds_inside (
option_map (
fun x => (0,
x))
o) (
fst p) (
snd p) } + { ~
in_bounds_inside (
option_map (
fun x => (0,
x))
o) (
fst p) (
snd p) }.
Proof.
intros.
destruct p as (
z1 &
z2).
unfold in_bounds_inside;
destruct o;
simpl;
auto.
destruct (
zle 0
z1); [|
right;
intros (
A &
B);
omega].
destruct (
zle z2 z); [
left;
omega |
right;
intros (
A &
B);
omega].
Qed.
Definition eq_bounds (
orng:
option (
Z*
Z)) (
z1 z2:
Z) :
Prop :=
match orng with
Some (
lo,
hi) =>
lo =
z1 /\
z2 =
hi
|
None =>
True
end.
Lemma eq_bounds_dec:
forall (
o:
option Z) (
p:
Z *
Z),
{
eq_bounds (
option_map (
fun x => (0,
x))
o) (
fst p) (
snd p) } + { ~
eq_bounds (
option_map (
fun x => (0,
x))
o) (
fst p) (
snd p) }.
Proof.
intros.
destruct p as (
z1 &
z2).
unfold eq_bounds;
destruct o;
simpl;
auto.
destruct (
zeq 0
z1); [|
right;
intros (
A &
B);
omega].
destruct (
zeq z2 z); [
left;
omega |
right;
intros (
A &
B);
omega].
Qed.
Definition prepend_to_current_stage a (
l:
StackADT.stack) :
option StackADT.stack :=
match l with
| (
None,
b)::
r =>
Some ((
Some a,
b)::
r)
|
_ =>
None
end.
Lemma valid_frames_add:
forall s f thr,
(
forall b,
in_stack s b ->
Plt b thr) ->
(
forall b,
in_frames f b ->
Plt b thr) ->
forall b :
block,
in_stack (
f ::
s)
b ->
Plt b thr.
Proof.
intros s f thr SPECstack SPECframes b IS.
rewrite in_stack_cons in IS.
intuition.
Qed.
Lemma valid_frame_add:
forall s f thr s',
(
forall b,
in_stack s b ->
Plt b thr) ->
(
forall b,
in_frame f b ->
Plt b thr) ->
prepend_to_current_stage f s =
Some s' ->
forall b :
block,
in_stack s'
b ->
Plt b thr.
Proof.
Lemma frame_agree_perms_add:
forall (
f:
frame_adt) (
s:
StackADT.stack)
s'
m,
stack_agree_perms
(
fun (
b :
block) (
o :
Z) (
k :
perm_kind) (
p :
permission) =>
perm_order' ((
mem_access m) #
b o k)
p)
s ->
(
Forall (
fun b =>
forall o k p,
Mem.perm m (
fst b)
o k p ->
0 <=
o <
frame_size (
snd b))%
Z (
frame_adt_blocks f)) ->
prepend_to_current_stage f s =
Some s' ->
stack_agree_perms
(
fun (
b :
block) (
o :
Z) (
k :
perm_kind) (
p :
permission) =>
perm_order' ((
mem_access m) #
b o k)
p)
s'.
Proof.
red.
intros f s s'
m SAP NEW PREP tf IN f0 AIN b fi o k p INB PERM.
unfold prepend_to_current_stage in PREP;
repeat destr_in PREP.
destruct IN as [
IN|
IN];
eauto.
-
rewrite Forall_forall in NEW.
subst.
simpl in *.
inv AIN.
eapply NEW in INB;
eauto.
-
eapply SAP;
eauto.
simpl;
auto.
Qed.
Lemma size_stack_add:
forall f s
(
SZ: (
size_stack s +
size_frames f <
stack_limit)%
Z),
size_stack (
f ::
s) <
stack_limit.
Proof.
simpl. intros. auto.
Qed.
Lemma nodup_add:
forall f s s',
nodup s ->
Forall (
fun x => ~
in_stack s x) (
map fst (
frame_adt_blocks f)) ->
prepend_to_current_stage f s =
Some s' ->
nodup s'.
Proof.
intros f s s'
ND F PREP.
unfold prepend_to_current_stage in PREP;
repeat destr_in PREP.
constructor;
auto.
inv ND;
auto.
intro b;
rewrite in_frames_cons.
intros (
f1 &
EQ &
IFR);
inv EQ.
inv ND.
rewrite Forall_forall in F.
intros;
intro IS;
eapply F;
eauto.
Qed.
Definition mem_stack_wf_plus f m s':
prepend_to_current_stage f (
stack m) =
Some s' ->
wf_stack (
perm m)
s' .
Proof.
Lemma mem_stack_inv_plus f m s':
valid_frame f m ->
(
forall b,
in_frame f b -> ~
in_stack (
stack m)
b) ->
frame_agree_perms (
perm m)
f ->
size_stack (
tl (
stack m)) +
align (
frame_adt_size f) 8 <
stack_limit ->
prepend_to_current_stage f (
stack m) =
Some s' ->
stack_inv s' (
nextblock m) (
perm m).
Proof.
intros VALID NIS FAP SZ PREP.
generalize (
mem_stack_wf_plus _ _ _ PREP).
intro WF.
unfold prepend_to_current_stage in PREP;
repeat destr_in PREP.
destruct (
mem_stack_inv m).
rewrite Heqs in *;
simpl in *.
constructor;
auto.
-
intro b.
simpl.
unfold in_frames_all.
specialize (
stack_inv_valid'0
b).
simpl in stack_inv_valid'0.
intros.
simpl in *.
intuition eauto.
apply VALID.
auto.
destruct H as (
ff &
INFL &
IFR).
apply H0.
red.
simpl.
right.
eauto.
-
inv stack_inv_norepet0;
constructor;
auto.
-
intros tf INTF.
simpl in *.
destruct INTF as [
INTF|
INTF];
eauto.
subst.
simpl in *.
inversion 1;
subst.
eauto.
eapply stack_inv_perms0;
eauto.
right;
auto.
-
simpl;
unfold size_frames in *;
simpl in *.
rewrite Zmax_spec.
destr.
unfold size_frame at 2
in g.
rewrite Z.max_r in stack_inv_below_limit0.
omega.
clear.
induction l;
simpl;
intros;
eauto.
omega.
apply Z.max_le_iff.
right;
eauto.
Qed.
Definition frame_agree_perms_forall (
P:
block ->
Z ->
perm_kind ->
permission ->
Prop)
f :=
Forall (
fun bfi =>
let '(
b,
fi) :=
bfi in
forall o k p,
P b o k p -> 0 <=
o <
frame_size fi
)(
frame_adt_blocks f).
Lemma frame_agree_perms_rew:
forall P f,
frame_agree_perms P f <->
frame_agree_perms_forall P f.
Proof.
Definition dec (
P:
Prop) := {
P} + {~
P}.
Lemma dec_eq:
forall (
P Q:
Prop) (
EQ:
P <->
Q),
dec P ->
dec Q.
Proof.
intros P Q EQ D.
destruct D; [left|right]; tauto.
Qed.
Lemma dec_impl:
forall (
A:
Type) (
P Q R:
A ->
Prop)
(
IMPL:
forall x,
P x ->
Q x)
(
DECR:
dec (
forall x,
Q x ->
P x ->
R x)),
dec (
forall x,
P x ->
R x).
Proof.
intros A P Q R IMPL.
apply dec_eq.
split;
intros;
eauto.
Qed.
Definition zle_zlt_dec:
forall (
a b c:
Z), {
a <=
b <
c} + { ~
a <=
b <
c }.
Proof.
intros a b c;
destruct (
zle a b), (
zlt b c);[
left;
omega|
right;
omega..].
Qed.
Lemma perm_impl_prop_dec m b (
P:
Z ->
Prop) (
Pdec:
forall o,
dec (
P o)):
dec (
forall o k p,
perm m b o k p ->
P o).
Proof.
Definition frame_agree_perms_forall_dec m f:
{
frame_agree_perms_forall (
perm m)
f} + { ~
frame_agree_perms_forall (
perm m)
f}.
Proof.
Definition frame_agree_perms_dec m f:
{
frame_agree_perms (
perm m)
f} + { ~
frame_agree_perms (
perm m)
f}.
Proof.
Definition top_tframe_prop_dec (
P:
tframe_adt ->
Prop) (
Pdec:
forall t, {
P t} + { ~
P t}):
forall s, {
top_tframe_prop P s } + { ~
top_tframe_prop P s }.
Proof.
intros.
destruct s. right; inversion 1.
destruct (Pdec t);[left;constructor; auto|right;inversion 1; congruence].
Defined.
Definition dec_true_impl:
forall (
P Q:
Prop),
P ->
dec Q ->
dec (
P ->
Q).
Proof.
intros. destruct H0; [left|right]; auto.
Qed.
Program Definition record_stack_blocks (
m:
mem) (
f:
frame_adt) :
option mem :=
if valid_frame_dec f m
then if (
Forall_dec _ (
fun x =>
sumbool_not (
in_stack_dec (
stack m) (
fst x))) (
frame_adt_blocks f))
then if (
zlt (
size_stack (
tl (
stack m)) +
align (
Z.max 0 (
frame_adt_size f)) 8)
stack_limit)
then if frame_agree_perms_forall_dec m f
then
match prepend_to_current_stage f (
stack m)
with
|
Some s =>
Some
(
mkmem (
mem_contents m)
(
mem_access m)
(
nextblock m)
(
access_max m)
(
nextblock_noaccess m)
(
contents_default m)
(
contents_default'
m)
s
_
(
mem_bounds m)
(
mem_bounds_perm m))
|
_ =>
None
end
else None
else None
else None
else None.
Next Obligation.
Program Definition push_new_stage (
m:
mem) :
mem :=
(
mkmem (
mem_contents m)
(
mem_access m)
(
nextblock m)
(
access_max m)
(
nextblock_noaccess m)
(
contents_default m)
(
contents_default'
m)
((
None,
nil)::
stack m)
_
(
mem_bounds m)
(
mem_bounds_perm m)).
Next Obligation.
destruct (
mem_stack_inv m).
constructor.
-
simpl.
intuition.
contradict H0.
unfold in_frames_all;
cbn.
intuition.
destruct H0;
intuition.
-
constructor;
auto.
-
intros tf IN f INN.
destruct IN;
subst;
eauto.
easy.
-
simpl.
change (
size_frames (
None,
nil))
with 0.
omega.
-
constructor;
auto.
intro b.
simpl;
easy.
Qed.
Lemma destr_dep_let:
forall {
A1 A2 B:
Type} (
a:
A1*
A2) (
bres:
B) (
T:
forall m b (
p: (
m,
b) =
a),
option B),
(
let (
m,
b)
as ano return (
ano =
a ->
option B) :=
a in
fun Heq : (
m,
b) =
a =>
T _ _ Heq)
eq_refl =
Some bres ->
forall (
P:
B ->
Prop),
(
forall m b (
pf: (
m,
b) =
a)
x,
T _ _ pf =
Some x ->
P x) ->
P bres.
Proof.
intros. destruct a. apply H0 in H; auto.
Qed.
Lemma destr_dep_match:
forall {
A B:
Type} (
a:
option A) (
x:
B)
(
T:
forall x (
pf:
Some x =
a),
B)
(
MATCH:
match a as ano return (
ano =
a ->
option B)
with
|
Some m1 =>
fun Heq:
Some m1 =
a =>
Some (
T _ Heq)
|
None =>
fun Heq =>
None
end eq_refl =
Some x) ,
forall P:
B ->
Prop,
(
forall m (
pf:
Some m =
a)
x,
T m pf =
x ->
P x) ->
P x.
Proof.
intros. destr_in MATCH. subst. inv MATCH. eapply H. eauto.
Qed.
Lemma constr_let:
forall {
A1 A2 B:
Type} (
a:
A1 *
A2)
m b (
EQ:
a = (
m,
b))
(
T:
forall m b (
pf: (
m,
b) =
a),
option B)
X
(
EQ:
T _ _ (
eq_sym EQ) =
Some X),
(
let (
m0,
b0)
as ano return (
ano =
a ->
option B) :=
a in
fun Heq : (
m0,
b0) =
a =>
T m0 b0 Heq)
eq_refl =
Some X.
Proof.
intros. subst. simpl in *. auto.
Qed.
Lemma constr_match:
forall {
A B:
Type} (
a:
option A)
x (
EQ:
a =
Some x)
(
T:
forall x (
pf:
Some x =
a),
option B)
X
(
EQ:
T _ (
eq_sym EQ) =
Some X),
(
match a as ano return (
ano =
a ->
option B)
with
Some m1 =>
fun Heq :
Some m1 =
a =>
T m1 Heq
|
None =>
fun _ =>
None
end)
eq_refl =
Some X.
Proof.
intros. subst. simpl in *. auto.
Qed.
Definition stage_tailcallable (
tf:
tframe_adt) (
m:
mem) :
Prop :=
match fst tf with
None =>
True
|
Some f =>
forall b o k p,
in_frame f b -> ~
Mem.perm m b o k p
end.
Definition stage_tailcallable_dec m tf : {
stage_tailcallable tf m } + { ~
stage_tailcallable tf m }.
Proof.
Definition top_frame_no_perm m :=
top_tframe_prop
(
fun tf =>
forall b,
in_frames tf b ->
forall o k p,
~
perm m b o k p) (
stack m).
Definition top_frame_no_perm_dec m2: {
top_frame_no_perm m2 } + { ~
top_frame_no_perm m2}.
Proof.
Definition tailcall_stage_stack (
m:
mem) :
option StackADT.stack :=
if top_frame_no_perm_dec m
then Some ((
None,
opt_cons (
fst (
hd (
None,
nil) (
stack m))) (
snd (
hd (
None,
nil) (
stack m))))::
tl (
stack m))
else None.
Lemma in_stack_all_tailcall_stage_stack:
forall m s'
b,
tailcall_stage_stack m =
Some s' ->
in_stack_all s'
b ->
in_stack_all (
stack m)
b.
Proof.
Program Definition tailcall_stage (
m:
mem) :
option mem :=
match tailcall_stage_stack m with
|
None =>
None
|
Some s' =>
Some (
mkmem (
mem_contents m)
(
mem_access m)
(
nextblock m)
(
access_max m)
(
nextblock_noaccess m)
(
contents_default m)
(
contents_default'
m)
s'
_
(
mem_bounds m)
(
mem_bounds_perm m))
end.
Next Obligation.
destruct (
mem_stack_inv m).
unfold tailcall_stage_stack in Heq_anonymous.
repeat destr_in Heq_anonymous.
inv t.
rewrite <-
H in *.
constructor.
-
simpl.
intros.
eapply stack_inv_valid'0.
simpl.
destruct H1;
auto.
revert H1.
unfold in_frames_all.
intuition.
decompose [
ex and]
H2;
simpl in *.
apply In_opt_cons in H3.
destruct H3;
eauto.
rewrite H1.
simpl.
eauto.
-
inv stack_inv_norepet0;
constructor;
simpl;
auto.
-
simpl.
intros tf0 EQ ff INN.
simpl in EQ.
destruct EQ as [
EQ|
EQ].
subst.
inv INN.
eapply stack_inv_perms0.
right;
eauto.
eauto.
-
simpl.
simpl in stack_inv_below_limit0.
rewrite <-
size_frames_eq.
auto.
-
inv stack_inv_wf0.
constructor;
auto.
intro b.
simpl.
intros.
apply In_opt_cons in H1.
destruct H1;
eauto.
eapply H0.
eapply in_frame_in_frames;
eauto.
Qed.
Lemma alloc_stack:
forall m1 m2 lo hi b,
alloc m1 lo hi = (
m2,
b) ->
stack m2 =
stack m1.
Proof.
intros m1 m2 lo hi b ALLOC;
unfold alloc in ALLOC;
inv ALLOC.
reflexivity.
Qed.
Lemma mem_stack_inv_tl:
forall m,
stack_inv (
tl (
stack m)) (
nextblock m) (
perm m).
Proof.
Definition unrecord_stack_block (
m:
mem) :
option mem :=
match stack m with
nil =>
None
|
a::
r =>
Some ((
mkmem (
mem_contents m)
(
mem_access m)
(
nextblock m)
(
access_max m)
(
nextblock_noaccess m)
(
contents_default m)
(
contents_default'
m)
(
tl (
stack m))
(
mem_stack_inv_tl _)
(
mem_bounds m)
(
mem_bounds_perm m)
))
end.
Ltac unfold_unrecord'
H m :=
unfold unrecord_stack_block in H;
let A :=
fresh in
case_eq (
stack m); [
intro A
|
intros ? ?
A
];
setoid_rewrite A in H;
inv H.
Ltac unfold_unrecord :=
match goal with
H:
unrecord_stack_block ?
m =
_ |-
_ =>
unfold_unrecord'
H m
end.
Local Instance memory_model_ops :
MemoryModelOps mem.
Proof.
Section WITHINJPERM.
Context {
injperm:
InjectPerm}.
Properties of the memory operations
Properties of the empty store.
Theorem nextblock_empty:
nextblock empty = 1%
positive.
Proof.
reflexivity. Qed.
Theorem perm_empty:
forall b ofs k p, ~
perm empty b ofs k p.
Proof.
Theorem valid_access_empty:
forall chunk b ofs p, ~
valid_access empty chunk b ofs p.
Proof.
Theorem empty_weak_inject :
forall f m,
stack m =
nil ->
(
forall b b'
delta,
f b =
Some(
b',
delta) ->
delta >= 0) ->
(
forall b b'
delta,
f b =
Some(
b',
delta) ->
valid_block m b') ->
weak_inject f nil Mem.empty m.
Proof.
intros f m STK DELTA MAPPED.
constructor.
constructor.
-
intros b1 b2 delta ofs k p F PERM INJP.
exploit perm_empty;
eauto.
contradiction.
-
intros b1 b2 delta chunk ofs p F RNGP.
red in RNGP.
specialize (
RNGP ofs).
exploit RNGP.
generalize (
size_chunk_pos chunk).
omega.
intros.
exploit perm_empty;
eauto.
contradiction.
-
intros b1 ofs b2 delta F PERM.
exploit perm_empty;
eauto.
contradiction.
-
constructor.
simpl.
rewrite STK.
constructor.
intros.
rewrite STK in *.
simpl in *.
contradiction.
-
auto.
-
red.
intros.
exploit perm_empty;
eauto.
-
intros b b'
delta F.
split.
eapply DELTA;
eauto.
intros ofs [
PERM |
PERM];
exploit perm_empty;
eauto;
contradiction.
-
intros b1 ofs b2 delta k p F PERM.
right.
unfold not.
intros.
exploit perm_empty;
eauto;
contradiction.
Qed.
Theorem weak_inject_to_inject :
forall f g m1 m2,
weak_inject f g m1 m2 ->
(
forall b p,
f b =
Some p ->
valid_block m1 b) ->
inject f g m1 m2.
Proof.
intros f g m1 m2 WINJ VB.
inv WINJ. constructor; auto.
intros. destruct (f b) eqn:EQ; auto.
exploit VB; eauto. congruence.
Qed.
Properties related to load
Theorem valid_access_load:
forall m chunk b ofs,
valid_access m chunk b ofs Readable ->
exists v,
load chunk m b ofs =
Some v.
Proof.
Theorem load_valid_access:
forall m chunk b ofs v,
load chunk m b ofs =
Some v ->
valid_access m chunk b ofs Readable.
Proof.
Lemma load_result:
forall chunk m b ofs v,
load chunk m b ofs =
Some v ->
v =
decode_val chunk (
getN (
size_chunk_nat chunk)
ofs (
m.(
mem_contents)#
b)).
Proof.
Local Hint Resolve load_valid_access valid_access_load:
mem.
Theorem load_type:
forall m chunk b ofs v,
load chunk m b ofs =
Some v ->
Val.has_type v (
type_of_chunk chunk).
Proof.
Theorem load_cast:
forall m chunk b ofs v,
load chunk m b ofs =
Some v ->
match chunk with
|
Mint8signed =>
v =
Val.sign_ext 8
v
|
Mint8unsigned =>
v =
Val.zero_ext 8
v
|
Mint16signed =>
v =
Val.sign_ext 16
v
|
Mint16unsigned =>
v =
Val.zero_ext 16
v
|
_ =>
True
end.
Proof.
Theorem load_int8_signed_unsigned:
forall m b ofs,
load Mint8signed m b ofs =
option_map (
Val.sign_ext 8) (
load Mint8unsigned m b ofs).
Proof.
Theorem load_int16_signed_unsigned:
forall m b ofs,
load Mint16signed m b ofs =
option_map (
Val.sign_ext 16) (
load Mint16unsigned m b ofs).
Proof.
Properties related to loadbytes
Theorem range_perm_loadbytes:
forall m b ofs len,
range_perm m b ofs (
ofs +
len)
Cur Readable ->
exists bytes,
loadbytes m b ofs len =
Some bytes.
Proof.
Theorem loadbytes_range_perm:
forall m b ofs len bytes,
loadbytes m b ofs len =
Some bytes ->
range_perm m b ofs (
ofs +
len)
Cur Readable.
Proof.
Theorem loadbytes_load:
forall chunk m b ofs bytes,
loadbytes m b ofs (
size_chunk chunk) =
Some bytes ->
(
align_chunk chunk |
ofs) ->
load chunk m b ofs =
Some(
decode_val chunk bytes).
Proof.
Theorem load_loadbytes:
forall chunk m b ofs v,
load chunk m b ofs =
Some v ->
exists bytes,
loadbytes m b ofs (
size_chunk chunk) =
Some bytes
/\
v =
decode_val chunk bytes.
Proof.
Lemma getN_length:
forall c n p,
length (
getN n p c) =
n.
Proof.
induction n; simpl; intros. auto. decEq; auto.
Qed.
Theorem loadbytes_length:
forall m b ofs n bytes,
loadbytes m b ofs n =
Some bytes ->
length bytes =
nat_of_Z n.
Proof.
Theorem loadbytes_empty:
forall m b ofs n,
n <= 0 ->
loadbytes m b ofs n =
Some nil.
Proof.
Lemma getN_concat:
forall c n1 n2 p,
getN (
n1 +
n2)%
nat p c =
getN n1 p c ++
getN n2 (
p +
Z_of_nat n1)
c.
Proof.
induction n1;
intros.
simpl.
decEq.
omega.
rewrite inj_S.
simpl.
decEq.
replace (
p +
Zsucc (
Z_of_nat n1))
with ((
p + 1) +
Z_of_nat n1)
by omega.
auto.
Qed.
Theorem loadbytes_concat:
forall m b ofs n1 n2 bytes1 bytes2,
loadbytes m b ofs n1 =
Some bytes1 ->
loadbytes m b (
ofs +
n1)
n2 =
Some bytes2 ->
n1 >= 0 ->
n2 >= 0 ->
loadbytes m b ofs (
n1 +
n2) =
Some(
bytes1 ++
bytes2).
Proof.
Theorem loadbytes_split:
forall m b ofs n1 n2 bytes,
loadbytes m b ofs (
n1 +
n2) =
Some bytes ->
n1 >= 0 ->
n2 >= 0 ->
exists bytes1,
exists bytes2,
loadbytes m b ofs n1 =
Some bytes1
/\
loadbytes m b (
ofs +
n1)
n2 =
Some bytes2
/\
bytes =
bytes1 ++
bytes2.
Proof.
Theorem load_rep:
forall ch m1 m2 b ofs v1 v2,
(
forall z, 0 <=
z <
size_chunk ch ->
ZMap.get (
ofs +
z)
m1.(
mem_contents)#
b =
ZMap.get (
ofs +
z)
m2.(
mem_contents)#
b) ->
load ch m1 b ofs =
Some v1 ->
load ch m2 b ofs =
Some v2 ->
v1 =
v2.
Proof.
Theorem load_int64_split:
forall m b ofs v,
load Mint64 m b ofs =
Some v ->
Archi.ptr64 =
false ->
exists v1 v2,
load Mint32 m b ofs =
Some (
if Archi.big_endian then v1 else v2)
/\
load Mint32 m b (
ofs + 4) =
Some (
if Archi.big_endian then v2 else v1)
/\
Val.lessdef v (
Val.longofwords v1 v2).
Proof.
Lemma addressing_int64_split:
forall i,
Archi.ptr64 =
false ->
(8 |
Ptrofs.unsigned i) ->
Ptrofs.unsigned (
Ptrofs.add i (
Ptrofs.of_int (
Int.repr 4))) =
Ptrofs.unsigned i + 4.
Proof.
Theorem loadv_int64_split:
forall m a v,
loadv Mint64 m a =
Some v ->
Archi.ptr64 =
false ->
exists v1 v2,
loadv Mint32 m a =
Some (
if Archi.big_endian then v1 else v2)
/\
loadv Mint32 m (
Val.add a (
Vint (
Int.repr 4))) =
Some (
if Archi.big_endian then v2 else v1)
/\
Val.lessdef v (
Val.longofwords v1 v2).
Proof.
Properties related to store
Theorem valid_access_store' :
forall m1 chunk b ofs v,
valid_access m1 chunk b ofs Writable ->
exists m2:
mem,
store chunk m1 b ofs v =
Some m2 .
Proof.
Local Hint Resolve valid_access_store':
mem.
Theorem valid_access_store:
forall m1 chunk b ofs v,
valid_access m1 chunk b ofs Writable ->
{
m2:
mem |
store chunk m1 b ofs v =
Some m2 }.
Proof.
intros m1 chunk b ofs v H.
destruct (
store _ _ _ _ _)
eqn:
STORE;
eauto.
exfalso.
apply @
valid_access_store'
with (
v :=
v)
in H;
auto.
destruct H.
congruence.
Defined.
Local Hint Resolve valid_access_store:
mem.
Lemma get_setN_inside:
forall bytes t o o',
(
o' <=
o <
o' +
Z.of_nat (
length bytes))%
Z ->
ZMap.get o (
setN bytes o'
t) =
nth (
Z.to_nat (
o -
o'))
bytes Undef.
Proof.
induction bytes;
intros;
eauto.
simpl in H;
omega.
simpl length in H.
rewrite Nat2Z.inj_succ in H.
simpl setN.
specialize (
IHbytes (
if memval_eq (
ZMap.get o'
t)
a then t else ZMap.set o'
a t)
o (
o' + 1)%
Z).
destruct (
zeq o'
o).
-
subst.
rewrite setN_outside.
rewrite Z.sub_diag.
simpl.
destr.
rewrite ZMap.gss.
auto.
omega.
-
trim IHbytes.
omega.
rewrite IHbytes.
replace (
o -
o')%
Z with (
Z.succ (
o - (
o' + 1)))
by omega.
rewrite Z2Nat.inj_succ by omega.
simpl.
auto.
Qed.
Lemma zle_zlt_false:
forall lo hi o,
zle lo o &&
zlt o hi =
false <-> ~ (
lo <=
o <
hi)%
Z.
Proof.
intros.
destruct (
zle lo o), (
zlt o hi);
intuition;
try congruence;
try omega.
Qed.
Lemma get_setN:
forall bytes t o o',
ZMap.get o (
setN bytes o'
t) =
if zle o'
o &&
zlt o (
o' +
Z.of_nat (
length bytes))
then nth (
Z.to_nat (
o -
o'))
bytes Undef
else ZMap.get o t.
Proof.
Lemma nth_getN:
forall n m o t,
(
n <
m)%
nat ->
nth n (
getN m o t)
Undef =
ZMap.get (
Z.of_nat n +
o)
t.
Proof.
Opaque Z.add.
induction n;
simpl;
intros.
destruct m.
omega.
simpl.
auto.
destruct m.
omega.
simpl.
rewrite IHn by omega.
f_equal.
rewrite Zpos_P_of_succ_nat.
omega.
Qed.
Section STORE.
Variable chunk:
memory_chunk.
Variable m1:
mem.
Variable b:
block.
Variable ofs:
Z.
Variable v:
val.
Variable m2:
mem.
Hypothesis STORE:
store chunk m1 b ofs v =
Some m2.
Lemma store_access:
mem_access m2 =
mem_access m1.
Proof.
Lemma store_mem_contents:
mem_contents m2 =
PMap.set b (
setN (
encode_val chunk v)
ofs m1.(
mem_contents)#
b)
m1.(
mem_contents).
Proof.
Theorem perm_store_1:
forall b'
ofs'
k p,
perm m1 b'
ofs'
k p ->
perm m2 b'
ofs'
k p.
Proof.
Theorem perm_store_2:
forall b'
ofs'
k p,
perm m2 b'
ofs'
k p ->
perm m1 b'
ofs'
k p.
Proof.
Local Hint Resolve perm_store_1 perm_store_2:
mem.
Theorem nextblock_store:
nextblock m2 =
nextblock m1.
Proof.
Theorem store_valid_block_1:
forall b',
valid_block m1 b' ->
valid_block m2 b'.
Proof.
Theorem store_valid_block_2:
forall b',
valid_block m2 b' ->
valid_block m1 b'.
Proof.
Local Hint Resolve store_valid_block_1 store_valid_block_2:
mem.
Theorem store_stack_access_1:
forall b lo hi,
stack_access (
stack m1)
b lo hi ->
stack_access (
stack m2)
b lo hi.
Proof.
Theorem store_stack_access_2:
forall b lo hi,
stack_access (
stack m2)
b lo hi ->
stack_access (
stack m1)
b lo hi.
Proof.
Local Hint Resolve store_stack_access_1 store_stack_access_2 :
mem.
Theorem store_valid_access_1:
forall chunk'
b'
ofs'
p,
valid_access m1 chunk'
b'
ofs'
p ->
valid_access m2 chunk'
b'
ofs'
p.
Proof.
intros. destruct H as (A & B & C).
split; [|split]; try solve [red; auto with mem].
auto with mem.
Qed.
Theorem store_valid_access_2:
forall chunk'
b'
ofs'
p,
valid_access m2 chunk'
b'
ofs'
p ->
valid_access m1 chunk'
b'
ofs'
p.
Proof.
intros. destruct H as (A & B & C).
split; [|split]; try solve [red; auto with mem].
auto with mem.
Qed.
Theorem store_valid_access_3:
valid_access m1 chunk b ofs Writable.
Proof.
Local Hint Resolve store_valid_access_1 store_valid_access_2 store_valid_access_3:
mem.
Theorem load_store_similar:
forall chunk',
size_chunk chunk' =
size_chunk chunk ->
align_chunk chunk' <=
align_chunk chunk ->
exists v',
load chunk'
m2 b ofs =
Some v' /\
decode_encode_val v chunk chunk'
v'.
Proof.
Theorem load_store_similar_2:
forall chunk',
size_chunk chunk' =
size_chunk chunk ->
align_chunk chunk' <=
align_chunk chunk ->
type_of_chunk chunk' =
type_of_chunk chunk ->
load chunk'
m2 b ofs =
Some (
Val.load_result chunk'
v).
Proof.
Theorem load_store_same:
load chunk m2 b ofs =
Some (
Val.load_result chunk v).
Proof.
Theorem load_store_other:
forall chunk'
b'
ofs',
b' <>
b
\/
ofs' +
size_chunk chunk' <=
ofs
\/
ofs +
size_chunk chunk <=
ofs' ->
load chunk'
m2 b'
ofs' =
load chunk'
m1 b'
ofs'.
Proof.
Theorem loadbytes_store_same:
loadbytes m2 b ofs (
size_chunk chunk) =
Some(
encode_val chunk v).
Proof.
Theorem loadbytes_store_other:
forall b'
ofs'
n,
b' <>
b
\/
n <= 0
\/
ofs' +
n <=
ofs
\/
ofs +
size_chunk chunk <=
ofs' ->
loadbytes m2 b'
ofs'
n =
loadbytes m1 b'
ofs'
n.
Proof.
Lemma setN_in:
forall vl p q c,
p <=
q <
p +
Z_of_nat (
length vl) ->
In (
ZMap.get q (
setN vl p c))
vl.
Proof.
induction vl;
intros.
simpl in H.
omegaContradiction.
simpl length in H.
rewrite inj_S in H.
simpl.
destruct (
zeq p q).
subst q.
rewrite setN_outside.
destr.
rewrite ZMap.gss.
auto.
omega.
right.
apply IHvl.
omega.
Qed.
Lemma getN_in:
forall c q n p,
p <=
q <
p +
Z_of_nat n ->
In (
ZMap.get q c) (
getN n p c).
Proof.
induction n;
intros.
simpl in H;
omegaContradiction.
rewrite inj_S in H.
simpl.
destruct (
zeq p q).
subst q.
auto.
right.
apply IHn.
omega.
Qed.
End STORE.
Local Hint Resolve perm_store_1 perm_store_2:
mem.
Local Hint Resolve store_valid_block_1 store_valid_block_2:
mem.
Local Hint Resolve store_valid_access_1 store_valid_access_2
store_valid_access_3:
mem.
Lemma load_store_overlap:
forall chunk m1 b ofs v m2 chunk'
ofs'
v',
store chunk m1 b ofs v =
Some m2 ->
load chunk'
m2 b ofs' =
Some v' ->
ofs' +
size_chunk chunk' >
ofs ->
ofs +
size_chunk chunk >
ofs' ->
exists mv1 mvl mv1'
mvl',
shape_encoding chunk v (
mv1 ::
mvl)
/\
shape_decoding chunk' (
mv1' ::
mvl')
v'
/\ ( (
ofs' =
ofs /\
mv1' =
mv1)
\/ (
ofs' >
ofs /\
In mv1'
mvl)
\/ (
ofs' <
ofs /\
In mv1 mvl')).
Proof.
Definition compat_pointer_chunks (
chunk1 chunk2:
memory_chunk) :
Prop :=
match chunk1,
chunk2 with
| (
Mint32 |
Many32), (
Mint32 |
Many32) =>
True
| (
Mint64 |
Many64), (
Mint64 |
Many64) =>
True
|
_,
_ =>
False
end.
Lemma compat_pointer_chunks_true:
forall chunk1 chunk2,
(
chunk1 =
Mint32 \/
chunk1 =
Many32 \/
chunk1 =
Mint64 \/
chunk1 =
Many64) ->
(
chunk2 =
Mint32 \/
chunk2 =
Many32 \/
chunk2 =
Mint64 \/
chunk2 =
Many64) ->
quantity_chunk chunk1 =
quantity_chunk chunk2 ->
compat_pointer_chunks chunk1 chunk2.
Proof.
intros. destruct H as [P|[P|[P|P]]]; destruct H0 as [Q|[Q|[Q|Q]]];
subst; red; auto; discriminate.
Qed.
Theorem load_pointer_store:
forall chunk m1 b ofs v m2 chunk'
b'
ofs'
v_b v_o,
store chunk m1 b ofs v =
Some m2 ->
load chunk'
m2 b'
ofs' =
Some(
Vptr v_b v_o) ->
(
v =
Vptr v_b v_o /\
compat_pointer_chunks chunk chunk' /\
b' =
b /\
ofs' =
ofs)
\/ (
b' <>
b \/
ofs' +
size_chunk chunk' <=
ofs \/
ofs +
size_chunk chunk <=
ofs').
Proof.
intros.
destruct (
peq b'
b);
auto.
subst b'.
destruct (
zle (
ofs' +
size_chunk chunk')
ofs);
auto.
destruct (
zle (
ofs +
size_chunk chunk)
ofs');
auto.
exploit load_store_overlap;
eauto.
intros (
mv1 &
mvl &
mv1' &
mvl' &
ENC &
DEC &
CASES).
inv DEC;
try contradiction.
destruct CASES as [(
A &
B) | [(
A &
B) | (
A &
B)]].
-
subst.
inv ENC.
assert (
chunk =
Mint32 \/
chunk =
Many32 \/
chunk =
Mint64 \/
chunk =
Many64)
by (
destruct chunk;
auto ||
contradiction).
left;
split.
rewrite H3.
destruct H4 as [
P|[
P|[
P|
P]]];
subst chunk';
destruct v0;
simpl in H3;
try congruence;
destruct Archi.ptr64;
congruence.
split.
apply compat_pointer_chunks_true;
auto.
auto.
-
inv ENC.
+
exploit H10;
eauto.
intros (
j &
P &
Q).
inv P.
congruence.
+
exploit H8;
eauto.
intros (
n &
P);
congruence.
+
exploit H2;
eauto.
congruence.
-
exploit H7;
eauto.
intros (
j &
P &
Q).
subst mv1.
inv ENC.
congruence.
Qed.
Theorem load_store_pointer_overlap:
forall chunk m1 b ofs v_b v_o m2 chunk'
ofs'
v,
store chunk m1 b ofs (
Vptr v_b v_o) =
Some m2 ->
load chunk'
m2 b ofs' =
Some v ->
ofs' <>
ofs ->
ofs' +
size_chunk chunk' >
ofs ->
ofs +
size_chunk chunk >
ofs' ->
v =
Vundef.
Proof.
intros.
exploit load_store_overlap;
eauto.
intros (
mv1 &
mvl &
mv1' &
mvl' &
ENC &
DEC &
CASES).
destruct CASES as [(
A &
B) | [(
A &
B) | (
A &
B)]].
-
congruence.
-
inv ENC.
+
exploit H9;
eauto.
intros (
j &
P &
Q).
subst mv1'.
inv DEC.
congruence.
auto.
+
contradiction.
+
exploit H5;
eauto.
intros;
subst.
inv DEC;
auto.
-
inv DEC.
+
exploit H10;
eauto.
intros (
j &
P &
Q).
subst mv1.
inv ENC.
congruence.
+
exploit H8;
eauto.
intros (
n &
P).
subst mv1.
inv ENC.
contradiction.
+
auto.
Qed.
Theorem load_store_pointer_mismatch:
forall chunk m1 b ofs v_b v_o m2 chunk'
v,
store chunk m1 b ofs (
Vptr v_b v_o) =
Some m2 ->
load chunk'
m2 b ofs =
Some v ->
~
compat_pointer_chunks chunk chunk' ->
v =
Vundef.
Proof.
Lemma store_similar_chunks:
forall chunk1 chunk2 v1 v2 m b ofs,
encode_val chunk1 v1 =
encode_val chunk2 v2 ->
align_chunk chunk1 =
align_chunk chunk2 ->
store chunk1 m b ofs v1 =
store chunk2 m b ofs v2.
Proof.
Theorem store_signed_unsigned_8:
forall m b ofs v,
store Mint8signed m b ofs v =
store Mint8unsigned m b ofs v.
Proof.
Theorem store_signed_unsigned_16:
forall m b ofs v,
store Mint16signed m b ofs v =
store Mint16unsigned m b ofs v.
Proof.
Theorem store_int8_zero_ext:
forall m b ofs n,
store Mint8unsigned m b ofs (
Vint (
Int.zero_ext 8
n)) =
store Mint8unsigned m b ofs (
Vint n).
Proof.
Theorem store_int8_sign_ext:
forall m b ofs n,
store Mint8signed m b ofs (
Vint (
Int.sign_ext 8
n)) =
store Mint8signed m b ofs (
Vint n).
Proof.
Theorem store_int16_zero_ext:
forall m b ofs n,
store Mint16unsigned m b ofs (
Vint (
Int.zero_ext 16
n)) =
store Mint16unsigned m b ofs (
Vint n).
Proof.
Theorem store_int16_sign_ext:
forall m b ofs n,
store Mint16signed m b ofs (
Vint (
Int.sign_ext 16
n)) =
store Mint16signed m b ofs (
Vint n).
Proof.
Properties related to storebytes.
Theorem range_perm_storebytes':
forall m1 b ofs bytes,
range_perm m1 b ofs (
ofs +
Z_of_nat (
length bytes))
Cur Writable ->
stack_access (
stack m1)
b ofs (
ofs +
Z_of_nat (
length bytes)) ->
exists m2,
storebytes m1 b ofs bytes =
Some m2.
Proof.
Theorem range_perm_storebytes:
forall m1 b ofs bytes,
range_perm m1 b ofs (
ofs +
Z_of_nat (
length bytes))
Cur Writable ->
stack_access (
stack m1)
b ofs (
ofs +
Z_of_nat (
length bytes)) ->
{
m2 :
mem |
storebytes m1 b ofs bytes =
Some m2 }.
Proof.
intros m1 b ofs bytes H H0.
destruct (
storebytes _ _ _ _)
eqn:
STOREBYTES;
eauto.
exfalso.
apply range_perm_storebytes'
in H.
destruct H.
congruence.
congruence.
Defined.
Theorem storebytes_store:
forall m1 b ofs chunk v m2,
storebytes m1 b ofs (
encode_val chunk v) =
Some m2 ->
(
align_chunk chunk |
ofs) ->
store chunk m1 b ofs v =
Some m2.
Proof.
Theorem store_storebytes:
forall m1 b ofs chunk v m2,
store chunk m1 b ofs v =
Some m2 ->
storebytes m1 b ofs (
encode_val chunk v) =
Some m2.
Proof.
Lemma push_storebytes_unrecord:
forall m b o bytes m1 m2,
storebytes m b o bytes =
Some m1 ->
storebytes (
push_new_stage m)
b o bytes =
Some m2 ->
unrecord_stack_block m2 =
Some m1.
Proof.
Section STOREBYTES.
Variable m1:
mem.
Variable b:
block.
Variable ofs:
Z.
Variable bytes:
list memval.
Variable m2:
mem.
Hypothesis STORE:
storebytes m1 b ofs bytes =
Some m2.
Lemma storebytes_access:
mem_access m2 =
mem_access m1.
Proof.
Lemma storebytes_mem_contents:
mem_contents m2 =
PMap.set b (
setN bytes ofs m1.(
mem_contents)#
b) (
m1.(
mem_contents)).
Proof.
Theorem perm_storebytes_1:
forall b'
ofs'
k p,
perm m1 b'
ofs'
k p ->
perm m2 b'
ofs'
k p.
Proof.
Theorem perm_storebytes_2:
forall b'
ofs'
k p,
perm m2 b'
ofs'
k p ->
perm m1 b'
ofs'
k p.
Proof.
Local Hint Resolve perm_storebytes_1 perm_storebytes_2:
mem.
Theorem storebytes_stack_access_1:
forall b lo hi,
stack_access (
stack m1)
b lo hi ->
stack_access (
stack m2)
b lo hi.
Proof.
Theorem storebytes_stack_access_2:
forall b lo hi,
stack_access (
stack m2)
b lo hi ->
stack_access (
stack m1)
b lo hi.
Proof.
Theorem storebytes_stack_access_3:
stack_access (
stack m1)
b ofs (
ofs +
Z.of_nat (
length bytes)).
Proof.
Local Hint Resolve storebytes_stack_access_1
storebytes_stack_access_2
storebytes_stack_access_3:
mem.
Theorem storebytes_valid_access_1:
forall chunk'
b'
ofs'
p,
valid_access m1 chunk'
b'
ofs'
p ->
valid_access m2 chunk'
b'
ofs'
p.
Proof.
intros. inv H. inv H1. constructor; [|split];
try now (try red; auto with mem).
intros. auto with mem.
Qed.
Theorem storebytes_valid_access_2:
forall chunk'
b'
ofs'
p,
valid_access m2 chunk'
b'
ofs'
p ->
valid_access m1 chunk'
b'
ofs'
p.
Proof.
intros. inv H. inv H1. constructor; [|split];
try now (try red; auto with mem).
intros. auto with mem.
Qed.
Local Hint Resolve storebytes_valid_access_1 storebytes_valid_access_2:
mem.
Theorem nextblock_storebytes:
nextblock m2 =
nextblock m1.
Proof.
Theorem storebytes_valid_block_1:
forall b',
valid_block m1 b' ->
valid_block m2 b'.
Proof.
Theorem storebytes_valid_block_2:
forall b',
valid_block m2 b' ->
valid_block m1 b'.
Proof.
Local Hint Resolve storebytes_valid_block_1 storebytes_valid_block_2:
mem.
Theorem storebytes_range_perm:
range_perm m1 b ofs (
ofs +
Z_of_nat (
length bytes))
Cur Writable.
Proof.
Theorem loadbytes_storebytes_same:
loadbytes m2 b ofs (
Z_of_nat (
length bytes)) =
Some bytes.
Proof.
Theorem loadbytes_storebytes_disjoint:
forall b'
ofs'
len,
len >= 0 ->
b' <>
b \/
Intv.disjoint (
ofs',
ofs' +
len) (
ofs,
ofs +
Z_of_nat (
length bytes)) ->
loadbytes m2 b'
ofs'
len =
loadbytes m1 b'
ofs'
len.
Proof.
Theorem loadbytes_storebytes_other:
forall b'
ofs'
len,
len >= 0 ->
b' <>
b
\/
ofs' +
len <=
ofs
\/
ofs +
Z_of_nat (
length bytes) <=
ofs' ->
loadbytes m2 b'
ofs'
len =
loadbytes m1 b'
ofs'
len.
Proof.
Theorem load_storebytes_other:
forall chunk b'
ofs',
b' <>
b
\/
ofs' +
size_chunk chunk <=
ofs
\/
ofs +
Z_of_nat (
length bytes) <=
ofs' ->
load chunk m2 b'
ofs' =
load chunk m1 b'
ofs'.
Proof.
End STOREBYTES.
Lemma push_store_unrecord:
forall m b o chunk v m1 m2,
store chunk m b o v =
Some m1 ->
store chunk (
push_new_stage m)
b o v =
Some m2 ->
unrecord_stack_block m2 =
Some m1.
Proof.
unfold store,
unrecord_stack_block.
simpl;
intros.
destr_in H0.
destr_in H.
repeat destr_in Heqo1.
repeat destr_in Heqo0.
inv H;
inv H0.
simpl in *.
f_equal.
apply mkmem_ext;
auto.
Qed.
Lemma setN_concat:
forall bytes1 bytes2 ofs c,
setN (
bytes1 ++
bytes2)
ofs c =
setN bytes2 (
ofs +
Z_of_nat (
length bytes1)) (
setN bytes1 ofs c).
Proof.
induction bytes1;
intros.
simpl.
decEq.
omega.
simpl length.
rewrite inj_S.
simpl.
rewrite IHbytes1.
decEq.
omega.
Qed.
Lemma public_stack_range_concat :
forall lo mid hi f,
public_stack_range lo mid f ->
public_stack_range mid hi f ->
public_stack_range lo hi f.
Proof.
Lemma stack_access_concat :
forall m b lo hi mid,
stack_access m b lo mid ->
stack_access m b mid hi ->
stack_access m b lo hi.
Proof.
Theorem storebytes_concat:
forall m b ofs bytes1 m1 bytes2 m2,
storebytes m b ofs bytes1 =
Some m1 ->
storebytes m1 b (
ofs +
Z_of_nat(
length bytes1))
bytes2 =
Some m2 ->
storebytes m b ofs (
bytes1 ++
bytes2) =
Some m2.
Proof.
Lemma storebytes_get_frame_info:
forall m1 b o v m2,
storebytes m1 b o v =
Some m2 ->
forall b',
get_frame_info (
stack m2)
b' =
get_frame_info (
stack m1)
b'.
Proof.
Lemma storebytes_is_stack_top:
forall m1 b o v m2,
storebytes m1 b o v =
Some m2 ->
forall b',
is_stack_top (
stack m2)
b' <->
is_stack_top (
stack m1)
b'.
Proof.
Lemma storebytes_stack:
forall m1 b o v m2,
storebytes m1 b o v =
Some m2 ->
stack m2 =
stack m1.
Proof.
Theorem storebytes_split:
forall m b ofs bytes1 bytes2 m2,
storebytes m b ofs (
bytes1 ++
bytes2) =
Some m2 ->
exists m1,
storebytes m b ofs bytes1 =
Some m1
/\
storebytes m1 b (
ofs +
Z_of_nat(
length bytes1))
bytes2 =
Some m2.
Proof.
Theorem store_int64_split:
forall m b ofs v m',
store Mint64 m b ofs v =
Some m' ->
Archi.ptr64 =
false ->
exists m1,
store Mint32 m b ofs (
if Archi.big_endian then Val.hiword v else Val.loword v) =
Some m1
/\
store Mint32 m1 b (
ofs + 4) (
if Archi.big_endian then Val.loword v else Val.hiword v) =
Some m'.
Proof.
Theorem storev_int64_split:
forall m a v m',
storev Mint64 m a v =
Some m' ->
Archi.ptr64 =
false ->
exists m1,
storev Mint32 m a (
if Archi.big_endian then Val.hiword v else Val.loword v) =
Some m1
/\
storev Mint32 m1 (
Val.add a (
Vint (
Int.repr 4))) (
if Archi.big_endian then Val.loword v else Val.hiword v) =
Some m'.
Proof.
Properties related to alloc.
Section ALLOC.
Variable m1:
mem.
Variables lo hi:
Z.
Variable m2:
mem.
Variable b:
block.
Hypothesis ALLOC:
alloc m1 lo hi = (
m2,
b).
Theorem nextblock_alloc:
nextblock m2 =
Psucc (
nextblock m1).
Proof.
injection ALLOC;
intros.
rewrite <-
H0;
auto.
Qed.
Theorem alloc_result:
b =
nextblock m1.
Proof.
injection ALLOC;
auto.
Qed.
Theorem valid_block_alloc:
forall b',
valid_block m1 b' ->
valid_block m2 b'.
Proof.
Theorem fresh_block_alloc:
~(
valid_block m1 b).
Proof.
Theorem valid_new_block:
valid_block m2 b.
Proof.
Local Hint Resolve valid_block_alloc fresh_block_alloc valid_new_block:
mem.
Theorem valid_block_alloc_inv:
forall b',
valid_block m2 b' ->
b' =
b \/
valid_block m1 b'.
Proof.
Theorem perm_alloc_1:
forall b'
ofs k p,
perm m1 b'
ofs k p ->
perm m2 b'
ofs k p.
Proof.
Theorem perm_alloc_2:
forall ofs k,
lo <=
ofs <
hi ->
perm m2 b ofs k Freeable.
Proof.
Theorem perm_alloc_inv:
forall b'
ofs k p,
perm m2 b'
ofs k p ->
if eq_block b'
b then lo <=
ofs <
hi else perm m1 b'
ofs k p.
Proof.
Theorem perm_alloc_3:
forall ofs k p,
perm m2 b ofs k p ->
lo <=
ofs <
hi.
Proof.
Theorem perm_alloc_4:
forall b'
ofs k p,
perm m2 b'
ofs k p ->
b' <>
b ->
perm m1 b'
ofs k p.
Proof.
Local Hint Resolve perm_alloc_1 perm_alloc_2 perm_alloc_3 perm_alloc_4:
mem.
Lemma alloc_get_frame_info:
forall b,
get_frame_info (
stack m2)
b =
get_frame_info (
stack m1)
b.
Proof.
unfold alloc in ALLOC.
inv ALLOC.
reflexivity.
Qed.
Lemma alloc_is_stack_top:
forall b,
is_stack_top (
stack m2)
b <->
is_stack_top (
stack m1)
b.
Proof.
unfold alloc in ALLOC.
inv ALLOC.
reflexivity.
Qed.
Theorem valid_access_alloc_other:
forall chunk b'
ofs p,
valid_access m1 chunk b'
ofs p ->
valid_access m2 chunk b'
ofs p.
Proof.
Lemma alloc_get_frame_info_new:
get_frame_info (
stack m2)
b =
None.
Proof.
Lemma stack_top_in_frames:
forall m b,
is_stack_top (
stack m)
b ->
in_stack (
stack m)
b.
Proof.
intros.
destruct (
stack m).
easy.
red in H.
rewrite in_stack_cons.
simpl in H.
left.
eauto.
Qed.
Lemma stack_top_valid:
forall m b,
is_stack_top (
stack m)
b ->
valid_block m b.
Proof.
Theorem valid_access_alloc_same:
forall chunk ofs,
lo <=
ofs ->
ofs +
size_chunk chunk <=
hi -> (
align_chunk chunk |
ofs) ->
valid_access m2 chunk b ofs Freeable.
Proof.
Local Hint Resolve valid_access_alloc_other valid_access_alloc_same:
mem.
Theorem valid_access_alloc_inv:
forall chunk b'
ofs p,
valid_access m2 chunk b'
ofs p ->
if eq_block b'
b
then lo <=
ofs /\
ofs +
size_chunk chunk <=
hi /\ (
align_chunk chunk |
ofs)
else valid_access m1 chunk b'
ofs p.
Proof.
Theorem load_alloc_unchanged:
forall chunk b'
ofs,
valid_block m1 b' ->
load chunk m2 b'
ofs =
load chunk m1 b'
ofs.
Proof.
Theorem load_alloc_other:
forall chunk b'
ofs v,
load chunk m1 b'
ofs =
Some v ->
load chunk m2 b'
ofs =
Some v.
Proof.
Theorem load_alloc_same:
forall chunk ofs v,
load chunk m2 b ofs =
Some v ->
v =
Vundef.
Proof.
Theorem load_alloc_same':
forall chunk ofs,
lo <=
ofs ->
ofs +
size_chunk chunk <=
hi -> (
align_chunk chunk |
ofs) ->
load chunk m2 b ofs =
Some Vundef.
Proof.
Theorem loadbytes_alloc_unchanged:
forall b'
ofs n,
valid_block m1 b' ->
loadbytes m2 b'
ofs n =
loadbytes m1 b'
ofs n.
Proof.
Theorem loadbytes_alloc_same:
forall n ofs bytes byte,
loadbytes m2 b ofs n =
Some bytes ->
In byte bytes ->
byte =
Undef.
Proof.
End ALLOC.
Local Hint Resolve valid_block_alloc fresh_block_alloc valid_new_block:
mem.
Local Hint Resolve valid_access_alloc_other valid_access_alloc_same:
mem.
Properties related to free.
Theorem range_perm_free':
forall m1 b lo hi,
range_perm m1 b lo hi Cur Freeable ->
exists m2:
mem,
free m1 b lo hi =
Some m2.
Proof.
Theorem range_perm_free:
forall m1 b lo hi,
range_perm m1 b lo hi Cur Freeable ->
{
m2:
mem |
free m1 b lo hi =
Some m2 }.
Proof.
intros m1 b lo hi H.
destruct (
free _ _ _ _)
eqn:
FREE;
eauto.
exfalso.
apply range_perm_free'
in H.
destruct H.
congruence.
Defined.
Section FREE.
Variable m1:
mem.
Variable bf:
block.
Variables lo hi:
Z.
Variable m2:
mem.
Hypothesis FREE:
free m1 bf lo hi =
Some m2.
Theorem free_range_perm:
range_perm m1 bf lo hi Cur Freeable.
Proof.
Lemma free_result:
m2 =
unchecked_free m1 bf lo hi.
Proof.
Theorem nextblock_free:
nextblock m2 =
nextblock m1.
Proof.
Theorem valid_block_free_1:
forall b,
valid_block m1 b ->
valid_block m2 b.
Proof.
Theorem valid_block_free_2:
forall b,
valid_block m2 b ->
valid_block m1 b.
Proof.
Local Hint Resolve valid_block_free_1 valid_block_free_2:
mem.
Theorem perm_free_1:
forall b ofs k p,
b <>
bf \/
ofs <
lo \/
hi <=
ofs ->
perm m1 b ofs k p ->
perm m2 b ofs k p.
Proof.
Theorem perm_free_2:
forall ofs k p,
lo <=
ofs <
hi -> ~
perm m2 bf ofs k p.
Proof.
Theorem perm_free_3:
forall b ofs k p,
perm m2 b ofs k p ->
perm m1 b ofs k p.
Proof.
Theorem perm_free_inv:
forall b ofs k p,
perm m1 b ofs k p ->
(
b =
bf /\
lo <=
ofs <
hi) \/
perm m2 b ofs k p.
Proof.
Lemma free_stack:
stack m2 =
stack m1.
Proof.
Lemma get_frame_info_free:
forall b,
get_frame_info (
stack m1)
b =
get_frame_info (
stack m2)
b.
Proof.
Lemma get_stack_top_blocks_free:
(
get_stack_top_blocks (
stack m1)) = (
get_stack_top_blocks (
stack m2)).
Proof.
Lemma free_is_stack_top:
forall b,
is_stack_top (
stack m1)
b <->
is_stack_top (
stack m2)
b.
Proof.
Lemma free_public_stack_access:
forall b lo hi,
public_stack_access (
stack m1)
b lo hi <->
public_stack_access (
stack m2)
b lo hi.
Proof.
Lemma free_stack_access:
forall b lo hi,
stack_access (
stack m1)
b lo hi <->
stack_access (
stack m2)
b lo hi.
Proof.
Theorem valid_access_free_1:
forall chunk b ofs p,
valid_access m1 chunk b ofs p ->
b <>
bf \/
lo >=
hi \/
ofs +
size_chunk chunk <=
lo \/
hi <=
ofs ->
valid_access m2 chunk b ofs p.
Proof.
intros.
inv H.
destruct H2.
constructor;
auto with mem.
red;
intros.
eapply perm_free_1;
eauto.
destruct (
zlt lo hi).
intuition.
right.
omega.
split;
auto.
intros.
apply free_stack_access.
auto.
Qed.
Theorem valid_access_free_2:
forall chunk ofs p,
lo <
hi ->
ofs +
size_chunk chunk >
lo ->
ofs <
hi ->
~(
valid_access m2 chunk bf ofs p).
Proof.
Theorem valid_access_free_inv_1:
forall chunk b ofs p,
valid_access m2 chunk b ofs p ->
valid_access m1 chunk b ofs p.
Proof.
Theorem valid_access_free_inv_2:
forall chunk ofs p,
valid_access m2 chunk bf ofs p ->
lo >=
hi \/
ofs +
size_chunk chunk <=
lo \/
hi <=
ofs.
Proof.
Theorem load_free:
forall chunk b ofs,
b <>
bf \/
lo >=
hi \/
ofs +
size_chunk chunk <=
lo \/
hi <=
ofs ->
load chunk m2 b ofs =
load chunk m1 b ofs.
Proof.
Theorem load_free_2:
forall chunk b ofs v,
load chunk m2 b ofs =
Some v ->
load chunk m1 b ofs =
Some v.
Proof.
Theorem loadbytes_free:
forall b ofs n,
b <>
bf \/
lo >=
hi \/
ofs +
n <=
lo \/
hi <=
ofs ->
loadbytes m2 b ofs n =
loadbytes m1 b ofs n.
Proof.
Theorem loadbytes_free_2:
forall b ofs n bytes,
loadbytes m2 b ofs n =
Some bytes ->
loadbytes m1 b ofs n =
Some bytes.
Proof.
End FREE.
Local Hint Resolve valid_block_free_1 valid_block_free_2
perm_free_1 perm_free_2 perm_free_3
valid_access_free_1 valid_access_free_inv_1:
mem.
Properties related to drop_perm
Theorem range_perm_drop_1:
forall m b lo hi p m',
drop_perm m b lo hi p =
Some m' ->
range_perm m b lo hi Cur Freeable.
Proof.
Theorem range_perm_drop_2':
forall m b lo hi p,
range_perm m b lo hi Cur Freeable ->
exists m',
drop_perm m b lo hi p =
Some m' .
Proof.
Theorem range_perm_drop_2:
forall m b lo hi p,
range_perm m b lo hi Cur Freeable -> {
m' |
drop_perm m b lo hi p =
Some m' }.
Proof.
intros m b lo hi p H.
destruct (
drop_perm _ _ _ _ _)
eqn:
DROP;
eauto.
exfalso.
apply @
range_perm_drop_2'
with (
p :=
p)
in H;
auto.
destruct H.
congruence.
Defined.
Section DROP.
Variable m:
mem.
Variable b:
block.
Variable lo hi:
Z.
Variable p:
permission.
Variable m':
mem.
Hypothesis DROP:
drop_perm m b lo hi p =
Some m'.
Theorem nextblock_drop:
nextblock m' =
nextblock m.
Proof.
Theorem drop_perm_valid_block_1:
forall b',
valid_block m b' ->
valid_block m'
b'.
Proof.
Theorem drop_perm_valid_block_2:
forall b',
valid_block m'
b' ->
valid_block m b'.
Proof.
Theorem perm_drop_1:
forall ofs k,
lo <=
ofs <
hi ->
perm m'
b ofs k p.
Proof.
Theorem perm_drop_2:
forall ofs k p',
lo <=
ofs <
hi ->
perm m'
b ofs k p' ->
perm_order p p'.
Proof.
Theorem perm_drop_3:
forall b'
ofs k p',
b' <>
b \/
ofs <
lo \/
hi <=
ofs ->
perm m b'
ofs k p' ->
perm m'
b'
ofs k p'.
Proof.
Theorem perm_drop_4:
forall b'
ofs k p',
perm m'
b'
ofs k p' ->
perm m b'
ofs k p'.
Proof.
Lemma drop_stack:
stack m' =
stack m.
Proof.
Lemma get_frame_info_drop:
forall b,
get_frame_info (
stack m)
b =
get_frame_info (
stack m')
b.
Proof.
Lemma get_stack_top_blocks_drop:
(
get_stack_top_blocks (
stack m)) = (
get_stack_top_blocks (
stack m')).
Proof.
Lemma drop_perm_is_stack_top:
forall b,
is_stack_top (
stack m)
b <->
is_stack_top (
stack m')
b.
Proof.
Lemma drop_perm_public_stack_access:
forall b lo hi,
public_stack_access (
stack m)
b lo hi <->
public_stack_access (
stack m')
b lo hi.
Proof.
Lemma drop_perm_stack_access:
forall b lo hi,
stack_access (
stack m)
b lo hi <->
stack_access (
stack m')
b lo hi.
Proof.
Lemma valid_access_drop_1:
forall chunk b'
ofs p',
b' <>
b \/
ofs +
size_chunk chunk <=
lo \/
hi <=
ofs \/
perm_order p p' ->
valid_access m chunk b'
ofs p' ->
valid_access m'
chunk b'
ofs p'.
Proof.
Lemma valid_access_drop_2:
forall chunk b'
ofs p',
valid_access m'
chunk b'
ofs p' ->
valid_access m chunk b'
ofs p'.
Proof.
Theorem load_drop:
forall chunk b'
ofs,
b' <>
b \/
ofs +
size_chunk chunk <=
lo \/
hi <=
ofs \/
perm_order p Readable ->
load chunk m'
b'
ofs =
load chunk m b'
ofs.
Proof.
Theorem loadbytes_drop:
forall b'
ofs n,
b' <>
b \/
ofs +
n <=
lo \/
hi <=
ofs \/
perm_order p Readable ->
loadbytes m'
b'
ofs n =
loadbytes m b'
ofs n.
Proof.
End DROP.
Local Hint Resolve range_perm_drop_1 range_perm_drop_2:
mem.
Local Hint Resolve perm_drop_1 perm_drop_2 perm_drop_3 perm_drop_4:
mem.
Local Hint Resolve drop_perm_valid_block_1 drop_perm_valid_block_2:
mem.
Local Hint Resolve valid_access_drop_1 valid_access_drop_2 :
mem.
Generic injections
A memory state
m1 generically injects into another memory state
m2 via the
memory injection
f if the following conditions hold:
-
each access in m2 that corresponds to a valid access in m1
is itself valid;
-
the memory value associated in m1 to an accessible address
must inject into m2's memory value at the corersponding address.
Preservation of permissions
Lemma perm_inj:
forall f g m1 m2 b1 ofs k p b2 delta,
mem_inj f g m1 m2 ->
perm m1 b1 ofs k p ->
f b1 =
Some(
b2,
delta) ->
inject_perm_condition p ->
perm m2 b2 (
ofs +
delta)
k p.
Proof.
intros.
eapply mi_perm;
eauto.
Qed.
Lemma range_perm_inj:
forall f g m1 m2 b1 lo hi k p b2 delta,
mem_inj f g m1 m2 ->
range_perm m1 b1 lo hi k p ->
f b1 =
Some(
b2,
delta) ->
inject_perm_condition p ->
range_perm m2 b2 (
lo +
delta) (
hi +
delta)
k p.
Proof.
intros;
red;
intros.
replace ofs with ((
ofs -
delta) +
delta)
by omega.
eapply perm_inj;
eauto.
apply H0.
omega.
Qed.
Lemma is_stack_top_inj:
forall f g m1 m2 b1 b2 delta
(
MINJ:
mem_inj f g m1 m2)
(
FB:
f b1 =
Some (
b2,
delta))
(
PERM:
exists o k p,
perm m1 b1 o k p /\
inject_perm_condition p)
(
IST:
is_stack_top (
stack m1)
b1),
is_stack_top (
stack m2)
b2.
Proof.
Lemma is_stack_top_extends:
forall m1 m2 b
(
MINJ:
extends m1 m2)
(
PERM:
exists o k p,
perm m1 b o k p /\
inject_perm_condition p)
(
IST:
is_stack_top (
stack m1)
b),
is_stack_top (
stack m2)
b.
Proof.
Lemma is_stack_top_inject:
forall f g m1 m2 b1 b2 delta
(
MINJ:
inject f g m1 m2)
(
FB:
f b1 =
Some (
b2,
delta))
(
PERM:
exists o k p,
perm m1 b1 o k p /\
inject_perm_condition p)
(
IST:
is_stack_top (
stack m1)
b1),
is_stack_top (
stack m2)
b2.
Proof.
Lemma get_frame_info_inj:
forall f g m1 m2 b1 b2 delta
(
MINJ:
mem_inj f g m1 m2)
(
FB :
f b1 =
Some (
b2,
delta))
(
PERM:
exists o k p,
perm m1 b1 o k p /\
inject_perm_condition p),
option_le_stack (
fun fi =>
forall ofs k p,
perm m1 b1 ofs k p ->
inject_perm_condition p ->
frame_public fi (
ofs +
delta))
(
inject_frame_info delta)
delta
(
get_frame_info (
stack m1)
b1)
(
get_frame_info (
stack m2)
b2).
Proof.
Lemma stack_access_inj:
forall f g m1 m2 b1 b2 delta lo hi p
(
MINJ :
mem_inj f g m1 m2)
(
FB :
f b1 =
Some (
b2,
delta))
(
RP:
range_perm m1 b1 lo hi Cur p)
(
IPC:
inject_perm_condition p)
(
NPSA:
stack_access (
stack m1)
b1 lo hi),
stack_access (
stack m2)
b2 (
lo +
delta) (
hi +
delta).
Proof.
Lemma valid_access_inj_gen:
forall f g m1 m2 b1 b2 delta chunk ofs p
(
MINJ :
stack_inject f g (
perm m1) (
stack m1) (
stack m2))
(
PERMS:
forall b1 b2 delta,
f b1 =
Some (
b2,
delta) ->
forall o k p,
perm m1 b1 o k p ->
inject_perm_condition p ->
perm m2 b2 (
o+
delta)
k p)
(
ALIGN:
forall b1 b2 delta chunk ofs p,
f b1 =
Some (
b2,
delta) ->
range_perm m1 b1 ofs (
ofs+
size_chunk chunk)
Max p ->
(
align_chunk chunk |
delta)),
f b1 =
Some(
b2,
delta) ->
valid_access m1 chunk b1 ofs p ->
inject_perm_condition p ->
valid_access m2 chunk b2 (
ofs +
delta)
p.
Proof.
Lemma valid_access_inj:
forall f g m1 m2 b1 b2 delta chunk ofs p,
mem_inj f g m1 m2 ->
f b1 =
Some(
b2,
delta) ->
valid_access m1 chunk b1 ofs p ->
inject_perm_condition p ->
valid_access m2 chunk b2 (
ofs +
delta)
p.
Proof.
Preservation of loads.
Lemma getN_inj:
forall f g m1 m2 b1 b2 delta,
mem_inj f g m1 m2 ->
f b1 =
Some(
b2,
delta) ->
forall n ofs,
range_perm m1 b1 ofs (
ofs +
Z_of_nat n)
Cur Readable ->
list_forall2 (
memval_inject f)
(
getN n ofs (
m1.(
mem_contents)#
b1))
(
getN n (
ofs +
delta) (
m2.(
mem_contents)#
b2)).
Proof.
induction n;
intros;
simpl.
constructor.
rewrite inj_S in H1.
constructor.
eapply mi_memval;
eauto.
apply H1.
omega.
replace (
ofs +
delta + 1)
with ((
ofs + 1) +
delta)
by omega.
apply IHn.
red;
intros;
apply H1;
omega.
Qed.
Lemma load_inj:
forall f g m1 m2 chunk b1 ofs b2 delta v1,
mem_inj f g m1 m2 ->
load chunk m1 b1 ofs =
Some v1 ->
f b1 =
Some (
b2,
delta) ->
exists v2,
load chunk m2 b2 (
ofs +
delta) =
Some v2 /\
Val.inject f v1 v2.
Proof.
Lemma loadbytes_inj:
forall f g m1 m2 len b1 ofs b2 delta bytes1,
mem_inj f g m1 m2 ->
loadbytes m1 b1 ofs len =
Some bytes1 ->
f b1 =
Some (
b2,
delta) ->
exists bytes2,
loadbytes m2 b2 (
ofs +
delta)
len =
Some bytes2
/\
list_forall2 (
memval_inject f)
bytes1 bytes2.
Proof.
Lemma proj_value_is_inj_value:
forall q t v,
proj_value q t =
v ->
v <>
Vundef ->
t =
inj_value q v.
Proof.
Lemma setN_getN_old:
forall l o t,
t =
setN (
getN l o t)
o t.
Proof.
induction l; simpl; intros. auto.
destr.
Qed.
Lemma maybe_store:
forall m1 b1 o1 b o m2,
load Mptr m1 b1 o1 =
Some (
Vptr b o) ->
store Mptr m1 b1 o1 (
Vptr b o) =
Some m2 ->
m1 =
m2.
Proof.
Lemma getN_undef_not_inj_bytes:
forall n o l,
(
n > 0)%
nat ->
getN n o (
ZMap.init Undef) <>
inj_bytes l.
Proof.
intros.
destruct n;
simpl.
omega.
rewrite ZMap.gi.
destruct l;
simpl;
inversion 1.
Qed.
Lemma getN_undef_not_inj_value:
forall n o q v,
(
n > 0)%
nat ->
getN n o (
ZMap.init Undef) <>
inj_value q v.
Proof.
intros.
destruct n;
simpl.
omega.
rewrite ZMap.gi.
destruct q,
v;
simpl;
inversion 1.
Qed.
Lemma maybe_store_val:
forall m1 b o v m2,
v <>
Vundef ->
Val.has_type v Tptr ->
loadbytes m1 b o (
size_chunk Mptr) =
Some (
encode_val Mptr v) ->
store Mptr m1 b o v =
Some m2 ->
m1 =
m2.
Proof.
Preservation of stores.
Lemma val_inject_eq:
forall f v1 v2 v2',
Val.inject f v1 v2 ->
Val.inject f v1 v2' ->
v1 =
Vundef \/
v2 =
v2'.
Proof.
intros f v1 v2 v2' VI1 VI2; inv VI1; inv VI2; auto.
rewrite H in H2; inv H2. right. auto.
Qed.
Lemma memval_inject_eq:
forall f m1 m2 m2',
memval_inject f m1 m2 ->
memval_inject f m1 m2' ->
m1 =
Undef \/ (
exists q n,
m1 =
Fragment Vundef q n) \/
m2 =
m2'.
Proof.
intros f m1 m2 m2'
MI1 MI2;
inv MI1;
inv MI2;
eauto.
exploit val_inject_eq.
apply H.
apply H4.
intuition subst;
eauto.
Qed.
Lemma setN_inj:
forall (
access:
Z ->
Prop)
delta f vl1 vl2,
list_forall2 (
memval_inject f)
vl1 vl2 ->
forall p c1 c2,
(
forall q,
access q ->
memval_inject f (
ZMap.get q c1) (
ZMap.get (
q +
delta)
c2)) ->
(
forall q,
access q ->
memval_inject f (
ZMap.get q (
setN vl1 p c1))
(
ZMap.get (
q +
delta) (
setN vl2 (
p +
delta)
c2))).
Proof.
induction 1;
intros;
simpl.
auto.
replace (
p +
delta + 1)
with ((
p + 1) +
delta)
by omega.
apply IHlist_forall2;
auto.
intros.
destr.
subst.
destr.
eauto.
rewrite ZMap.gsspec.
destr.
assert (
q0 =
p)
by omega.
subst.
auto.
eauto.
destr.
subst.
rewrite ZMap.gsspec at 1.
destruct (
ZIndexed.eq q0 p).
subst q0.
auto.
auto.
rewrite ZMap.gsspec at 1.
destruct (
ZIndexed.eq q0 p).
subst q0.
rewrite ZMap.gss.
auto.
rewrite ZMap.gso.
auto.
unfold ZIndexed.t in *.
omega.
Qed.
Lemma store_stack:
forall chunk m1 b1 ofs v1 n1,
store chunk m1 b1 ofs v1 =
Some n1 ->
stack n1 =
stack m1.
Proof.
Lemma store_mapped_inj:
forall f g chunk m1 b1 ofs v1 n1 m2 b2 delta v2,
mem_inj f g m1 m2 ->
store chunk m1 b1 ofs v1 =
Some n1 ->
meminj_no_overlap f m1 ->
f b1 =
Some (
b2,
delta) ->
Val.inject f v1 v2 ->
exists n2,
store chunk m2 b2 (
ofs +
delta)
v2 =
Some n2
/\
mem_inj f g n1 n2.
Proof.
Lemma store_unmapped_inj:
forall f g chunk m1 b1 ofs v1 n1 m2,
mem_inj f g m1 m2 ->
store chunk m1 b1 ofs v1 =
Some n1 ->
f b1 =
None ->
mem_inj f g n1 m2.
Proof.
Lemma store_outside_inj:
forall f g m1 m2 chunk b ofs v m2',
mem_inj f g m1 m2 ->
(
forall b'
delta ofs',
f b' =
Some(
b,
delta) ->
perm m1 b'
ofs'
Cur Readable ->
ofs <=
ofs' +
delta <
ofs +
size_chunk chunk ->
False) ->
store chunk m2 b ofs v =
Some m2' ->
mem_inj f g m1 m2'.
Proof.
Lemma nth_getN_refl :
forall n ofs ofs'
mcontents,
ofs' >=
ofs ->
ofs' <
ofs +
Z.of_nat n ->
nth (
nat_of_Z (
ofs' -
ofs)) (
getN n ofs mcontents)
Undef =
ZMap.get ofs'
mcontents.
Proof.
induction n;
intros;
simpl in *.
-
omega.
-
rewrite Zpos_P_of_succ_nat in H0.
assert (
ofs' -
ofs = 0 \/
ofs' -
ofs > 0)
by omega.
destruct H1.
+
rewrite H1.
simpl.
assert (
ofs' =
ofs)
by omega.
subst ofs.
auto.
+
rewrite nat_of_Z_succ;
auto.
replace (
ofs' -
ofs - 1)
with (
ofs' - (
ofs+1))
by omega.
apply IHn;
omega.
Qed.
Lemma nth_setN_refl :
forall lv ofs'
ofs mcontents,
ofs' >=
ofs ->
ofs' <
ofs +
Zlength lv ->
nth (
nat_of_Z (
ofs' -
ofs))
lv Undef =
ZMap.get ofs' (
setN lv ofs mcontents).
Proof.
induction lv;
simpl in *;
intros.
-
rewrite Zlength_correct in H0.
simpl in *.
omega.
-
rewrite Zlength_correct in H0.
simpl in *.
rewrite Zpos_P_of_succ_nat in *.
assert (
ofs' =
ofs \/
ofs' >
ofs)
by omega.
destruct H1.
+
subst ofs'.
replace (
ofs -
ofs)
with 0
by omega.
simpl.
erewrite setN_outside;
eauto.
destr.
rewrite ZMap.gss.
auto.
omega.
+
rewrite nat_of_Z_succ;
auto.
replace (
ofs' -
ofs - 1)
with (
ofs' - (
ofs+1))
by omega.
apply IHlv.
omega.
rewrite Zlength_correct.
omega.
omega.
Qed.
Lemma store_right_inj:
forall f g m1 m2 chunk b ofs v m2',
mem_inj f g m1 m2 ->
(
forall b'
delta ofs',
f b' =
Some(
b,
delta) ->
ofs' +
delta =
ofs ->
exists vl,
loadbytes m1 b'
ofs' (
size_chunk chunk) =
Some vl /\
list_forall2 (
memval_inject f)
vl (
encode_val chunk v)) ->
store chunk m2 b ofs v =
Some m2' ->
mem_inj f g m1 m2'.
Proof.
Lemma storebytes_mapped_inj:
forall f g m1 b1 ofs bytes1 n1 m2 b2 delta bytes2,
mem_inj f g m1 m2 ->
storebytes m1 b1 ofs bytes1 =
Some n1 ->
meminj_no_overlap f m1 ->
f b1 =
Some (
b2,
delta) ->
list_forall2 (
memval_inject f)
bytes1 bytes2 ->
exists n2,
storebytes m2 b2 (
ofs +
delta)
bytes2 =
Some n2
/\
mem_inj f g n1 n2.
Proof.
Lemma storebytes_unmapped_inj:
forall f g m1 b1 ofs bytes1 n1 m2,
mem_inj f g m1 m2 ->
storebytes m1 b1 ofs bytes1 =
Some n1 ->
f b1 =
None ->
mem_inj f g n1 m2.
Proof.
Lemma storebytes_outside_inj:
forall f g m1 m2 b ofs bytes2 m2',
mem_inj f g m1 m2 ->
(
forall b'
delta ofs',
f b' =
Some(
b,
delta) ->
perm m1 b'
ofs'
Cur Readable ->
ofs <=
ofs' +
delta <
ofs +
Z_of_nat (
length bytes2) ->
False) ->
storebytes m2 b ofs bytes2 =
Some m2' ->
mem_inj f g m1 m2'.
Proof.
Lemma storebytes_empty_inj:
forall f g m1 b1 ofs1 m1'
m2 b2 ofs2 m2',
mem_inj f g m1 m2 ->
storebytes m1 b1 ofs1 nil =
Some m1' ->
storebytes m2 b2 ofs2 nil =
Some m2' ->
mem_inj f g m1'
m2'.
Proof.
Preservation of allocations
Lemma alloc_right_inj:
forall f g m1 m2 lo hi b2 m2',
mem_inj f g m1 m2 ->
alloc m2 lo hi = (
m2',
b2) ->
mem_inj f g m1 m2'.
Proof.
intros.
injection H0.
intros NEXT MEM.
inversion H.
constructor.
-
intros.
eapply perm_alloc_1;
eauto.
-
eauto.
-
intros.
assert (
perm m2 b0 (
ofs +
delta)
Cur Readable).
{
eapply mi_perm0;
eauto.
eapply inject_perm_condition_writable;
constructor.
}
assert (
valid_block m2 b0)
by eauto with mem.
rewrite <-
MEM;
simpl.
rewrite PMap.gso.
eauto with mem.
rewrite NEXT.
eauto with mem.
-
subst.
simpl;
auto.
Qed.
Lemma alloc_left_unmapped_inj:
forall f g m1 m2 lo hi m1'
b1,
mem_inj f g m1 m2 ->
alloc m1 lo hi = (
m1',
b1) ->
f b1 =
None ->
mem_inj f g m1'
m2.
Proof.
Definition inj_offset_aligned (
delta:
Z) (
size:
Z) :
Prop :=
forall chunk,
size_chunk chunk <=
size -> (
align_chunk chunk |
delta).
Lemma alloc_left_mapped_inj:
forall f g m1 m2 lo hi m1'
b1 b2 delta,
mem_inj f g m1 m2 ->
alloc m1 lo hi = (
m1',
b1) ->
valid_block m2 b2 ->
inj_offset_aligned delta (
hi-
lo) ->
(
forall ofs k p,
lo <=
ofs <
hi ->
inject_perm_condition p ->
perm m2 b2 (
ofs +
delta)
k p) ->
f b1 =
Some(
b2,
delta) ->
(~
Plt b1 (
nextblock m1) ->
forall fi,
in_stack' (
stack m2) (
b2,
fi) ->
forall o k pp,
perm m1'
b1 o k pp ->
inject_perm_condition pp ->
frame_public fi (
o +
delta)
) ->
mem_inj f g m1'
m2.
Proof.
intros.
rename H5 into PLT.
inversion H.
constructor.
-
intros.
exploit perm_alloc_inv;
eauto.
intros.
destruct (
eq_block b0 b1).
subst b0.
rewrite H4 in H5;
inv H5.
eauto.
eauto.
-
intros.
destruct (
eq_block b0 b1).
subst b0.
assert (
delta0 =
delta)
by congruence.
subst delta0.
assert (
lo <=
ofs <
hi).
{
eapply perm_alloc_3;
eauto.
apply H6.
generalize (
size_chunk_pos chunk);
omega. }
assert (
lo <=
ofs +
size_chunk chunk - 1 <
hi).
{
eapply perm_alloc_3;
eauto.
apply H6.
generalize (
size_chunk_pos chunk);
omega. }
apply H2.
omega.
eapply mi_align0 with (
ofs :=
ofs) (
p :=
p);
eauto.
red;
intros.
eapply perm_alloc_4;
eauto.
-
injection H0;
intros NEXT MEM.
intros.
rewrite <-
MEM;
simpl.
rewrite NEXT.
exploit perm_alloc_inv;
eauto.
intros.
rewrite PMap.gsspec.
unfold eq_block in H7.
destruct (
peq b0 b1).
rewrite ZMap.gi.
constructor.
eauto.
-
rewrite (
alloc_stack _ _ _ _ _ H0).
eapply stack_inject_invariant. 3:
eauto.
+
intros.
exploit perm_alloc_inv;
eauto.
destr.
subst.
exfalso.
exploit alloc_result;
eauto.
intro;
subst.
eapply stack_inv_valid'
in H5.
eelim Plt_strict.
apply H5.
apply (
mem_stack_inv m1).
+
intros.
exploit perm_alloc_inv;
eauto.
destr.
subst.
rewrite H4 in H5;
inv H5.
intros;
eapply PLT;
eauto.
exploit alloc_result;
eauto.
intro;
subst.
xomega.
inv mi_stack_blocks0.
intros;
eapply stack_inject_not_in_source;
eauto.
Qed.
Lemma free_left_inj:
forall f g m1 m2 b lo hi m1',
mem_inj f g m1 m2 ->
free m1 b lo hi =
Some m1' ->
mem_inj f g m1'
m2.
Proof.
intros.
exploit free_result;
eauto.
intro FREE.
inversion H.
constructor.
perm *)
intros.
eauto with mem.
align *)
intros.
eapply mi_align0 with (
ofs :=
ofs) (
p :=
p);
eauto.
red;
intros;
eapply perm_free_3;
eauto.
mem_contents *)
intros.
rewrite FREE;
simpl.
eauto with mem.
stack *)
rewrite (
free_stack _ _ _ _ _ H0).
eapply stack_inject_invariant_strong. 2:
eauto.
intros.
eapply perm_free_3;
eauto.
Qed.
Lemma free_right_inj:
forall f g m1 m2 b lo hi m2',
mem_inj f g m1 m2 ->
free m2 b lo hi =
Some m2' ->
(
forall b'
delta ofs k p,
f b' =
Some(
b,
delta) ->
perm m1 b'
ofs k p ->
lo <=
ofs +
delta <
hi ->
False) ->
mem_inj f g m1 m2'.
Proof.
intros.
exploit free_result;
eauto.
intro FREE.
inversion H.
assert (
PERM:
forall b1 b2 delta ofs k p,
f b1 =
Some (
b2,
delta) ->
perm m1 b1 ofs k p ->
inject_perm_condition p ->
perm m2'
b2 (
ofs +
delta)
k p).
intros.
intros.
eapply perm_free_1;
eauto.
destruct (
eq_block b2 b);
auto.
subst b.
right.
assert (~ (
lo <=
ofs +
delta <
hi)).
red;
intros;
eapply H1;
eauto.
omega.
constructor.
perm *)
auto.
align *)
eapply mi_align0;
eauto.
mem_contents *)
intros.
rewrite FREE;
simpl.
eauto.
stack *)
rewrite (
free_stack _ _ _ _ _ H0).
auto.
Qed.
Preservation of drop_perm operations.
Lemma drop_perm_stack:
forall m1 b lo hi p m1',
drop_perm m1 b lo hi p =
Some m1' ->
stack m1' =
stack m1.
Proof.
Lemma drop_unmapped_inj:
forall f g m1 m2 b lo hi p m1',
mem_inj f g m1 m2 ->
drop_perm m1 b lo hi p =
Some m1' ->
f b =
None ->
mem_inj f g m1'
m2.
Proof.
Lemma drop_mapped_inj:
forall f g m1 m2 b1 b2 delta lo hi p m1',
mem_inj f g m1 m2 ->
drop_perm m1 b1 lo hi p =
Some m1' ->
range_perm m2 b2 (
lo +
delta) (
hi +
delta)
Cur Freeable ->
meminj_no_overlap f m1 ->
f b1 =
Some(
b2,
delta) ->
exists m2',
drop_perm m2 b2 (
lo +
delta) (
hi +
delta)
p =
Some m2'
/\
mem_inj f g m1'
m2'.
Proof.
Lemma drop_partial_mapped_inj:
forall f g m1 m2 b1 b2 delta lo1 hi1 lo2 hi2 p m1',
mem_inj f g m1 m2 ->
drop_perm m1 b1 lo1 hi1 p =
Some m1' ->
f b1 =
Some(
b2,
delta) ->
lo2 <=
lo1 ->
hi1 <=
hi2 ->
range_perm m2 b2 (
lo2 +
delta) (
hi2 +
delta)
Cur Freeable ->
meminj_no_overlap f m1 ->
(
forall b'
delta'
ofs'
k p,
f b' =
Some(
b2,
delta') ->
perm m1 b'
ofs'
k p ->
((
lo2 +
delta <=
ofs' +
delta' <
lo1 +
delta )
\/ (
hi1 +
delta <=
ofs' +
delta' <
hi2 +
delta)) ->
False) ->
exists m2',
drop_perm m2 b2 (
lo2 +
delta) (
hi2 +
delta)
p =
Some m2'
/\
mem_inj f g m1'
m2'.
Proof.
Lemma drop_outside_inj:
forall f g m1 m2 b lo hi p m2',
mem_inj f g m1 m2 ->
drop_perm m2 b lo hi p =
Some m2' ->
(
forall b'
delta ofs'
k p,
f b' =
Some(
b,
delta) ->
perm m1 b'
ofs'
k p ->
lo <=
ofs' +
delta <
hi ->
False) ->
mem_inj f g m1 m2'.
Proof.
intros.
inv H.
constructor.
perm *)
intros.
eapply perm_drop_3;
eauto.
destruct (
eq_block b2 b);
auto.
subst b2.
right.
destruct (
zlt (
ofs +
delta)
lo);
auto.
destruct (
zle hi (
ofs +
delta));
auto.
byContradiction.
exploit H1;
eauto.
omega.
align *)
eapply mi_align0;
eauto.
contents *)
intros.
replace (
m2'.(
mem_contents)#
b2)
with (
m2.(
mem_contents)#
b2).
apply mi_memval0;
auto.
unfold drop_perm in H0;
destruct (
range_perm_dec m2 b lo hi Cur Freeable);
inv H0;
auto.
stack *)
rewrite (
drop_perm_stack _ _ _ _ _ _ H0).
auto.
Qed.
Lemma drop_right_inj:
forall f g m1 m2 b lo hi p m2',
mem_inj f g m1 m2 ->
drop_perm m2 b lo hi p =
Some m2' ->
(
forall b'
delta ofs'
k p',
f b' =
Some(
b,
delta) ->
perm m1 b'
ofs'
k p' ->
lo <=
ofs' +
delta <
hi ->
p' =
p) ->
mem_inj f g m1 m2'.
Proof.
Theorem extends_refl:
forall m,
extends m m.
Proof.
Theorem load_extends:
forall chunk m1 m2 b ofs v1,
extends m1 m2 ->
load chunk m1 b ofs =
Some v1 ->
exists v2,
load chunk m2 b ofs =
Some v2 /\
Val.lessdef v1 v2.
Proof.
intros.
inv H.
exploit load_inj;
eauto.
unfold inject_id;
reflexivity.
intros [
v2 [
A B]].
exists v2;
split.
replace (
ofs + 0)
with ofs in A by omega.
auto.
rewrite val_inject_id in B.
auto.
Qed.
Theorem loadv_extends:
forall chunk m1 m2 addr1 addr2 v1,
extends m1 m2 ->
loadv chunk m1 addr1 =
Some v1 ->
Val.lessdef addr1 addr2 ->
exists v2,
loadv chunk m2 addr2 =
Some v2 /\
Val.lessdef v1 v2.
Proof.
unfold loadv;
intros.
inv H1.
destruct addr2;
try congruence.
eapply load_extends;
eauto.
congruence.
Qed.
Theorem loadbytes_extends:
forall m1 m2 b ofs len bytes1,
extends m1 m2 ->
loadbytes m1 b ofs len =
Some bytes1 ->
exists bytes2,
loadbytes m2 b ofs len =
Some bytes2
/\
list_forall2 memval_lessdef bytes1 bytes2.
Proof.
intros.
inv H.
replace ofs with (
ofs + 0)
by omega.
eapply loadbytes_inj;
eauto.
Qed.
Lemma storev_stack:
forall chunk m1 addr v m2,
storev chunk m1 addr v =
Some m2 ->
stack m2 =
stack m1.
Proof.
intros chunk m1 addr v m2 H;
unfold storev in H;
destr_in H.
eapply store_stack;
eauto.
Qed.
Ltac rewrite_stack_backwards :=
repeat match goal with
|
H:
store _ ?
m1 _ _ _ =
Some ?
m2 |-
context [
stack ?
m2] =>
rewrite (
store_stack _ _ _ _ _ _ H)
|
H:
storev _ ?
m1 _ _ =
Some ?
m2 |-
context [
stack ?
m2] =>
rewrite (
storev_stack _ _ _ _ _ H)
|
H:
storebytes ?
m1 _ _ _ =
Some ?
m2 |-
context [
stack ?
m2] =>
rewrite (
storebytes_stack _ _ _ _ _ H)
|
H:
alloc ?
m1 _ _ = (?
m2,
_) |-
context [
stack ?
m2] =>
rewrite (
alloc_stack _ _ _ _ _ H)
|
H:
free ?
m1 _ _ _ =
Some ?
m2 |-
context [
stack ?
m2] =>
rewrite (
free_stack _ _ _ _ _ H)
|
H:
drop_perm ?
m1 _ _ _ _ =
Some ?
m2 |-
context [
stack ?
m2] =>
rewrite (
drop_perm_stack _ _ _ _ _ _ H)
end.
Theorem store_within_extends:
forall chunk m1 m2 b ofs v1 m1'
v2,
extends m1 m2 ->
store chunk m1 b ofs v1 =
Some m1' ->
Val.lessdef v1 v2 ->
exists m2',
store chunk m2 b ofs v2 =
Some m2'
/\
extends m1'
m2'.
Proof.
Theorem store_outside_extends:
forall chunk m1 m2 b ofs v m2',
extends m1 m2 ->
store chunk m2 b ofs v =
Some m2' ->
(
forall ofs',
perm m1 b ofs'
Cur Readable ->
ofs <=
ofs' <
ofs +
size_chunk chunk ->
False) ->
extends m1 m2'.
Proof.
Theorem storev_extends:
forall chunk m1 m2 addr1 v1 m1'
addr2 v2,
extends m1 m2 ->
storev chunk m1 addr1 v1 =
Some m1' ->
Val.lessdef addr1 addr2 ->
Val.lessdef v1 v2 ->
exists m2',
storev chunk m2 addr2 v2 =
Some m2'
/\
extends m1'
m2'.
Proof.
Theorem storebytes_within_extends:
forall m1 m2 b ofs bytes1 m1'
bytes2,
extends m1 m2 ->
storebytes m1 b ofs bytes1 =
Some m1' ->
list_forall2 memval_lessdef bytes1 bytes2 ->
exists m2',
storebytes m2 b ofs bytes2 =
Some m2'
/\
extends m1'
m2'.
Proof.
Theorem storebytes_outside_extends:
forall m1 m2 b ofs bytes2 m2',
extends m1 m2 ->
storebytes m2 b ofs bytes2 =
Some m2' ->
(
forall ofs',
perm m1 b ofs'
Cur Readable ->
ofs <=
ofs' <
ofs +
Z_of_nat (
length bytes2) ->
False) ->
extends m1 m2'.
Proof.
Theorem alloc_extends:
forall m1 m2 lo1 hi1 b m1'
lo2 hi2,
extends m1 m2 ->
alloc m1 lo1 hi1 = (
m1',
b) ->
lo2 <=
lo1 ->
hi1 <=
hi2 ->
exists m2',
alloc m2 lo2 hi2 = (
m2',
b)
/\
extends m1'
m2'.
Proof.
Theorem free_left_extends:
forall m1 m2 b lo hi m1',
extends m1 m2 ->
free m1 b lo hi =
Some m1' ->
extends m1'
m2.
Proof.
intros.
inv H.
constructor.
rewrite (
nextblock_free _ _ _ _ _ H0).
auto.
eapply free_left_inj;
eauto.
erewrite free_stack;
eauto.
intros.
exploit mext_perm_inv0;
eauto.
intros [
A|
A].
eapply perm_free_inv in A;
eauto.
destruct A as [[
A B]|
A];
auto.
subst b0.
right;
eapply perm_free_2;
eauto.
intuition eauto using perm_free_3.
rewrite_stack_backwards;
auto.
Qed.
Theorem free_right_extends:
forall m1 m2 b lo hi m2',
extends m1 m2 ->
free m2 b lo hi =
Some m2' ->
(
forall ofs k p,
perm m1 b ofs k p ->
lo <=
ofs <
hi ->
False) ->
extends m1 m2'.
Proof.
Theorem free_parallel_extends:
forall m1 m2 b lo hi m1',
extends m1 m2 ->
inject_perm_condition Freeable ->
free m1 b lo hi =
Some m1' ->
exists m2',
free m2 b lo hi =
Some m2'
/\
extends m1'
m2'.
Proof.
intros.
inversion H.
assert (
exists m2':
mem,
free m2 b lo hi =
Some m2' )
as X.
apply range_perm_free'.
red;
intros.
replace ofs with (
ofs + 0)
by omega.
eapply perm_inj with (
b1 :=
b);
eauto.
eapply free_range_perm;
eauto.
destruct X as [
m2'
FREE].
exists m2';
split;
auto.
inv H.
constructor.
rewrite (
nextblock_free _ _ _ _ _ H1).
rewrite (
nextblock_free _ _ _ _ _ FREE).
auto.
eapply free_right_inj with (
m1 :=
m1');
eauto.
eapply free_left_inj;
eauto.
erewrite free_stack;
eauto.
unfold inject_id;
intros.
inv H.
eapply perm_free_2.
eexact H1.
instantiate (1 :=
ofs);
omega.
eauto.
intros.
exploit mext_perm_inv0;
eauto using perm_free_3.
intros [
A|
A].
eapply perm_free_inv in A;
eauto.
destruct A as [[
A B]|
A];
auto.
subst b0.
right;
eapply perm_free_2;
eauto.
right;
intuition eauto using perm_free_3.
rewrite_stack_backwards;
auto.
Qed.
Theorem valid_block_extends:
forall m1 m2 b,
extends m1 m2 ->
(
valid_block m1 b <->
valid_block m2 b).
Proof.
intros.
inv H.
unfold valid_block.
rewrite mext_next0.
tauto.
Qed.
Theorem perm_extends:
forall m1 m2 b ofs k p,
extends m1 m2 ->
perm m1 b ofs k p ->
inject_perm_condition p ->
perm m2 b ofs k p.
Proof.
intros.
inv H.
replace ofs with (
ofs + 0)
by omega.
eapply perm_inj;
eauto.
Qed.
Theorem perm_extends_inv:
forall m1 m2 b ofs k p,
extends m1 m2 ->
perm m2 b ofs k p ->
perm m1 b ofs k p \/ ~
perm m1 b ofs Max Nonempty.
Proof.
intros. inv H; eauto.
Qed.
Theorem valid_access_extends:
forall m1 m2 chunk b ofs p,
extends m1 m2 ->
valid_access m1 chunk b ofs p ->
inject_perm_condition p ->
valid_access m2 chunk b ofs p.
Proof.
intros.
inv H.
replace ofs with (
ofs + 0)
by omega.
eapply valid_access_inj;
eauto.
auto.
Qed.
Theorem valid_pointer_extends:
forall m1 m2 b ofs,
extends m1 m2 ->
valid_pointer m1 b ofs =
true ->
valid_pointer m2 b ofs =
true.
Proof.
Theorem weak_valid_pointer_extends:
forall m1 m2 b ofs,
extends m1 m2 ->
weak_valid_pointer m1 b ofs =
true ->
weak_valid_pointer m2 b ofs =
true.
Proof.
Lemma magree_monotone:
forall m1 m2 (
P Q:
locset),
magree m1 m2 P ->
(
forall b ofs,
Q b ofs ->
P b ofs) ->
magree m1 m2 Q.
Proof.
intros. destruct H. constructor; auto.
Qed.
Lemma mextends_agree:
forall m1 m2 P,
extends m1 m2 ->
magree m1 m2 P.
Proof.
intros.
destruct H.
destruct mext_inj0.
constructor;
intros.
-
replace ofs with (
ofs + 0)
by omega.
eapply mi_perm0;
eauto.
auto.
-
eauto.
-
exploit mi_memval0;
eauto.
unfold inject_id;
eauto.
rewrite Zplus_0_r.
auto.
-
auto.
-
auto.
-
rewrite_stack_backwards;
auto.
Qed.
Lemma magree_extends:
forall m1 m2 (
P:
locset),
(
forall b ofs,
P b ofs) ->
magree m1 m2 P ->
extends m1 m2.
Proof.
intros.
destruct H0.
constructor;
auto.
constructor;
unfold inject_id;
intros.
-
inv H0.
rewrite Zplus_0_r.
eauto.
-
inv H0.
apply Zdivide_0.
-
inv H0.
rewrite Zplus_0_r.
eapply ma_memval0;
eauto.
-
auto.
Qed.
Lemma magree_loadbytes:
forall m1 m2 P b ofs n bytes,
magree m1 m2 P ->
loadbytes m1 b ofs n =
Some bytes ->
(
forall i,
ofs <=
i <
ofs +
n ->
P b i) ->
exists bytes',
loadbytes m2 b ofs n =
Some bytes' /\
list_forall2 memval_lessdef bytes bytes'.
Proof.
Lemma magree_load:
forall m1 m2 P chunk b ofs v,
magree m1 m2 P ->
load chunk m1 b ofs =
Some v ->
(
forall i,
ofs <=
i <
ofs +
size_chunk chunk ->
P b i) ->
exists v',
load chunk m2 b ofs =
Some v' /\
Val.lessdef v v'.
Proof.
Lemma is_stack_top_magree:
forall P m1 m2 b
(
MINJ:
magree m1 m2 P)
(
PERM:
exists o k p,
perm m1 b o k p /\
inject_perm_condition p)
(
IST:
is_stack_top (
stack m1)
b),
is_stack_top (
stack m2)
b.
Proof.
Lemma get_frame_info_magree:
forall P m1 m2 b
(
MINJ:
magree m1 m2 P)
(
PERM:
exists o k p,
perm m1 b o k p /\
inject_perm_condition p),
option_le_stack (
fun fi =>
forall ofs k p,
perm m1 b ofs k p ->
inject_perm_condition p ->
frame_public fi ofs)
(
inject_frame_info 0) 0
(
get_frame_info (
stack m1)
b)
(
get_frame_info (
stack m2)
b).
Proof.
Lemma stack_access_magree:
forall P m1 m2 b lo hi p
(
MINJ :
magree m1 m2 P)
(
RP:
range_perm m1 b lo hi Cur p)
(
IPC:
inject_perm_condition p)
(
NPSA:
stack_access (
stack m1)
b lo hi),
stack_access (
stack m2)
b lo hi.
Proof.
Lemma magree_storebytes_parallel:
forall m1 m2 (
P Q:
locset)
b ofs bytes1 m1'
bytes2,
magree m1 m2 P ->
storebytes m1 b ofs bytes1 =
Some m1' ->
(
forall b'
i,
Q b'
i ->
b' <>
b \/
i <
ofs \/
ofs +
Z_of_nat (
length bytes1) <=
i ->
P b'
i) ->
list_forall2 memval_lessdef bytes1 bytes2 ->
exists m2',
storebytes m2 b ofs bytes2 =
Some m2' /\
magree m1'
m2'
Q.
Proof.
Lemma magree_storebytes_left:
forall m1 m2 P b ofs bytes1 m1',
magree m1 m2 P ->
storebytes m1 b ofs bytes1 =
Some m1' ->
(
forall i,
ofs <=
i <
ofs +
Z_of_nat (
length bytes1) -> ~(
P b i)) ->
magree m1'
m2 P.
Proof.
Lemma magree_store_left:
forall m1 m2 P chunk b ofs v1 m1',
magree m1 m2 P ->
store chunk m1 b ofs v1 =
Some m1' ->
(
forall i,
ofs <=
i <
ofs +
size_chunk chunk -> ~(
P b i)) ->
magree m1'
m2 P.
Proof.
Lemma magree_free:
forall m1 m2 (
P Q:
locset)
b lo hi m1',
magree m1 m2 P ->
inject_perm_condition Freeable ->
free m1 b lo hi =
Some m1' ->
(
forall b'
i,
Q b'
i ->
b' <>
b \/ ~(
lo <=
i <
hi) ->
P b'
i) ->
exists m2',
free m2 b lo hi =
Some m2' /\
magree m1'
m2'
Q.
Proof.
Lemma magree_valid_access:
forall m1 m2 (
P:
locset)
chunk b ofs p,
magree m1 m2 P ->
valid_access m1 chunk b ofs p ->
inject_perm_condition p ->
valid_access m2 chunk b ofs p.
Proof.
intros.
destruct H0 as (
A &
B &
C);
split; [|
split];
auto.
red;
intros.
eapply ma_perm;
eauto.
intros.
specialize (
C H0).
eapply stack_access_magree;
eauto.
Qed.
Preservation of access validity and pointer validity
Theorem valid_block_inject_1:
forall f g m1 m2 b1 b2 delta,
f b1 =
Some(
b2,
delta) ->
inject f g m1 m2 ->
valid_block m1 b1.
Proof.
Theorem valid_block_inject_2:
forall f g m1 m2 b1 b2 delta,
f b1 =
Some(
b2,
delta) ->
inject f g m1 m2 ->
valid_block m2 b2.
Proof.
Local Hint Resolve valid_block_inject_1 valid_block_inject_2:
mem.
Theorem perm_inject:
forall f g m1 m2 b1 b2 delta ofs k p,
f b1 =
Some(
b2,
delta) ->
inject f g m1 m2 ->
perm m1 b1 ofs k p ->
inject_perm_condition p ->
perm m2 b2 (
ofs +
delta)
k p.
Proof.
intros.
inv H0.
eapply perm_inj;
eauto.
Qed.
Theorem perm_inject_inv:
forall f g m1 m2 b1 ofs b2 delta k p,
inject f g m1 m2 ->
f b1 =
Some(
b2,
delta) ->
perm m2 b2 (
ofs +
delta)
k p ->
perm m1 b1 ofs k p \/ ~
perm m1 b1 ofs Max Nonempty.
Proof.
Theorem range_perm_inject:
forall f g m1 m2 b1 b2 delta lo hi k p,
f b1 =
Some(
b2,
delta) ->
inject f g m1 m2 ->
range_perm m1 b1 lo hi k p ->
inject_perm_condition p ->
range_perm m2 b2 (
lo +
delta) (
hi +
delta)
k p.
Proof.
Theorem valid_access_inject:
forall f g m1 m2 chunk b1 ofs b2 delta p,
f b1 =
Some(
b2,
delta) ->
inject f g m1 m2 ->
valid_access m1 chunk b1 ofs p ->
inject_perm_condition p ->
valid_access m2 chunk b2 (
ofs +
delta)
p.
Proof.
Theorem weak_valid_pointer_nonempty_perm:
forall m b ofs,
weak_valid_pointer m b ofs =
true <->
(
perm m b ofs Cur Nonempty) \/ (
perm m b (
ofs-1)
Cur Nonempty).
Proof.
Lemma weak_valid_pointer_size_bounds :
forall f g b1 b2 m1 m2 ofs delta,
f b1 =
Some (
b2,
delta) ->
inject f g m1 m2 ->
weak_valid_pointer m1 b1 (
Ptrofs.unsigned ofs) =
true ->
0 <=
delta <=
Ptrofs.max_unsigned /\
0 <=
Ptrofs.unsigned ofs +
delta <=
Ptrofs.max_unsigned.
Proof.
Theorem valid_pointer_inject:
forall f g m1 m2 b1 ofs b2 delta,
f b1 =
Some(
b2,
delta) ->
inject f g m1 m2 ->
valid_pointer m1 b1 ofs =
true ->
valid_pointer m2 b2 (
ofs +
delta) =
true.
Proof.
Theorem valid_pointer_inject' :
forall f g m1 m2 b1 ofs b2 delta,
f b1 =
Some(
b2,
delta) ->
inject f g m1 m2 ->
valid_pointer m1 b1 (
Ptrofs.unsigned ofs) =
true ->
valid_pointer m2 b2 (
Ptrofs.unsigned (
Ptrofs.add ofs (
Ptrofs.repr delta))) =
true.
Proof.
Theorem weak_valid_pointer_inject:
forall f g m1 m2 b1 ofs b2 delta,
f b1 =
Some(
b2,
delta) ->
inject f g m1 m2 ->
weak_valid_pointer m1 b1 ofs =
true ->
weak_valid_pointer m2 b2 (
ofs +
delta) =
true.
Proof.
Theorem weak_valid_pointer_inject':
forall f g m1 m2 b1 ofs b2 delta,
f b1 =
Some(
b2,
delta) ->
inject f g m1 m2 ->
weak_valid_pointer m1 b1 (
Ptrofs.unsigned ofs) =
true ->
weak_valid_pointer m2 b2 (
Ptrofs.unsigned (
Ptrofs.add ofs (
Ptrofs.repr delta))) =
true.
Proof.
The following lemmas establish the absence of g machine integer overflow
during address computations.
Lemma delta_pos:
forall f g m1 m2 b1 b2 delta,
inject f g m1 m2 ->
f b1 =
Some (
b2,
delta) ->
delta >= 0.
Proof.
Lemma address_inject:
forall f g m1 m2 b1 ofs1 b2 delta p,
inject f g m1 m2 ->
perm m1 b1 (
Ptrofs.unsigned ofs1)
Cur p ->
f b1 =
Some (
b2,
delta) ->
Ptrofs.unsigned (
Ptrofs.add ofs1 (
Ptrofs.repr delta)) =
Ptrofs.unsigned ofs1 +
delta.
Proof.
Lemma address_inject':
forall f g m1 m2 chunk b1 ofs1 b2 delta,
inject f g m1 m2 ->
valid_access m1 chunk b1 (
Ptrofs.unsigned ofs1)
Nonempty ->
f b1 =
Some (
b2,
delta) ->
Ptrofs.unsigned (
Ptrofs.add ofs1 (
Ptrofs.repr delta)) =
Ptrofs.unsigned ofs1 +
delta.
Proof.
Theorem weak_valid_pointer_inject_no_overflow:
forall f g m1 m2 b ofs b'
delta,
inject f g m1 m2 ->
weak_valid_pointer m1 b (
Ptrofs.unsigned ofs) =
true ->
f b =
Some(
b',
delta) ->
0 <=
Ptrofs.unsigned ofs +
Ptrofs.unsigned (
Ptrofs.repr delta) <=
Ptrofs.max_unsigned.
Proof.
Theorem valid_pointer_inject_no_overflow:
forall f g m1 m2 b ofs b'
delta,
inject f g m1 m2 ->
valid_pointer m1 b (
Ptrofs.unsigned ofs) =
true ->
f b =
Some(
b',
delta) ->
0 <=
Ptrofs.unsigned ofs +
Ptrofs.unsigned (
Ptrofs.repr delta) <=
Ptrofs.max_unsigned.
Proof.
Theorem valid_pointer_inject_val:
forall f g m1 m2 b ofs b'
ofs',
inject f g m1 m2 ->
valid_pointer m1 b (
Ptrofs.unsigned ofs) =
true ->
Val.inject f (
Vptr b ofs) (
Vptr b'
ofs') ->
valid_pointer m2 b' (
Ptrofs.unsigned ofs') =
true.
Proof.
Theorem weak_valid_pointer_inject_val:
forall f g m1 m2 b ofs b'
ofs',
inject f g m1 m2 ->
weak_valid_pointer m1 b (
Ptrofs.unsigned ofs) =
true ->
Val.inject f (
Vptr b ofs) (
Vptr b'
ofs') ->
weak_valid_pointer m2 b' (
Ptrofs.unsigned ofs') =
true.
Proof.
Theorem inject_no_overlap:
forall f g m1 m2 b1 b2 b1'
b2'
delta1 delta2 ofs1 ofs2,
inject f g m1 m2 ->
b1 <>
b2 ->
f b1 =
Some (
b1',
delta1) ->
f b2 =
Some (
b2',
delta2) ->
perm m1 b1 ofs1 Max Nonempty ->
perm m1 b2 ofs2 Max Nonempty ->
b1' <>
b2' \/
ofs1 +
delta1 <>
ofs2 +
delta2.
Proof.
intros. inv H. eapply mi_no_overlap0; eauto.
Qed.
Theorem different_pointers_inject:
forall f g m m'
b1 ofs1 b2 ofs2 b1'
delta1 b2'
delta2,
inject f g m m' ->
b1 <>
b2 ->
valid_pointer m b1 (
Ptrofs.unsigned ofs1) =
true ->
valid_pointer m b2 (
Ptrofs.unsigned ofs2) =
true ->
f b1 =
Some (
b1',
delta1) ->
f b2 =
Some (
b2',
delta2) ->
b1' <>
b2' \/
Ptrofs.unsigned (
Ptrofs.add ofs1 (
Ptrofs.repr delta1)) <>
Ptrofs.unsigned (
Ptrofs.add ofs2 (
Ptrofs.repr delta2)).
Proof.
Theorem disjoint_or_equal_inject:
forall f g m m'
b1 b1'
delta1 b2 b2'
delta2 ofs1 ofs2 sz,
inject f g m m' ->
f b1 =
Some(
b1',
delta1) ->
f b2 =
Some(
b2',
delta2) ->
range_perm m b1 ofs1 (
ofs1 +
sz)
Max Nonempty ->
range_perm m b2 ofs2 (
ofs2 +
sz)
Max Nonempty ->
sz > 0 ->
b1 <>
b2 \/
ofs1 =
ofs2 \/
ofs1 +
sz <=
ofs2 \/
ofs2 +
sz <=
ofs1 ->
b1' <>
b2' \/
ofs1 +
delta1 =
ofs2 +
delta2
\/
ofs1 +
delta1 +
sz <=
ofs2 +
delta2
\/
ofs2 +
delta2 +
sz <=
ofs1 +
delta1.
Proof.
intros.
destruct (
eq_block b1 b2).
assert (
b1' =
b2')
by congruence.
assert (
delta1 =
delta2)
by congruence.
subst.
destruct H5.
congruence.
right.
destruct H5.
left;
congruence.
right.
omega.
destruct (
eq_block b1'
b2');
auto.
subst.
right.
right.
set (
i1 := (
ofs1 +
delta1,
ofs1 +
delta1 +
sz)).
set (
i2 := (
ofs2 +
delta2,
ofs2 +
delta2 +
sz)).
change (
snd i1 <=
fst i2 \/
snd i2 <=
fst i1).
apply Intv.range_disjoint';
simpl;
try omega.
unfold Intv.disjoint,
Intv.In;
simpl;
intros.
red;
intros.
exploit mi_no_overlap;
eauto.
instantiate (1 :=
x -
delta1).
apply H2.
omega.
instantiate (1 :=
x -
delta2).
apply H3.
omega.
intuition.
Qed.
Theorem aligned_area_inject:
forall f g m m'
b ofs al sz b'
delta,
inject f g m m' ->
al = 1 \/
al = 2 \/
al = 4 \/
al = 8 ->
sz > 0 ->
(
al |
sz) ->
range_perm m b ofs (
ofs +
sz)
Cur Nonempty ->
(
al |
ofs) ->
f b =
Some(
b',
delta) ->
(
al |
ofs +
delta).
Proof.
Preservation of loads
Theorem load_inject:
forall f g m1 m2 chunk b1 ofs b2 delta v1,
inject f g m1 m2 ->
load chunk m1 b1 ofs =
Some v1 ->
f b1 =
Some (
b2,
delta) ->
exists v2,
load chunk m2 b2 (
ofs +
delta) =
Some v2 /\
Val.inject f v1 v2.
Proof.
intros.
inv H.
eapply load_inj;
eauto.
Qed.
Theorem loadv_inject:
forall f g m1 m2 chunk a1 a2 v1,
inject f g m1 m2 ->
loadv chunk m1 a1 =
Some v1 ->
Val.inject f a1 a2 ->
exists v2,
loadv chunk m2 a2 =
Some v2 /\
Val.inject f v1 v2.
Proof.
Theorem loadbytes_inject:
forall f g m1 m2 b1 ofs len b2 delta bytes1,
inject f g m1 m2 ->
loadbytes m1 b1 ofs len =
Some bytes1 ->
f b1 =
Some (
b2,
delta) ->
exists bytes2,
loadbytes m2 b2 (
ofs +
delta)
len =
Some bytes2
/\
list_forall2 (
memval_inject f)
bytes1 bytes2.
Proof.
Preservation of stores
Theorem store_mapped_inject:
forall f g chunk m1 b1 ofs v1 n1 m2 b2 delta v2,
inject f g m1 m2 ->
store chunk m1 b1 ofs v1 =
Some n1 ->
f b1 =
Some (
b2,
delta) ->
Val.inject f v1 v2 ->
exists n2,
store chunk m2 b2 (
ofs +
delta)
v2 =
Some n2
/\
inject f g n1 n2.
Proof.
intros.
inversion H.
exploit store_mapped_inj;
eauto.
intros [
n2 [
STORE MI]].
exists n2;
split.
eauto.
constructor.
inj *)
auto.
freeblocks *)
eauto with mem.
mappedblocks *)
eauto with mem.
no overlap *)
red;
intros.
eauto with mem.
representable *)
intros.
exploit mi_representable;
try eassumption.
intros [
A B];
split;
eauto.
intros ofs0 P.
eapply B.
destruct P;
eauto with mem.
perm inv *)
intros.
exploit mi_perm_inv0;
eauto using perm_store_2.
intuition eauto using perm_store_1,
perm_store_2.
Qed.
Theorem store_mapped_weak_inject:
forall f g chunk m1 b1 ofs v1 n1 m2 b2 delta v2,
weak_inject f g m1 m2 ->
store chunk m1 b1 ofs v1 =
Some n1 ->
f b1 =
Some (
b2,
delta) ->
Val.inject f v1 v2 ->
exists n2,
store chunk m2 b2 (
ofs +
delta)
v2 =
Some n2
/\
weak_inject f g n1 n2.
Proof.
intros.
inversion H.
exploit store_mapped_inj;
eauto.
intros [
n2 [
STORE MI]].
exists n2;
split.
eauto.
constructor.
inj *)
auto.
mappedblocks *)
eauto with mem.
no overlap *)
red;
intros.
eauto with mem.
representable *)
intros.
exploit mwi_representable;
try eassumption.
intros [
A B];
split;
eauto.
intros ofs0 P.
eapply B.
destruct P;
eauto with mem.
perm inv *)
intros.
exploit mwi_perm_inv0;
eauto using perm_store_2.
intuition eauto using perm_store_1,
perm_store_2.
Qed.
Theorem store_unmapped_inject:
forall f g chunk m1 b1 ofs v1 n1 m2,
inject f g m1 m2 ->
store chunk m1 b1 ofs v1 =
Some n1 ->
f b1 =
None ->
inject f g n1 m2.
Proof.
intros.
inversion H.
constructor.
inj *)
eapply store_unmapped_inj;
eauto.
freeblocks *)
eauto with mem.
mappedblocks *)
eauto with mem.
no overlap *)
red;
intros.
eauto with mem.
representable *)
intros.
exploit mi_representable;
try eassumption.
intros [
A B];
split;
auto.
intros;
eapply B;
eauto.
destruct H3;
eauto with mem.
perm inv *)
intros.
exploit mi_perm_inv0;
eauto using perm_store_2.
intuition eauto using perm_store_1,
perm_store_2.
Qed.
Theorem store_outside_inject:
forall f g m1 m2 chunk b ofs v m2',
inject f g m1 m2 ->
(
forall b'
delta ofs',
f b' =
Some(
b,
delta) ->
perm m1 b'
ofs'
Cur Readable ->
ofs <=
ofs' +
delta <
ofs +
size_chunk chunk ->
False) ->
store chunk m2 b ofs v =
Some m2' ->
inject f g m1 m2'.
Proof.
intros.
inversion H.
constructor.
inj *)
eapply store_outside_inj;
eauto.
freeblocks *)
auto.
mappedblocks *)
eauto with mem.
no overlap *)
auto.
representable *)
eauto with mem.
perm inv *)
intros.
eauto using perm_store_2.
Qed.
Theorem store_right_inject:
forall f g m1 m2 chunk b ofs v m2',
inject f g m1 m2 ->
(
forall b'
delta ofs',
f b' =
Some(
b,
delta) ->
ofs' +
delta =
ofs ->
exists vl,
loadbytes m1 b'
ofs' (
size_chunk chunk) =
Some vl /\
list_forall2 (
memval_inject f)
vl (
encode_val chunk v)) ->
store chunk m2 b ofs v =
Some m2' ->
inject f g m1 m2'.
Proof.
intros.
inversion H.
constructor.
inj *)
eapply store_right_inj;
eauto.
freeblocks *)
auto.
mappedblocks *)
eauto with mem.
no overlap *)
auto.
representable *)
eauto with mem.
perm inv *)
intros.
eauto using perm_store_2.
Qed.
Theorem storev_mapped_inject:
forall f g chunk m1 a1 v1 n1 m2 a2 v2,
inject f g m1 m2 ->
storev chunk m1 a1 v1 =
Some n1 ->
Val.inject f a1 a2 ->
Val.inject f v1 v2 ->
exists n2,
storev chunk m2 a2 v2 =
Some n2 /\
inject f g n1 n2.
Proof.
Theorem storebytes_mapped_inject:
forall f g m1 b1 ofs bytes1 n1 m2 b2 delta bytes2,
inject f g m1 m2 ->
storebytes m1 b1 ofs bytes1 =
Some n1 ->
f b1 =
Some (
b2,
delta) ->
list_forall2 (
memval_inject f)
bytes1 bytes2 ->
exists n2,
storebytes m2 b2 (
ofs +
delta)
bytes2 =
Some n2
/\
inject f g n1 n2.
Proof.
Theorem storebytes_unmapped_inject:
forall f g m1 b1 ofs bytes1 n1 m2,
inject f g m1 m2 ->
storebytes m1 b1 ofs bytes1 =
Some n1 ->
f b1 =
None ->
inject f g n1 m2.
Proof.
intros.
inversion H.
constructor.
inj *)
eapply storebytes_unmapped_inj;
eauto.
freeblocks *)
intros.
apply mi_freeblocks0.
red;
intros;
elim H2;
eapply storebytes_valid_block_1;
eauto.
mappedblocks *)
eauto with mem.
no overlap *)
red;
intros.
eapply mi_no_overlap0;
eauto;
eapply perm_storebytes_2;
eauto.
representable *)
intros.
exploit mi_representable0;
eauto.
intros [
A B];
split;
auto.
intros;
eapply B;
eauto.
destruct H3;
eauto using perm_storebytes_2.
perm inv *)
intros.
exploit mi_perm_inv0;
eauto.
intuition eauto using perm_storebytes_1,
perm_storebytes_2.
Qed.
Theorem storebytes_outside_inject:
forall f g m1 m2 b ofs bytes2 m2',
inject f g m1 m2 ->
(
forall b'
delta ofs',
f b' =
Some(
b,
delta) ->
perm m1 b'
ofs'
Cur Readable ->
ofs <=
ofs' +
delta <
ofs +
Z_of_nat (
length bytes2) ->
False) ->
storebytes m2 b ofs bytes2 =
Some m2' ->
inject f g m1 m2'.
Proof.
Theorem storebytes_empty_inject:
forall f g m1 b1 ofs1 m1'
m2 b2 ofs2 m2',
inject f g m1 m2 ->
storebytes m1 b1 ofs1 nil =
Some m1' ->
storebytes m2 b2 ofs2 nil =
Some m2' ->
inject f g m1'
m2'.
Proof.
Theorem alloc_right_inject:
forall f g m1 m2 lo hi b2 m2',
inject f g m1 m2 ->
alloc m2 lo hi = (
m2',
b2) ->
inject f g m1 m2'.
Proof.
intros.
injection H0.
intros NEXT MEM.
inversion H.
constructor.
inj *)
eapply alloc_right_inj;
eauto.
freeblocks *)
auto.
mappedblocks *)
eauto with mem.
no overlap *)
auto.
representable *)
auto.
perm inv *)
intros.
eapply perm_alloc_inv in H2;
eauto.
destruct (
eq_block b0 b2).
subst b0.
eelim fresh_block_alloc;
eauto.
eapply mi_perm_inv0;
eauto.
Qed.
Theorem alloc_left_unmapped_inject:
forall f g m1 m2 lo hi m1'
b1,
inject f g m1 m2 ->
alloc m1 lo hi = (
m1',
b1) ->
exists f',
inject f'
g m1'
m2
/\
inject_incr f f'
/\
f'
b1 =
None
/\ (
forall b,
b <>
b1 ->
f'
b =
f b).
Proof.
intros.
inversion H.
set (
f' :=
fun b =>
if eq_block b b1 then None else f b).
assert (
inject_incr f f').
{
red;
unfold f';
intros.
destruct (
eq_block b b1).
subst b.
assert (
f b1 =
None).
eauto with mem.
congruence.
auto.
}
assert (
mem_inj f'
g m1 m2).
{
inversion mi_inj0;
constructor;
eauto with mem.
-
unfold f';
intros.
destruct (
eq_block b0 b1).
congruence.
eauto.
-
unfold f';
intros.
destruct (
eq_block b0 b1).
congruence.
eauto.
-
unfold f';
intros.
destruct (
eq_block b0 b1).
congruence.
apply memval_inject_incr with f;
auto.
-
eapply stack_inject_incr;
eauto.
unfold f';
intros b b'
delta NONE SOME.
destr_in SOME.
}
exists f';
repeat refine (
conj _ _).
-
constructor.
+
eapply alloc_left_unmapped_inj;
eauto.
unfold f';
apply dec_eq_true.
+
intros.
unfold f'.
destruct (
eq_block b b1).
auto.
apply mi_freeblocks0.
red;
intro;
elim H3.
eauto with mem.
+
unfold f';
intros.
destruct (
eq_block b b1).
congruence.
eauto.
+
unfold f';
red;
intros.
destruct (
eq_block b0 b1);
destruct (
eq_block b2 b1);
try congruence.
eapply mi_no_overlap0.
eexact H3.
eauto.
eauto.
exploit perm_alloc_inv.
eauto.
eexact H6.
rewrite dec_eq_false;
auto.
exploit perm_alloc_inv.
eauto.
eexact H7.
rewrite dec_eq_false;
auto.
+
unfold f';
intros.
destruct (
eq_block b b1);
try discriminate.
exploit mi_representable0;
try eassumption.
intros [
A B];
split;
auto.
intros;
eapply B;
eauto.
destruct H4;
eauto using perm_alloc_4.
+
intros.
unfold f'
in H3;
destruct (
eq_block b0 b1);
try discriminate.
exploit mi_perm_inv0;
eauto.
intuition eauto using perm_alloc_1,
perm_alloc_4.
-
auto.
-
unfold f';
apply dec_eq_true.
-
intros;
unfold f';
apply dec_eq_false;
auto.
Qed.
Theorem alloc_left_unmapped_weak_inject:
forall f g m1 m2 lo hi m1'
b1,
f b1 =
None ->
weak_inject f g m1 m2 ->
alloc m1 lo hi = (
m1',
b1) ->
weak_inject f g m1'
m2.
Proof.
intros.
inversion H0.
-
constructor.
+
eapply alloc_left_unmapped_inj;
eauto.
+
intros.
destruct (
eq_block b b1).
congruence.
eauto.
+
red;
intros.
destruct (
eq_block b0 b1);
destruct (
eq_block b2 b1);
try congruence.
eapply mwi_no_overlap0.
eexact H2.
eauto.
eauto.
exploit perm_alloc_inv.
eauto.
eexact H5.
rewrite dec_eq_false;
auto.
exploit perm_alloc_inv.
eauto.
eexact H6.
rewrite dec_eq_false;
auto.
+
intros.
destruct (
eq_block b b1).
subst.
rewrite H in H2.
congruence.
exploit mwi_representable0;
try eassumption.
intros [
A B];
split;
auto.
intros;
eapply B;
eauto.
destruct H3;
eauto using perm_alloc_4.
+
intros.
destruct (
eq_block b0 b1).
subst.
rewrite H in H2.
congruence.
exploit mwi_perm_inv0;
eauto.
intuition eauto using perm_alloc_1,
perm_alloc_4.
Qed.
Theorem alloc_left_mapped_inject:
forall f g m1 m2 lo hi m1'
b1 b2 delta,
inject f g m1 m2 ->
alloc m1 lo hi = (
m1',
b1) ->
valid_block m2 b2 ->
0 <=
delta <=
Ptrofs.max_unsigned ->
(
forall ofs k p,
perm m2 b2 ofs k p ->
delta = 0 \/ 0 <=
ofs <
Ptrofs.max_unsigned) ->
(
forall ofs k p,
lo <=
ofs <
hi ->
inject_perm_condition p ->
perm m2 b2 (
ofs +
delta)
k p) ->
inj_offset_aligned delta (
hi-
lo) ->
(
forall b delta'
ofs k p,
f b =
Some (
b2,
delta') ->
perm m1 b ofs k p ->
lo +
delta <=
ofs +
delta' <
hi +
delta ->
False) ->
(
forall fi,
in_stack' (
stack m2) (
b2,
fi) ->
forall o k pp,
perm m1'
b1 o k pp ->
inject_perm_condition pp ->
frame_public fi (
o +
delta)) ->
exists f',
inject f'
g m1'
m2
/\
inject_incr f f'
/\
f'
b1 =
Some(
b2,
delta)
/\ (
forall b,
b <>
b1 ->
f'
b =
f b).
Proof.
intros f g m1 m2 lo hi m1'
b1 b2 delta INJ ALLOC VB RNG PERMREPR PERMPRES IOA NOOV NIF.
inversion INJ.
set (
f' :=
fun b =>
if eq_block b b1 then Some(
b2,
delta)
else f b).
assert (
inject_incr f f').
{
red;
unfold f';
intros.
destruct (
eq_block b b1).
subst b.
assert (
f b1 =
None).
eauto with mem.
congruence.
auto.
}
assert (
MINJ:
mem_inj f'
g m1 m2).
{
inversion mi_inj0;
constructor;
eauto with mem.
-
unfold f';
intros b0 b3 delta0 ofs k p FB PERM IPC.
destruct (
eq_block b0 b1).
inversion FB.
subst b0 b3 delta0.
elim (
fresh_block_alloc _ _ _ _ _ ALLOC).
eauto with mem.
eauto.
-
unfold f';
intros b0 b3 delta0 chunk ofs p FB RP.
destruct (
eq_block b0 b1).
inversion FB.
subst b0 b3 delta0.
elim (
fresh_block_alloc _ _ _ _ _ ALLOC).
eapply perm_valid_block with (
ofs :=
ofs).
apply RP.
generalize (
size_chunk_pos chunk);
omega.
eauto.
-
unfold f';
intros b0 ofs b3 delta0 FB PERM.
destruct (
eq_block b0 b1).
inversion FB.
subst b0 b3 delta0.
elim (
fresh_block_alloc _ _ _ _ _ ALLOC).
eauto with mem.
apply memval_inject_incr with f;
auto.
-
eapply stack_inject_incr;
eauto.
unfold f'.
intros b b'
delta0 NONE SOME.
destr_in SOME.
inv SOME.
split;
auto.
+
intro IFR.
apply fresh_block_alloc in ALLOC.
apply ALLOC.
eapply stack_valid.
auto.
+
intros;
eapply NIF;
eauto.
eapply perm_alloc_1;
eauto.
}
exists f';
repeat refine (
conj _ _).
-
constructor.
+
eapply alloc_left_mapped_inj;
eauto.
unfold f';
apply dec_eq_true.
+
unfold f';
intros b NVB.
destruct (
eq_block b b1).
subst b.
elim NVB.
eauto with mem.
eauto with mem.
+
unfold f';
intros.
destruct (
eq_block b b1).
congruence.
eauto.
+
unfold f';
red.
intros b0 b1'
delta1 b3 b2'
delta2 ofs1 ofs2 DIFF FB1 FB2 PE1 PE2.
exploit perm_alloc_inv.
eauto.
eexact PE1.
intros P1.
exploit perm_alloc_inv.
eauto.
eexact PE2.
intros P2.
destruct (
eq_block b0 b1);
destruct (
eq_block b3 b1).
congruence.
inversion FB1;
subst b0 b1'
delta1.
destruct (
eq_block b2 b2');
auto.
subst b2'.
right;
red;
intros.
eapply NOOV;
eauto.
omega.
inversion FB2;
subst b3 b2'
delta2.
destruct (
eq_block b1'
b2);
auto.
subst b1'.
right;
red;
intros.
eapply NOOV;
eauto.
omega.
eauto.
+
{
unfold f';
intros b b'
delta0 FB.
destruct (
eq_block b b1).
-
subst.
injection FB;
intros;
subst b'
delta0.
split.
omega.
intros.
destruct H0.
exploit perm_alloc_inv;
eauto;
rewrite dec_eq_true;
intro.
exploit PERMREPR.
apply PERMPRES with (
k :=
Max) (
p :=
Nonempty);
eauto.
eapply inject_perm_condition_writable;
constructor.
generalize (
Ptrofs.unsigned_range_2 ofs).
omega.
exploit perm_alloc_inv;
eauto;
rewrite dec_eq_true;
intro.
exploit PERMREPR.
apply PERMPRES with (
k :=
Max) (
p :=
Nonempty);
eauto.
eapply inject_perm_condition_writable;
constructor.
generalize (
Ptrofs.unsigned_range_2 ofs).
omega.
-
exploit mi_representable0;
try eassumption.
intros [
A B];
split;
auto.
intros;
eapply B;
eauto.
destruct H0;
eauto using perm_alloc_4.
}
+
intros b0 ofs b3 delta0 k p FB PERM.
intros.
unfold f'
in FB;
destruct (
eq_block b0 b1).
inversion FB;
clear FB;
subst b0 b3 delta0.
assert (
EITHER:
lo <=
ofs <
hi \/ ~(
lo <=
ofs <
hi))
by omega.
destruct EITHER.
left.
apply perm_implies with Freeable;
auto with mem.
eapply perm_alloc_2;
eauto.
right;
intros A.
eapply perm_alloc_inv in A;
eauto.
rewrite dec_eq_true in A.
tauto.
exploit mi_perm_inv0;
eauto.
intuition eauto using perm_alloc_1,
perm_alloc_4.
-
auto.
-
unfold f';
apply dec_eq_true.
-
intros.
unfold f';
apply dec_eq_false;
auto.
Qed.
Theorem alloc_parallel_inject:
forall f g m1 m2 lo1 hi1 m1'
b1 lo2 hi2,
inject f g m1 m2 ->
alloc m1 lo1 hi1 = (
m1',
b1) ->
lo2 <=
lo1 ->
hi1 <=
hi2 ->
exists f',
exists m2',
exists b2,
alloc m2 lo2 hi2 = (
m2',
b2)
/\
inject f'
g m1'
m2'
/\
inject_incr f f'
/\
f'
b1 =
Some(
b2, 0)
/\ (
forall b,
b <>
b1 ->
f'
b =
f b).
Proof.
Theorem alloc_left_mapped_weak_inject:
forall f g m1 m2 lo hi m1'
b1 b2 delta,
f b1 =
Some(
b2,
delta) ->
weak_inject f g m1 m2 ->
alloc m1 lo hi = (
m1',
b1) ->
valid_block m2 b2 ->
0 <=
delta <=
Ptrofs.max_unsigned ->
(
forall ofs k p,
perm m2 b2 ofs k p ->
delta = 0 \/ 0 <=
ofs <
Ptrofs.max_unsigned) ->
(
forall ofs k p,
lo <=
ofs <
hi ->
inject_perm_condition p ->
perm m2 b2 (
ofs +
delta)
k p) ->
inj_offset_aligned delta (
hi-
lo) ->
(
forall b delta'
ofs k p,
f b =
Some (
b2,
delta') ->
perm m1 b ofs k p ->
lo +
delta <=
ofs +
delta' <
hi +
delta ->
False) ->
(
forall fi,
in_stack' (
stack m2) (
b2,
fi) ->
forall o k pp,
perm m1'
b1 o k pp ->
inject_perm_condition pp ->
frame_public fi (
o +
delta)) ->
weak_inject f g m1'
m2.
Proof.
intros f g m1 m2 lo hi m1'
b1 b2 delta BINJ INJ ALLOC VB RNG PERMREPR PERMPRES IOA NOOV NIF.
inversion INJ.
-
constructor.
+
eapply alloc_left_mapped_inj;
eauto.
+
intros.
destruct (
eq_block b b1).
congruence.
eauto.
+
red.
intros b0 b1'
delta1 b3 b2'
delta2 ofs1 ofs2 DIFF FB1 FB2 PE1 PE2.
exploit perm_alloc_inv.
eauto.
eexact PE1.
intros P1.
exploit perm_alloc_inv.
eauto.
eexact PE2.
intros P2.
destruct (
eq_block b0 b1);
destruct (
eq_block b3 b1).
congruence.
subst.
rewrite BINJ in FB1.
inversion FB1;
subst.
destruct (
eq_block b1'
b2');
auto.
subst b2'.
right;
red;
intros.
eapply NOOV;
eauto.
omega.
subst.
rewrite BINJ in FB2.
inversion FB2;
subst.
destruct (
eq_block b1'
b2');
auto.
subst b1'.
right;
red;
intros.
eapply NOOV;
eauto.
omega.
eauto.
+
{
intros b b'
delta0 FB.
destruct (
eq_block b b1).
-
subst.
rewrite BINJ in FB.
injection FB;
intros;
subst b'
delta0.
split.
omega.
intros.
destruct H.
exploit perm_alloc_inv;
eauto;
rewrite dec_eq_true;
intro.
exploit PERMREPR.
apply PERMPRES with (
k :=
Max) (
p :=
Nonempty);
eauto.
eapply inject_perm_condition_writable;
constructor.
generalize (
Ptrofs.unsigned_range_2 ofs).
omega.
exploit perm_alloc_inv;
eauto;
rewrite dec_eq_true;
intro.
exploit PERMREPR.
apply PERMPRES with (
k :=
Max) (
p :=
Nonempty);
eauto.
eapply inject_perm_condition_writable;
constructor.
generalize (
Ptrofs.unsigned_range_2 ofs).
omega.
-
exploit mwi_representable0;
try eassumption.
intros [
A B];
split;
auto.
intros;
eapply B;
eauto.
destruct H;
eauto using perm_alloc_4.
}
+
intros b0 ofs b3 delta0 k p FB PERM.
intros.
destruct (
eq_block b0 b1).
subst.
rewrite BINJ in FB.
inversion FB;
clear FB;
subst.
assert (
EITHER:
lo <=
ofs <
hi \/ ~(
lo <=
ofs <
hi))
by omega.
destruct EITHER.
left.
apply perm_implies with Freeable;
auto with mem.
eapply perm_alloc_2;
eauto.
right;
intros A.
eapply perm_alloc_inv in A;
eauto.
rewrite dec_eq_true in A.
tauto.
exploit mwi_perm_inv0;
eauto.
intuition eauto using perm_alloc_1,
perm_alloc_4.
Qed.
Preservation of free operations
Lemma free_left_inject:
forall f g m1 m2 b lo hi m1',
inject f g m1 m2 ->
free m1 b lo hi =
Some m1' ->
inject f g m1'
m2.
Proof.
intros.
inversion H.
constructor.
inj *)
eapply free_left_inj;
eauto.
freeblocks *)
eauto with mem.
mappedblocks *)
auto.
no overlap *)
red;
intros.
eauto with mem.
representable *)
intros.
exploit mi_representable0;
try eassumption.
intros [
A B];
split;
auto.
intros;
eapply B;
eauto.
destruct H2;
eauto with mem.
perm inv *)
intros.
exploit mi_perm_inv0;
eauto.
intuition eauto using perm_free_3.
eapply perm_free_inv in H4;
eauto.
destruct H4 as [[
A B] |
A];
auto.
subst b1.
right;
eapply perm_free_2;
eauto.
Qed.
Lemma free_list_left_inject:
forall f g m2 l m1 m1',
inject f g m1 m2 ->
free_list m1 l =
Some m1' ->
inject f g m1'
m2.
Proof.
induction l;
simpl;
intros.
inv H0.
auto.
destruct a as [[
b lo]
hi].
destruct (
free m1 b lo hi)
as [
m11|]
eqn:
E;
try discriminate.
apply IHl with m11;
auto.
eapply free_left_inject;
eauto.
Qed.
Lemma free_right_inject:
forall f g m1 m2 b lo hi m2',
inject f g m1 m2 ->
free m2 b lo hi =
Some m2' ->
(
forall b1 delta ofs k p,
f b1 =
Some(
b,
delta) ->
perm m1 b1 ofs k p ->
lo <=
ofs +
delta <
hi ->
False) ->
inject f g m1 m2'.
Proof.
intros.
inversion H.
constructor.
inj *)
eapply free_right_inj;
eauto.
freeblocks *)
auto.
mappedblocks *)
eauto with mem.
no overlap *)
auto.
representable *)
auto.
perm inv *)
intros.
eauto using perm_free_3.
Qed.
Lemma perm_free_list:
forall l m m'
b ofs k p,
free_list m l =
Some m' ->
perm m'
b ofs k p ->
perm m b ofs k p /\
(
forall lo hi,
In (
b,
lo,
hi)
l ->
lo <=
ofs <
hi ->
False).
Proof.
induction l;
simpl;
intros.
inv H.
auto.
destruct a as [[
b1 lo1]
hi1].
destruct (
free m b1 lo1 hi1)
as [
m1|]
eqn:
E;
try discriminate.
exploit IHl;
eauto.
intros [
A B].
split.
eauto with mem.
intros.
destruct H1.
inv H1.
elim (
perm_free_2 _ _ _ _ _ E ofs k p).
auto.
auto.
eauto.
Qed.
Theorem free_inject:
forall f g m1 l m1'
m2 b lo hi m2',
inject f g m1 m2 ->
free_list m1 l =
Some m1' ->
free m2 b lo hi =
Some m2' ->
(
forall b1 delta ofs k p,
f b1 =
Some(
b,
delta) ->
perm m1 b1 ofs k p ->
lo <=
ofs +
delta <
hi ->
exists lo1,
exists hi1,
In (
b1,
lo1,
hi1)
l /\
lo1 <=
ofs <
hi1) ->
inject f g m1'
m2'.
Proof.
Theorem free_parallel_inject:
forall f g m1 m2 b lo hi m1'
b'
delta,
inject f g m1 m2 ->
free m1 b lo hi =
Some m1' ->
f b =
Some(
b',
delta) ->
inject_perm_condition Freeable ->
exists m2',
free m2 b' (
lo +
delta) (
hi +
delta) =
Some m2'
/\
inject f g m1'
m2'.
Proof.
intros f g m1 m2 b lo hi m1'
b'
delta INJ FREE FB IPC.
destruct (
range_perm_free'
m2 b' (
lo +
delta) (
hi +
delta))
as [
m2'
FREE'].
eapply range_perm_inject;
eauto.
eapply free_range_perm;
eauto.
exists m2';
split;
auto.
eapply free_inject with (
m1 :=
m1) (
l := (
b,
lo,
hi)::
nil);
eauto.
simpl;
rewrite FREE;
auto.
intros b1 delta0 ofs k p FB1 PERM RNG.
destruct (
eq_block b1 b).
subst b1.
rewrite FB1 in FB;
inv FB.
exists lo,
hi;
split;
auto with coqlib.
omega.
exploit mi_no_overlap.
eexact INJ.
eexact n.
eauto.
eauto.
eapply perm_max.
eapply perm_implies.
eauto.
auto with mem.
instantiate (1 :=
ofs +
delta0 -
delta).
apply perm_cur_max.
apply perm_implies with Freeable;
auto with mem.
eapply free_range_perm;
eauto.
omega.
intros [
A|
A].
congruence.
omega.
Qed.
Lemma drop_parallel_inject:
forall f g m1 m2 b1 b2 delta lo hi p m1',
inject f g m1 m2 ->
inject_perm_condition Freeable ->
drop_perm m1 b1 lo hi p =
Some m1' ->
f b1 =
Some(
b2,
delta) ->
exists m2',
drop_perm m2 b2 (
lo +
delta) (
hi +
delta)
p =
Some m2'
/\
inject f g m1'
m2'.
Proof.
intros.
inversion H.
exploit drop_mapped_inj;
eauto.
eapply range_perm_inj;
eauto with mem.
intros (
m2' &
DPERM &
MEMINJ).
exists m2'.
split.
auto.
constructor.
inj *)
auto.
freeblocks *)
eauto with mem.
mappedblocks *)
eauto with mem.
no overlap *)
red;
intros.
eauto with mem.
representable *)
intros.
exploit mi_representable;
try eassumption.
intros [
A B];
split;
eauto.
intros ofs0 P.
eapply B.
destruct P;
eauto with mem.
perm inv *)
intros.
exploit mi_perm_inv0;
eauto using perm_drop_4.
intuition eauto using perm_drop_4.
destruct (
eq_block b0 b1).
subst b0.
destruct (
zle lo ofs).
destruct (
zlt ofs hi).
rewrite H2 in H3.
inv H3.
assert (
perm_order p p0).
eapply perm_drop_2;
eauto.
omega.
assert (
perm m1'
b1 ofs k p).
eapply perm_drop_1;
eauto.
left.
eauto with mem.
left.
eapply perm_drop_3;
eauto.
right.
right.
omega.
left.
eapply perm_drop_3;
eauto.
right.
left.
omega.
left.
eapply perm_drop_3;
eauto.
Qed.
Lemma drop_parallel_weak_inject:
forall f g m1 m2 b1 b2 delta lo hi p m1',
weak_inject f g m1 m2 ->
inject_perm_condition Freeable ->
drop_perm m1 b1 lo hi p =
Some m1' ->
f b1 =
Some(
b2,
delta) ->
exists m2',
drop_perm m2 b2 (
lo +
delta) (
hi +
delta)
p =
Some m2'
/\
weak_inject f g m1'
m2'.
Proof.
intros.
inversion H.
exploit drop_mapped_inj;
eauto.
eapply range_perm_inj;
eauto with mem.
intros (
m2' &
DPERM &
MEMINJ).
exists m2'.
split.
auto.
constructor.
inj *)
auto.
mappedblocks *)
eauto with mem.
no overlap *)
red;
intros.
eauto with mem.
representable *)
intros.
exploit mwi_representable;
try eassumption.
intros [
A B];
split;
eauto.
intros ofs0 P.
eapply B.
destruct P;
eauto with mem.
perm inv *)
intros.
exploit mwi_perm_inv0;
eauto using perm_drop_4.
intuition eauto using perm_drop_4.
destruct (
eq_block b0 b1).
subst b0.
destruct (
zle lo ofs).
destruct (
zlt ofs hi).
rewrite H2 in H3.
inv H3.
assert (
perm_order p p0).
eapply perm_drop_2;
eauto.
omega.
assert (
perm m1'
b1 ofs k p).
eapply perm_drop_1;
eauto.
left.
eauto with mem.
left.
eapply perm_drop_3;
eauto.
right.
right.
omega.
left.
eapply perm_drop_3;
eauto.
right.
left.
omega.
left.
eapply perm_drop_3;
eauto.
Qed.
Lemma drop_extended_parallel_inject:
forall f g m1 m2 b1 b2 delta lo1 hi1 lo2 hi2 p m1',
inject f g m1 m2 ->
inject_perm_condition Freeable ->
drop_perm m1 b1 lo1 hi1 p =
Some m1' ->
f b1 =
Some(
b2,
delta) ->
lo2 <=
lo1 ->
hi1 <=
hi2 ->
range_perm m2 b2 (
lo2 +
delta) (
hi2 +
delta)
Cur Freeable ->
(
forall b'
delta'
ofs'
k p,
f b' =
Some(
b2,
delta') ->
perm m1 b'
ofs'
k p ->
((
lo2 +
delta <=
ofs' +
delta' <
lo1 +
delta )
\/ (
hi1 +
delta <=
ofs' +
delta' <
hi2 +
delta)) ->
False) ->
exists m2',
drop_perm m2 b2 (
lo2 +
delta) (
hi2 +
delta)
p =
Some m2'
/\
inject f g m1'
m2'.
Proof.
intros.
inversion H.
exploit drop_partial_mapped_inj;
eauto.
intros (
m2' &
DPERM &
MEMINJ).
exists m2'.
split.
auto.
constructor.
inj *)
auto.
freeblocks *)
eauto with mem.
mappedblocks *)
eauto with mem.
no overlap *)
red;
intros.
eauto with mem.
representable *)
intros.
exploit mi_representable;
try eassumption.
intros [
A B];
split;
eauto.
intros ofs0 P.
eapply B.
destruct P;
eauto with mem.
perm inv *)
intros.
exploit mi_perm_inv0;
eauto using perm_drop_4.
intuition eauto using perm_drop_4.
destruct (
eq_block b0 b1).
subst b0.
destruct (
zle lo1 ofs).
destruct (
zlt ofs hi1).
rewrite H2 in H7.
inv H7.
assert (
perm_order p p0).
eapply perm_drop_2;
eauto.
omega.
assert (
perm m1'
b1 ofs k p).
eapply perm_drop_1;
eauto.
left.
eauto with mem.
left.
eapply perm_drop_3;
eauto.
right.
right.
omega.
left.
eapply perm_drop_3;
eauto.
right.
left.
omega.
left.
eapply perm_drop_3;
eauto.
Qed.
Lemma drop_extended_parallel_weak_inject:
forall f g m1 m2 b1 b2 delta lo1 hi1 lo2 hi2 p m1',
weak_inject f g m1 m2 ->
inject_perm_condition Freeable ->
drop_perm m1 b1 lo1 hi1 p =
Some m1' ->
f b1 =
Some(
b2,
delta) ->
lo2 <=
lo1 ->
hi1 <=
hi2 ->
range_perm m2 b2 (
lo2 +
delta) (
hi2 +
delta)
Cur Freeable ->
(
forall b'
delta'
ofs'
k p,
f b' =
Some(
b2,
delta') ->
perm m1 b'
ofs'
k p ->
((
lo2 +
delta <=
ofs' +
delta' <
lo1 +
delta )
\/ (
hi1 +
delta <=
ofs' +
delta' <
hi2 +
delta)) ->
False) ->
exists m2',
drop_perm m2 b2 (
lo2 +
delta) (
hi2 +
delta)
p =
Some m2'
/\
weak_inject f g m1'
m2'.
Proof.
intros.
inversion H.
exploit drop_partial_mapped_inj;
eauto.
intros (
m2' &
DPERM &
MEMINJ).
exists m2'.
split.
auto.
constructor.
inj *)
auto.
mappedblocks *)
eauto with mem.
no overlap *)
red;
intros.
eauto with mem.
representable *)
intros.
exploit mwi_representable;
try eassumption.
intros [
A B];
split;
eauto.
intros ofs0 P.
eapply B.
destruct P;
eauto with mem.
perm inv *)
intros.
exploit mwi_perm_inv0;
eauto using perm_drop_4.
intuition eauto using perm_drop_4.
destruct (
eq_block b0 b1).
subst b0.
destruct (
zle lo1 ofs).
destruct (
zlt ofs hi1).
rewrite H2 in H7.
inv H7.
assert (
perm_order p p0).
eapply perm_drop_2;
eauto.
omega.
assert (
perm m1'
b1 ofs k p).
eapply perm_drop_1;
eauto.
left.
eauto with mem.
left.
eapply perm_drop_3;
eauto.
right.
right.
omega.
left.
eapply perm_drop_3;
eauto.
right.
left.
omega.
left.
eapply perm_drop_3;
eauto.
Qed.
Lemma drop_outside_inject:
forall f g m1 m2 b lo hi p m2',
inject f g m1 m2 ->
drop_perm m2 b lo hi p =
Some m2' ->
(
forall b'
delta ofs k p,
f b' =
Some(
b,
delta) ->
perm m1 b'
ofs k p ->
lo <=
ofs +
delta <
hi ->
False) ->
inject f g m1 m2'.
Proof.
Lemma drop_right_inject:
forall f g m1 m2 b lo hi p m2',
inject f g m1 m2 ->
drop_perm m2 b lo hi p =
Some m2' ->
(
forall b'
delta ofs'
k p',
f b' =
Some(
b,
delta) ->
perm m1 b'
ofs'
k p' ->
lo <=
ofs' +
delta <
hi ->
p' =
p) ->
inject f g m1 m2'.
Proof.
The following property is needed by Unusedglobproof, to prove
injection between the initial memory states.
Lemma zero_delta_inject f g m1 m2:
(
forall b1 b2 delta,
f b1 =
Some (
b2,
delta) ->
delta = 0) ->
(
forall b1 b2,
f b1 =
Some (
b2, 0) ->
Mem.valid_block m1 b1 /\
Mem.valid_block m2 b2) ->
(
forall b1 p,
f b1 =
Some p ->
forall b2,
f b2 =
Some p ->
b1 =
b2) ->
(
forall b1 b2,
f b1 =
Some (
b2, 0) ->
forall o k p,
Mem.perm m1 b1 o k p ->
inject_perm_condition p ->
Mem.perm m2 b2 o k p) ->
(
forall b1 b2,
f b1 =
Some (
b2, 0) ->
forall o k p,
Mem.perm m2 b2 o k p ->
Mem.perm m1 b1 o k p \/ ~
Mem.perm m1 b1 o Max Nonempty) ->
(
forall b1 b2,
f b1 =
Some (
b2, 0) ->
forall o v1,
loadbytes m1 b1 o 1 =
Some (
v1 ::
nil) ->
exists v2,
loadbytes m2 b2 o 1 =
Some (
v2 ::
nil) /\
memval_inject f v1 v2) ->
stack_inject f g (
perm m1) (
stack m1) (
stack m2) ->
Mem.inject f g m1 m2.
Proof.
intros Delta0 VB NODUP PERM PERMINV LOADBYTES STACK.
constructor.
{
constructor.
-
intros b1 b2 delta ofs k p FB1 PERM'
IPC.
specialize (
Delta0 _ _ _ FB1).
subst.
rewrite Z.add_0_r.
eapply PERM;
eauto.
-
intros b1 b2 delta chunk ofs p FB1 RP.
specialize (
Delta0 _ _ _ FB1).
subst.
exists 0.
omega.
-
intros b1 ofs b2 delta H3 H4.
specialize (
Delta0 _ _ _ H3).
subst.
rewrite Z.add_0_r.
specialize (
LOADBYTES _ _ H3 ofs).
revert LOADBYTES.
unfold loadbytes.
destruct (
range_perm_dec m1 b1 ofs (
ofs + 1)
Cur Readable)
as [ |
n1].
+
simpl.
destruct (
range_perm_dec m2 b2 ofs (
ofs + 1)
Cur Readable)
as [ |
n2].
{
intro H2.
specialize (
H2 _ (
eq_refl _)).
destruct H2 as (? &
H2 &
INJ).
congruence.
}
destruct n2.
red.
intros ofs0 H.
eapply PERM;
eauto.
eapply inject_perm_condition_writable;
constructor.
+
destruct n1.
red.
intros ofs0 H.
replace ofs0 with ofs by omega.
assumption.
-
assumption.
}
+
intros b H3.
destruct (
f b)
as [ [ ] | ]
eqn:
F;
auto.
specialize (
Delta0 _ _ _ F).
subst.
destruct H3.
eapply VB;
eauto.
+
intros b b'
delta H3.
specialize (
Delta0 _ _ _ H3).
subst.
eapply VB;
eauto.
+
unfold meminj_no_overlap.
intros b1 b1'
delta1 b2 b2'
delta2 ofs1 ofs2 H3 H4 H5 H6 H7.
generalize (
Delta0 _ _ _ H4).
intro;
subst.
generalize (
Delta0 _ _ _ H5).
intro;
subst.
left.
intro;
subst.
destruct H3;
eauto.
+
intros b b'
delta H3.
specialize (
Delta0 _ _ _ H3).
subst.
split.
*
omega.
*
intros.
rewrite Z.add_0_r.
apply Ptrofs.unsigned_range_2.
+
intros b1 ofs b2 delta k p H3 H4.
exploit Delta0;
eauto.
intro;
subst.
eapply PERMINV;
eauto.
replace ofs with (
ofs + 0)
by omega.
assumption.
Qed.
The following is a consequence of the above. It is needed by
ValueDomain, to prove mmatch_inj.
Lemma wf_stack_mem m:
wf_stack (
perm m) (
stack m).
Proof.
Lemma stack_inject_aux_flat:
forall s P f (
F:
forall b,
f b =
None \/
f b =
Some (
b, 0)),
stack_inject_aux f P (
flat_frameinj (
length s))
s s.
Proof.
induction s;
simpl;
intros.
constructor.
simpl.
econstructor.
reflexivity.
reflexivity.
simpl.
eauto.
repeat constructor.
apply self_tframe_inject;
auto.
Qed.
Lemma self_inject f m:
(
forall b,
f b =
None \/
f b =
Some (
b, 0)) ->
(
forall b,
f b <>
None ->
Mem.valid_block m b) ->
(
forall b,
f b <>
None ->
forall o b'
o'
q n,
loadbytes m b o 1 =
Some (
Fragment (
Vptr b'
o')
q n ::
nil) ->
f b' <>
None) ->
Mem.inject f (
flat_frameinj (
length (
stack m)))
m m.
Proof.
intros H H0 H1.
apply zero_delta_inject.
+
intros b1 b2 delta H2.
destruct (
H b1);
congruence.
+
intros b1 b2 H2.
destruct (
H b1);
try congruence.
replace b2 with b1 by congruence.
assert (
f b1 <>
None)
by congruence.
auto.
+
intros b1 p H2 b2 H3.
destruct (
H b1);
destruct (
H b2);
congruence.
+
intros b1 b2 H2 o k p H3.
destruct (
H b1);
congruence.
+
intros b1 b2 H2 o k p H3.
destruct (
H b1);
intuition congruence.
+
intros b1 b2 H2 o v1 H3.
destruct (
H b1);
try congruence.
replace b2 with b1 by congruence.
esplit.
split;
eauto.
destruct v1 as [ | |
v];
try constructor.
destruct v as [ | | | | |
b ];
try constructor.
apply H1 in H3;
try congruence.
destruct (
H b);
try congruence.
econstructor;
eauto.
rewrite Ptrofs.add_zero.
reflexivity.
+
constructor.
*
apply stack_inject_aux_flat.
auto.
*
intros.
destruct (
H b1);
try congruence.
rewrite H2 in FB;
inv FB.
eapply in_stack'
_in_stack in FI;
congruence.
Qed.
Composing two memory injections.
Lemma mem_inj_compose:
forall f f'
g g'
m1 m2 m3,
mem_inj f g m1 m2 ->
mem_inj f'
g'
m2 m3 ->
forall g2 ,
compose_frameinj g g' =
Some g2 ->
mem_inj (
compose_meminj f f')
g2 m1 m3.
Proof.
intros f f'
g g'
m1 m2 m3 H H0 g2 COMP.
unfold compose_meminj.
inv H;
inv H0;
constructor.
-
intros b1 b2 delta ofs k p CINJ PERM IPC.
destruct (
f b1)
as [[
b'
delta'] |]
eqn:?;
try discriminate.
destruct (
f'
b')
as [[
b''
delta''] |]
eqn:?;
inv CINJ.
replace (
ofs + (
delta' +
delta''))
with ((
ofs +
delta') +
delta'')
by omega.
eauto.
-
intros b1 b2 delta chunk ofs p CINJ RP.
destruct (
f b1)
as [[
b'
delta'] |]
eqn:?;
try discriminate.
destruct (
f'
b')
as [[
b''
delta''] |]
eqn:?;
inv CINJ.
apply Z.divide_add_r.
eapply mi_align0;
eauto.
eapply mi_align1 with (
ofs :=
ofs +
delta') (
p :=
Nonempty);
eauto.
red;
intros.
replace ofs0 with ((
ofs0 -
delta') +
delta')
by omega.
eapply mi_perm0;
eauto.
eapply perm_implies.
apply RP.
omega.
constructor.
apply inject_perm_condition_writable;
constructor.
-
intros b1 ofs b2 delta CINJ PERM.
destruct (
f b1)
as [[
b'
delta'] |]
eqn:?;
try discriminate.
destruct (
f'
b')
as [[
b''
delta''] |]
eqn:?;
inv CINJ.
replace (
ofs + (
delta' +
delta''))
with ((
ofs +
delta') +
delta'')
by omega.
eapply memval_inject_compose;
eauto.
eapply mi_memval1;
eauto.
eapply mi_perm0;
eauto.
eapply inject_perm_condition_writable;
constructor.
-
eapply stack_inject_compose;
eauto.
eapply stack_inv_norepet,
mem_stack_inv;
eauto.
eapply stack_inv_norepet,
mem_stack_inv;
eauto.
Qed.
Theorem inject_compose:
forall f f'
g g'
m1 m2 m3,
inject f g m1 m2 ->
inject f'
g'
m2 m3 ->
forall g2 ,
compose_frameinj g g' =
Some g2 ->
inject (
compose_meminj f f')
g2 m1 m3.
Proof.
intros f f'
g g'
m1 m2 m3 H H0 g2 COMP.
unfold compose_meminj;
inv H;
inv H0.
constructor.
inj *)
eapply mem_inj_compose;
eauto.
unmapped *)
intros.
erewrite mi_freeblocks0;
eauto.
mapped *)
intros.
destruct (
f b)
as [[
b1 delta1] |]
eqn:?;
try discriminate.
destruct (
f'
b1)
as [[
b2 delta2] |]
eqn:?;
inv H.
eauto.
no overlap *)
red;
intros.
destruct (
f b1)
as [[
b1x delta1x] |]
eqn:?;
try discriminate.
destruct (
f'
b1x)
as [[
b1y delta1y] |]
eqn:?;
inv H0.
destruct (
f b2)
as [[
b2x delta2x] |]
eqn:?;
try discriminate.
destruct (
f'
b2x)
as [[
b2y delta2y] |]
eqn:?;
inv H1.
exploit mi_no_overlap0;
eauto.
intros A.
destruct (
eq_block b1x b2x).
subst b1x.
destruct A.
congruence.
assert (
delta1y =
delta2y)
by congruence.
right;
omega.
exploit mi_no_overlap1.
eauto.
eauto.
eauto.
eapply perm_inj.
eauto.
eexact H2.
eauto.
eapply inject_perm_condition_writable;
constructor.
eapply perm_inj.
eauto.
eexact H3.
eauto.
eapply inject_perm_condition_writable;
constructor.
intuition omega.
representable *)
intros.
destruct (
f b)
as [[
b1 delta1] |]
eqn:?;
try discriminate.
destruct (
f'
b1)
as [[
b2 delta2] |]
eqn:?;
inv H.
exploit mi_representable0;
eauto.
intros [
A B].
exploit mi_representable1.
eauto.
intros [
C D].
split;
auto.
omega.
intros.
set (
ofs' :=
Ptrofs.repr (
Ptrofs.unsigned ofs +
delta1)).
assert (
Ptrofs.unsigned ofs' =
Ptrofs.unsigned ofs +
delta1).
unfold ofs';
apply Ptrofs.unsigned_repr.
auto.
exploit D.
instantiate (1 :=
ofs').
rewrite H0.
replace (
Ptrofs.unsigned ofs +
delta1 - 1)
with
((
Ptrofs.unsigned ofs - 1) +
delta1)
by omega.
destruct H;
eauto using perm_inj.
left;
eapply mi_perm;
eauto.
eapply inject_perm_condition_writable;
constructor.
right;
eapply mi_perm;
eauto.
eapply inject_perm_condition_writable;
constructor.
rewrite H0.
omega.
perm inv *)
intros.
destruct (
f b1)
as [[
b'
delta'] |]
eqn:?;
try discriminate.
destruct (
f'
b')
as [[
b''
delta''] |]
eqn:?;
try discriminate.
inversion H;
clear H;
subst b''
delta.
replace (
ofs + (
delta' +
delta''))
with ((
ofs +
delta') +
delta'')
in H0 by omega.
exploit mi_perm_inv1;
eauto.
intros [
A|
A].
eapply mi_perm_inv0;
eauto.
right;
red;
intros.
elim A.
eapply perm_inj;
eauto.
eapply inject_perm_condition_writable;
constructor.
Qed.
Lemma val_lessdef_inject_compose:
forall f v1 v2 v3,
Val.lessdef v1 v2 ->
Val.inject f v2 v3 ->
Val.inject f v1 v3.
Proof.
intros. inv H. auto. auto.
Qed.
Lemma val_inject_lessdef_compose:
forall f v1 v2 v3,
Val.inject f v1 v2 ->
Val.lessdef v2 v3 ->
Val.inject f v1 v3.
Proof.
intros. inv H0. auto. inv H. auto.
Qed.
Lemma lt_lt_eq:
(
forall a b,
a =
b <-> (
forall i,
i <
a <->
i <
b))%
nat.
Proof.
split;
intros;
subst.
tauto.
destruct (
lt_dec a b).
specialize (
H a).
omega.
destruct (
lt_dec b a).
specialize (
H b).
omega.
omega.
Qed.
Lemma take_flat_frameinj:
forall a b,
take a (
flat_frameinj (
a +
b)) =
Some (
flat_frameinj a).
Proof.
induction a; simpl; intros; eauto.
setoid_rewrite IHa. reflexivity.
Qed.
Lemma drop_flat_frameinj:
forall a b,
drop a (
flat_frameinj (
a +
b)) =
flat_frameinj b.
Proof.
induction a; simpl; intros; eauto.
Qed.
Lemma sum_list_flat:
forall a,
sum_list (
flat_frameinj a) =
a.
Proof.
induction a; simpl; intros; eauto.
Qed.
Lemma compose_frameinj_flat:
forall g,
compose_frameinj (
flat_frameinj (
sum_list g))
g =
Some g.
Proof.
Lemma compose_frameinj_flat':
forall g,
compose_frameinj g (
flat_frameinj (
length g)) =
Some g.
Proof.
induction g;
simpl;
intros.
auto.
setoid_rewrite IHg.
rewrite Nat.add_0_r.
reflexivity.
Qed.
Lemma compose_frameinj_same:
forall g,
compose_frameinj (
flat_frameinj g) (
flat_frameinj g) =
Some (
flat_frameinj g).
Proof.
induction g; simpl; intros. auto.
setoid_rewrite IHg. reflexivity.
Qed.
Lemma extends_inject_compose:
forall f g m1 m2 m3,
extends m1 m2 ->
inject f g m2 m3 ->
inject f g m1 m3.
Proof.
Lemma inject_extends_compose:
forall f g m1 m2 m3,
inject f g m1 m2 ->
extends m2 m3 ->
inject f g m1 m3.
Proof.
intros f g m1 m2 m3 H H0.
inv H;
inversion H0.
constructor;
intros.
inj *)
replace f with (
compose_meminj f inject_id).
eapply mem_inj_compose;
eauto.
inv mi_inj0.
inv mi_stack_blocks0.
apply stack_inject_aux_length_r in stack_inject_frame_inject.
rewrite <-
stack_inject_frame_inject.
apply compose_frameinj_flat'.
apply extensionality;
intros.
unfold compose_meminj,
inject_id.
destruct (
f x)
as [[
y delta] | ];
auto.
decEq.
decEq.
omega.
unmapped *)
eauto.
mapped *)
erewrite <-
valid_block_extends;
eauto.
no overlap *)
red;
intros.
eapply mi_no_overlap0;
eauto.
representable *)
eapply mi_representable0;
eauto.
perm inv *)
exploit mext_perm_inv0;
eauto.
intros [
A|
A].
eapply mi_perm_inv0;
eauto.
right;
red;
intros;
elim A.
eapply perm_inj;
eauto.
eapply inject_perm_condition_writable;
constructor.
Qed.
Lemma extends_extends_compose:
forall m1 m2 m3,
extends m1 m2 ->
extends m2 m3 ->
extends m1 m3.
Proof.
Remark flat_inj_no_overlap:
forall thr m,
meminj_no_overlap (
flat_inj thr)
m.
Proof.
unfold flat_inj;
intros;
red;
intros.
destruct (
plt b1 thr);
inversion H0;
subst.
destruct (
plt b2 thr);
inversion H1;
subst.
auto.
Qed.
Theorem neutral_inject:
forall m,
inject_neutral (
nextblock m)
m ->
inject (
flat_inj (
nextblock m)) (
flat_frameinj (
length (
stack m)))
m m.
Proof.
Theorem empty_inject_neutral:
forall thr,
inject_neutral thr empty.
Proof.
intros;
red;
constructor.
perm *)
unfold flat_inj;
intros.
destruct (
plt b1 thr);
inv H.
replace (
ofs + 0)
with ofs by omega;
auto.
align *)
unfold flat_inj;
intros.
destruct (
plt b1 thr);
inv H.
apply Z.divide_0_r.
mem_contents *)
intros;
simpl.
rewrite !
PMap.gi.
rewrite !
ZMap.gi.
constructor.
stack adt *)
apply stack_inject_nil.
Qed.
Theorem alloc_inject_neutral:
forall thr m lo hi b m',
alloc m lo hi = (
m',
b) ->
inject_neutral thr m ->
Plt (
nextblock m)
thr ->
inject_neutral thr m'.
Proof.
Theorem store_inject_neutral:
forall chunk m b ofs v m'
thr,
store chunk m b ofs v =
Some m' ->
inject_neutral thr m ->
Plt b thr ->
Val.inject (
flat_inj thr)
v v ->
inject_neutral thr m'.
Proof.
Theorem drop_inject_neutral:
forall m b lo hi p m'
thr,
drop_perm m b lo hi p =
Some m' ->
inject_neutral thr m ->
Plt b thr ->
inject_neutral thr m'.
Proof.
Invariance properties between two memory states
Section UNCHANGED_ON.
Variable P:
block ->
Z ->
Prop.
Lemma unchanged_on_refl:
forall m,
unchanged_on P m m.
Proof.
intros;
constructor.
apply Ple_refl.
tauto.
tauto.
Qed.
Lemma valid_block_unchanged_on:
forall m m'
b,
unchanged_on P m m' ->
valid_block m b ->
valid_block m'
b.
Proof.
Lemma perm_unchanged_on:
forall m m'
b ofs k p,
unchanged_on P m m' ->
P b ofs ->
perm m b ofs k p ->
perm m'
b ofs k p.
Proof.
intros.
destruct H.
apply unchanged_on_perm0;
auto.
eapply perm_valid_block;
eauto.
Qed.
Lemma perm_unchanged_on_2:
forall m m'
b ofs k p,
unchanged_on P m m' ->
P b ofs ->
valid_block m b ->
perm m'
b ofs k p ->
perm m b ofs k p.
Proof.
intros. destruct H. apply unchanged_on_perm0; auto.
Qed.
Lemma unchanged_on_trans:
forall m1 m2 m3,
unchanged_on P m1 m2 ->
unchanged_on P m2 m3 ->
unchanged_on P m1 m3.
Proof.
Lemma loadbytes_unchanged_on_1:
forall m m'
b ofs n,
unchanged_on P m m' ->
valid_block m b ->
(
forall i,
ofs <=
i <
ofs +
n ->
P b i) ->
loadbytes m'
b ofs n =
loadbytes m b ofs n.
Proof.
Lemma loadbytes_unchanged_on:
forall m m'
b ofs n bytes,
unchanged_on P m m' ->
(
forall i,
ofs <=
i <
ofs +
n ->
P b i) ->
loadbytes m b ofs n =
Some bytes ->
loadbytes m'
b ofs n =
Some bytes.
Proof.
Lemma load_unchanged_on_1:
forall m m'
chunk b ofs,
unchanged_on P m m' ->
valid_block m b ->
(
forall i,
ofs <=
i <
ofs +
size_chunk chunk ->
P b i) ->
load chunk m'
b ofs =
load chunk m b ofs.
Proof.
Lemma load_unchanged_on:
forall m m'
chunk b ofs v,
unchanged_on P m m' ->
(
forall i,
ofs <=
i <
ofs +
size_chunk chunk ->
P b i) ->
load chunk m b ofs =
Some v ->
load chunk m'
b ofs =
Some v.
Proof.
Lemma store_unchanged_on:
forall chunk m b ofs v m',
store chunk m b ofs v =
Some m' ->
(
forall i,
ofs <=
i <
ofs +
size_chunk chunk -> ~
P b i) ->
unchanged_on P m m'.
Proof.
Lemma storebytes_unchanged_on:
forall m b ofs bytes m',
storebytes m b ofs bytes =
Some m' ->
(
forall i,
ofs <=
i <
ofs +
Z_of_nat (
length bytes) -> ~
P b i) ->
unchanged_on P m m'.
Proof.
Lemma alloc_unchanged_on:
forall m lo hi m'
b,
alloc m lo hi = (
m',
b) ->
unchanged_on P m m'.
Proof.
Lemma free_unchanged_on:
forall m b lo hi m',
free m b lo hi =
Some m' ->
(
forall i,
lo <=
i <
hi -> ~
P b i) ->
unchanged_on P m m'.
Proof.
Lemma drop_perm_unchanged_on:
forall m b lo hi p m',
drop_perm m b lo hi p =
Some m' ->
(
forall i,
lo <=
i <
hi -> ~
P b i) ->
unchanged_on P m m'.
Proof.
End UNCHANGED_ON.
Lemma unchanged_on_implies:
forall (
P Q:
block ->
Z ->
Prop)
m m',
unchanged_on P m m' ->
(
forall b ofs,
Q b ofs ->
valid_block m b ->
P b ofs) ->
unchanged_on Q m m'.
Proof.
intros.
destruct H.
constructor;
intros.
-
auto.
-
apply unchanged_on_perm0;
auto.
-
apply unchanged_on_contents0;
auto.
apply H0;
auto.
eapply perm_valid_block;
eauto.
Qed.
The following property is needed by Separation, to prove minjection.
Lemma inject_unchanged_on j g m0 m m' :
inject j g m0 m ->
unchanged_on
(
fun (
b :
block) (
ofs :
Z) =>
exists (
b0 :
block) (
delta :
Z),
j b0 =
Some (
b,
delta) /\
perm m0 b0 (
ofs -
delta)
Max Nonempty)
m m' ->
stack m' =
stack m ->
inject j g m0 m' .
Proof.
Lemma unrecord_stack_block_mem_unchanged:
mem_unchanged (
fun m1 m2 =>
unrecord_stack_block m1 =
Some m2).
Proof.
red;
intros.
unfold_unrecord;
simpl;
repeat split;
eauto.
simpl.
xomega.
unfold load.
intros.
simpl.
repeat match goal with
|-
context [
match ?
a with _ =>
_ end] =>
destruct a eqn:?;
simpl;
intros;
try intuition congruence
end.
exfalso.
apply n.
destruct v as (
v1 &
v2 &
v3) ;
simpl in *;
repeat split;
eauto.
inversion 1.
exfalso.
apply n.
destruct v as (
v1 &
v2 &
v3) ;
simpl in *;
repeat split;
eauto.
inversion 1.
Qed.
Lemma unrecord_stack:
forall m m',
unrecord_stack_block m =
Some m' ->
exists b,
stack m =
b ::
stack m'.
Proof.
intros. unfold_unrecord. simpl. rewrite H0. eauto.
Qed.
Lemma stack_eq_get_frame_info:
forall m m'
b,
stack m =
stack m' ->
get_frame_info (
stack m)
b =
get_frame_info (
stack m')
b.
Proof.
Lemma stack_eq_is_stack_top:
forall m m'
b,
stack m =
stack m' ->
is_stack_top (
stack m)
b <->
is_stack_top (
stack m')
b.
Proof.
Lemma record_stack_blocks_mem_unchanged:
forall f,
mem_unchanged (
fun m1 m2 =>
record_stack_blocks m1 f =
Some m2).
Proof.
red;
intros.
unfold record_stack_blocks in H.
repeat destr_in H.
pattern m2;
eapply destr_dep_match.
apply H1.
clear H1.
simpl;
intros.
subst.
simpl.
repeat split;
simpl;
auto.
xomega.
unfold load.
intros.
simpl.
repeat match goal with
|-
context [
match ?
a with _ =>
_ end] =>
destruct a eqn:?;
simpl;
intros;
try intuition congruence
end;
exfalso;
apply n;
destruct v0 as (
v1 &
v2 &
v3) ;
simpl in *;
repeat split;
eauto;
inversion 1.
Qed.
Lemma unrecord_stack_block_succeeds:
forall m b r,
stack m =
b ::
r ->
exists m',
unrecord_stack_block m =
Some m'
/\
stack m' =
r.
Proof.
unfold unrecord_stack_block.
intros.
setoid_rewrite H.
eexists;
split;
eauto.
simpl.
rewrite H;
reflexivity.
Qed.
Lemma inject_stack:
forall f g m1 m2,
inject f g m1 m2 ->
stack_inject f g (
perm m1) (
stack m1) (
stack m2).
Proof.
intros f g m1 m2 INJ.
inv INJ. inv mi_inj0. auto.
Qed.
Lemma extends_stack:
forall m1 m2,
extends m1 m2 ->
stack_inject inject_id (
flat_frameinj (
length (
stack m1))) (
perm m1) (
stack m1) (
stack m2).
Proof.
intros m1 m2 INJ.
inv INJ. inv mext_inj0. auto.
Qed.
Lemma public_stack_access_inj:
forall f g m1 m2 b1 b2 delta lo hi p
(
MINJ :
mem_inj f g m1 m2)
(
FB :
f b1 =
Some (
b2,
delta))
(
RP:
range_perm m1 b1 lo hi Cur p)
(
IPC:
inject_perm_condition p)
(
NPSA:
public_stack_access (
stack m1)
b1 lo hi),
public_stack_access (
stack m2)
b2 (
lo +
delta) (
hi +
delta).
Proof.
Lemma public_stack_access_extends:
forall m1 m2 b lo hi p,
extends m1 m2 ->
range_perm m1 b lo hi Cur p ->
inject_perm_condition p ->
public_stack_access (
stack m1)
b lo hi ->
public_stack_access (
stack m2)
b lo hi.
Proof.
Lemma public_stack_access_inject:
forall f g m1 m2 b b'
delta lo hi p,
f b =
Some (
b',
delta) ->
inject f g m1 m2 ->
public_stack_access (
stack m1)
b lo hi ->
range_perm m1 b lo hi Cur p ->
inject_perm_condition p ->
public_stack_access (
stack m2)
b' (
lo +
delta) (
hi +
delta).
Proof.
Open Scope nat_scope.
Definition packed_frameinj (
g:
nat ->
option nat) (
s1 s2:
nat) :=
forall j,
j <
s2 ->
exists lo hi,
lo <
hi <=
s1 /\ (
forall o,
lo <=
o <
hi <->
g o =
Some j).
g O = None is the case where a call is transformed into a tailcall.
This is to match the return from f with no step in the target.
g 1 = Some O is the case where a call is inlined. This is to match
either the return from f with no step in the target, or a tailcall
that is inlined.
Lemma stack_inject_unrecord_left:
forall j n g m1 s1 s2
(
SI:
stack_inject j (
S n ::
g)
m1 s1 s2)
(
LE: (1 <=
n)%
nat)
(
TOPNOPERM:
top_tframe_prop (
fun tf =>
forall b,
in_frames tf b ->
forall o k p, ~
m1 b o k p)
s1)
f l
(
STK1 :
s1 =
f ::
l),
stack_inject j (
n ::
g)
m1 l s2.
Proof.
intros.
subst.
inversion SI;
constructor;
auto.
+
inv stack_inject_frame_inject.
simpl in TAKE.
repeat destr_in TAKE.
destruct n.
omega.
econstructor;
eauto.
inv FI;
auto.
+
simpl.
intros b1 b2 delta bi2 JB NIS INS o k p PERM IPC.
destruct (
in_frames_dec f b1).
*
inv TOPNOPERM.
eapply H0 in PERM;
eauto.
easy.
*
eapply stack_inject_not_in_source in INS;
eauto.
rewrite in_stack_cons.
intuition.
Qed.
Lemma unrecord_stack_block_mem_inj_left:
forall (
m1 m1'
m2 :
mem) (
j :
meminj)
n g,
mem_inj j (
S n ::
g)
m1 m2 ->
unrecord_stack_block m1 =
Some m1' ->
(1 <=
n)%
nat ->
top_frame_no_perm m1 ->
mem_inj j (
n ::
g)
m1'
m2.
Proof.
intros m1 m1'
m2 j n g MI USB LE TOPNOPERM.
unfold_unrecord.
inv MI;
constructor;
simpl;
intros;
eauto.
eapply stack_inject_unrecord_left.
eapply stack_inject_invariant_strong.
intros b ofs k p b'
delta JB PERM.
change (
perm m1 b ofs k p)
in PERM.
eauto.
eauto.
intuition.
eauto.
rewrite H.
simpl.
eauto.
Qed.
Lemma unrecord_stack_block_mem_inj_parallel:
forall (
m1 m1'
m2 :
mem) (
j :
meminj)
g
(
MINJ:
mem_inj j (1%
nat ::
g)
m1 m2)
(
USB:
unrecord_stack_block m1 =
Some m1'),
exists m2',
unrecord_stack_block m2 =
Some m2' /\
mem_inj j g m1'
m2'.
Proof.
intros.
unfold_unrecord.
inversion MINJ.
inversion mi_stack_blocks0.
subst.
rewrite H in stack_inject_frame_inject.
inversion stack_inject_frame_inject.
subst.
unfold unrecord_stack_block.
setoid_rewrite <-
H4.
eexists;
split;
eauto.
constructor;
simpl;
intros;
eauto.
{
change (
perm m1 b1 ofs k p)
in H1.
change (
perm m2 b2 (
ofs +
delta)
k p).
eauto.
}
eapply stack_inject_invariant_strong.
-
intros b ofs k p b'
delta JB PERM.
change (
perm m1 b ofs k p)
in PERM.
eauto.
-
rewrite H, <-
H4 in *.
simpl.
eapply stack_inject_unrecord_parallel;
eauto.
rewrite H4;
eapply stack_inv_norepet,
mem_stack_inv.
Qed.
Lemma unrecord_stack_block_magree:
forall m1 m2 P m1',
magree m1 m2 P ->
unrecord_stack_block m1 =
Some m1' ->
exists m2',
unrecord_stack_block m2 =
Some m2' /\
magree m1'
m2'
P.
Proof.
Lemma loadbytes_push:
forall m b o n,
Mem.loadbytes (
Mem.push_new_stage m)
b o n =
Mem.loadbytes m b o n.
Proof.
unfold Mem.loadbytes.
intros.
repeat destr.
exfalso;
apply n0.
red;
intros.
eapply r in H.
auto.
Qed.
Lemma unrecord_stack_block_inject_left:
forall (
m1 m1'
m2 :
mem) (
j :
meminj)
n g,
inject j (
S n ::
g)
m1 m2 ->
unrecord_stack_block m1 =
Some m1' ->
1 <=
n ->
top_frame_no_perm m1 ->
inject j (
n ::
g)
m1'
m2.
Proof.
intros m1 m1'
m2 j n g INJ USB LE NOPERM.
generalize (
unrecord_stack_block_mem_unchanged _ _ USB).
simpl.
intros (
NB &
PERM &
UNCH &
LOAD).
inv INJ;
constructor;
eauto.
-
eapply unrecord_stack_block_mem_inj_left;
eauto.
-
unfold valid_block;
rewrite NB;
eauto.
-
red;
intros.
rewrite PERM in H2,
H3.
eauto.
-
intros.
exploit mi_representable0.
eauto.
intros (
A &
B).
split;
auto.
intros ofs.
rewrite !
PERM.
eauto.
-
intros.
rewrite !
PERM;
eauto.
Qed.
Lemma unrecord_stack_block_inject_parallel:
forall (
m1 m1'
m2 :
mem) (
j :
meminj)
g,
inject j (1 ::
g)
m1 m2 ->
unrecord_stack_block m1 =
Some m1' ->
exists m2',
unrecord_stack_block m2 =
Some m2' /\
inject j g m1'
m2'.
Proof.
intros m1 m1'
m2 j g INJ USB.
generalize (
unrecord_stack_block_mem_unchanged _ _ USB).
simpl.
intros (
NB &
PERM &
UNCH &
LOAD).
edestruct unrecord_stack_block_mem_inj_parallel as (
m2' &
USB' &
MINJ);
eauto.
inv INJ;
eauto.
generalize (
unrecord_stack_block_mem_unchanged _ _ USB').
simpl.
intros (
NB' &
PERM' &
UNCH' &
LOAD').
exists m2';
split;
eauto.
inv INJ;
constructor;
eauto.
-
unfold valid_block;
rewrite NB;
eauto.
-
unfold valid_block;
rewrite NB';
eauto.
-
red;
intros.
rewrite PERM in H2,
H3.
eauto.
-
intros.
exploit mi_representable0.
eauto.
intros (
A &
B).
split;
auto.
intros ofs.
rewrite !
PERM.
eauto.
-
intros.
rewrite PERM'
in H0.
rewrite !
PERM;
eauto.
Qed.
Lemma unrecord_stack_block_inject_parallel_flat:
forall (
m1 m1'
m2 :
mem) (
j :
meminj),
inject j (
flat_frameinj (
length (
Mem.stack m1)))
m1 m2 ->
unrecord_stack_block m1 =
Some m1' ->
exists m2',
unrecord_stack_block m2 =
Some m2' /\
inject j (
flat_frameinj (
length (
Mem.stack m1')))
m1'
m2'.
Proof.
Lemma unrecord_stack_block_extends:
forall m1 m2 m1',
extends m1 m2 ->
unrecord_stack_block m1 =
Some m1' ->
exists m2',
unrecord_stack_block m2 =
Some m2' /\
extends m1'
m2'.
Proof.
Lemma valid_frame_extends:
forall m1 m2 fi,
extends m1 m2 ->
valid_frame fi m1 ->
valid_frame fi m2.
Proof.
Lemma record_stack_inject:
forall j g m1 s1 s2
(
SI :
stack_inject j g m1 s1 s2)
f1 f2
(
FI :
frame_inject j f1 f2)
(
INF :
forall (
b1 b2 :
block) (
delta :
Z),
j b1 =
Some (
b2,
delta) ->
in_frame f1 b1 <->
in_frame f2 b2)
(
EQsz :
frame_adt_size f1 =
frame_adt_size f2)
s1'
s2'
(
PREP1:
prepend_to_current_stage f1 s1 =
Some s1')
(
PREP2:
prepend_to_current_stage f2 s2 =
Some s2'),
stack_inject j
g
m1
s1'
s2'.
Proof.
intros j g m1 s1 s2 SI f1 f2 FI INF EQsz s1'
s2'
PREP1 PREP2.
destruct SI.
unfold prepend_to_current_stage in PREP1,
PREP2;
repeat destr_in PREP1;
repeat destr_in PREP2.
constructor;
auto.
-
inv stack_inject_frame_inject.
simpl in TAKE.
repeat destr_in TAKE.
econstructor.
simpl.
rewrite Heqo.
eauto.
reflexivity.
simpl.
simpl in *.
auto.
inv FI0;
constructor;
auto.
+
intros ff EQ.
simpl in EQ.
inv EQ.
intro;
exists f2;
split;
eauto.
+
eapply Forall_impl. 2:
apply H2.
simpl.
intros a INA TFI ff INAFF HPF.
simpl.
destruct (
TFI _ INAFF)
as (
ff2 &
INt0 &
FI2);
eauto.
simpl in INt0.
congruence.
-
intros.
rewrite in_stack'
_rew in FI0.
setoid_rewrite in_frames'
_rew in FI0.
destruct FI0 as (
fr & (
tf &
IN1 &
AIN) &
IN2).
destruct IN2;
auto.
+
subst.
simpl in AIN.
inv AIN.
exfalso;
apply NIS.
rewrite in_stack_cons,
in_frames_cons.
left;
eexists;
split;
eauto.
rewrite INF;
eauto.
eapply in_frame_blocks_in_frame;
eauto.
+
eapply stack_inject_not_in_source;
eauto.
intros IS;
apply NIS.
rewrite in_stack_cons in IS |- *;
rewrite in_frames_cons;
intuition.
simpl;
right.
rewrite in_stack'
_rew.
exists fr;
split;
eauto.
rewrite in_frames'
_rew;
eexists;
split;
eauto.
Qed.
Lemma stack_inject_push_new_stage:
forall j g P s1 s2,
stack_inject j g P s1 s2 ->
stack_inject j (1 ::
g)
P ((
None,
nil)::
s1) ((
None,
nil)::
s2).
Proof.
intros j g P s1 s2 SI.
inv SI; constructor; eauto.
- econstructor. reflexivity. all: eauto. repeat constructor.
red; easy.
- intros; eapply stack_inject_not_in_source; eauto. simpl in FI. destruct FI; auto. easy.
Qed.
Lemma stack_inject_push_new_stage_left:
forall j n g P s1 s2,
stack_inject j (
n::
g)
P s1 s2 ->
stack_inject j (
S n::
g)
P ((
None,
nil)::
s1)
s2.
Proof.
intros j n g P s1 s2 SI.
destruct SI; constructor; auto.
- inv stack_inject_frame_inject. simpl in *; repeat destr_in TAKE.
econstructor; simpl; try reflexivity. rewrite Heqo. eauto. auto.
constructor; auto. red; easy.
Qed.
Lemma mem_inj_push_new_stage:
forall j g m1 m2,
mem_inj j g m1 m2 ->
mem_inj j (1 ::
g) (
push_new_stage m1) (
push_new_stage m2).
Proof.
Lemma mem_inj_push_new_stage_left:
forall j n g m1 m2,
mem_inj j (
n ::
g)
m1 m2 ->
mem_inj j (
S n ::
g) (
push_new_stage m1)
m2.
Proof.
Lemma mem_inj_push_new_stage_right:
forall j n g m1 m2,
mem_inj j (
S n ::
g)
m1 m2 ->
top_tframe_tc (
stack m1) ->
1 <=
n ->
mem_inj j (1 ::
n ::
g)
m1 (
push_new_stage m2).
Proof.
Lemma inject_push_new_stage_right:
forall j n g m1 m2,
inject j (
S n ::
g)
m1 m2 ->
top_tframe_tc (
stack m1) ->
1 <=
n ->
inject j (1 ::
n ::
g)
m1 (
push_new_stage m2).
Proof.
destruct 1;
intros TTNP G1.
constructor;
simpl;
intros;
eauto.
eapply mem_inj_push_new_stage_right;
eauto.
red;
simpl.
eapply mi_mappedblocks0;
eauto.
Qed.
Lemma inject_push_new_stage:
forall j g m1 m2,
inject j g m1 m2 ->
inject j (1 ::
g) (
push_new_stage m1) (
push_new_stage m2).
Proof.
Lemma extends_push_new_stage:
forall m1 m2,
extends m1 m2 ->
extends (
push_new_stage m1) (
push_new_stage m2).
Proof.
intros m1 m2 MI;
inv MI;
constructor;
eauto.
eapply mem_inj_push_new_stage in mext_inj0;
eauto.
simpl.
omega.
Qed.
Lemma magree_push_new_stage:
forall m1 m2 P,
magree m1 m2 P ->
magree (
push_new_stage m1) (
push_new_stage m2)
P.
Proof.
Lemma push_new_stage_mem_unchanged:
mem_unchanged (
fun m1 m2 =>
push_new_stage m1 =
m2).
Proof.
red;
intros.
unfold push_new_stage in H.
subst.
simpl.
repeat split;
simpl;
auto.
xomega.
unfold load.
intros.
simpl.
repeat match goal with
|-
context [
match ?
a with _ =>
_ end] =>
destruct a eqn:?;
simpl;
intros;
try intuition congruence
end;
exfalso;
apply n;
destruct v as (
v1 &
v2 &
v3) ;
simpl in *;
repeat split;
eauto;
inversion 1.
Qed.
Lemma tailcall_stage_mem_unchanged:
mem_unchanged (
fun m1 m2 =>
tailcall_stage m1 =
Some m2).
Proof.
red.
intros m1 m2 TC.
pattern m2.
unfold tailcall_stage in TC.
eapply destr_dep_match.
apply TC.
clear TC;
intros;
subst.
simpl.
change (
perm _)
with (
perm m1).
split;
auto.
split.
tauto.
split.
{
intros;
split;
simpl.
xomega.
change (
perm _)
with (
perm m1).
tauto.
reflexivity.
}
intros;
unfold load.
simpl.
repeat match goal with
|-
context [
match ?
a with _ =>
_ end] =>
destruct a eqn:?;
simpl;
intros;
try intuition congruence
end;
exfalso;
apply n;
destruct v as (
v1 &
v2 &
v3) ;
simpl in *;
repeat split;
eauto;
inversion 1.
Qed.
Lemma inject_push_new_stage_left:
forall j n g m1 m2,
inject j (
n ::
g)
m1 m2 ->
inject j (
S n ::
g) (
push_new_stage m1)
m2.
Proof.
Lemma tailcall_stage_perm:
forall m1 m2,
tailcall_stage m1 =
Some m2 ->
forall b o k p,
Mem.perm m2 b o k p <->
Mem.perm m1 b o k p.
Proof.
Lemma tailcall_stage_nextblock:
forall m1 m2,
tailcall_stage m1 =
Some m2 ->
Mem.nextblock m2 =
Mem.nextblock m1.
Proof.
Lemma inject_incr_spec:
forall j1 j2 b1 b2 delta,
inject_incr j1 j2 ->
j2 b1 =
Some (
b2,
delta) ->
j1 b1 =
None \/
j1 b1 =
Some (
b2,
delta).
Proof.
intros j1 j2 b1 b2 delta INCR H.
destruct (j1 b1) as [[b2' delta']|] eqn:JB.
exploit INCR. rewrite JB. eauto. rewrite H. inversion 1; auto.
auto.
Qed.
Lemma stack_inject_mem_inj:
forall j1 g1 m1 m2 g2 m3 m4
(
MINJ:
mem_inj j1 g1 m1 m2)
(
SINJ:
stack_inject j1 g1 (
perm m1) (
stack m1) (
stack m2) ->
stack_inject j1 g2 (
perm m3) (
stack m3) (
stack m4))
(
PERMINJ2:
forall b o k p,
perm m2 b o k p ->
perm m4 b o k p)
(
PERMINJ1:
forall b o k p,
perm m3 b o k p ->
perm m1 b o k p)
(
CONTENTS1:
mem_contents m1 =
mem_contents m3)
(
CONTENTS2:
mem_contents m2 =
mem_contents m4),
mem_inj j1 g2 m3 m4.
Proof.
intros j1 g1 m1 m2 g2 m3 m4 MINJ SINJ PERMINJ2 PERMINJ1 CONTENTS1 CONTENTS2.
inv MINJ.
constructor; simpl; intros; eauto.
- eapply mi_align0; eauto. red; intros; eapply PERMINJ1; eauto.
- rewrite <- CONTENTS1, <- CONTENTS2. eauto.
Qed.
Lemma stack_inject_inject:
forall j1 g1 m1 m2 g2 m3 m4
(
MINJ:
inject j1 g1 m1 m2)
(
SINJ:
stack_inject j1 g1 (
perm m1) (
stack m1) (
stack m2) ->
stack_inject j1 g2 (
perm m3) (
stack m3) (
stack m4))
(
PERMINJ2:
forall b o k p,
perm m2 b o k p <->
perm m4 b o k p)
(
PERMINJ1:
forall b o k p,
perm m3 b o k p <->
perm m1 b o k p)
(
CONTENTS1:
mem_contents m1 =
mem_contents m3)
(
CONTENTS2:
mem_contents m2 =
mem_contents m4)
(
NB1:
nextblock m1 =
nextblock m3)
(
NB2:
nextblock m2 =
nextblock m4),
inject j1 g2 m3 m4.
Proof.
intros j1 g1 m1 m2 g2 m3 m4 MINJ SINJ PERMINJ2 PERMINJ1 CONTENTS1 CONTENTS2 NB1 NB2.
inv MINJ.
constructor;
simpl;
intros;
eauto.
-
eapply stack_inject_mem_inj;
eauto.
intros;
rewrite <-
PERMINJ2;
eauto.
intros;
rewrite <-
PERMINJ1;
eauto.
-
eapply mi_freeblocks0;
eauto.
unfold valid_block;
rewrite NB1;
eauto.
-
red;
rewrite <-
NB2.
eapply mi_mappedblocks0;
eauto.
-
red;
intros.
eapply mi_no_overlap0;
eauto.
rewrite <-
PERMINJ1;
eauto.
rewrite <-
PERMINJ1;
eauto.
-
edestruct mi_representable0;
eauto.
split;
intros;
eauto.
apply H1.
rewrite <- !
PERMINJ1;
auto.
-
rewrite !
PERMINJ1.
rewrite <-
PERMINJ2 in H0;
eauto.
Qed.
Lemma tailcall_stage_tc:
forall m1 m2,
tailcall_stage m1 =
Some m2 ->
top_tframe_tc (
stack m2).
Proof.
Lemma tailcall_stage_tl_stack:
forall m1 m2,
tailcall_stage m1 =
Some m2 ->
tl (
Mem.stack m2) =
tl (
Mem.stack m1).
Proof.
Lemma stack_inject_aux_tailcall_stage_gen:
forall j g (
m:
perm_type)
o1 l1 s1 o2 l2 s2 (
m':
perm_type),
(
forall b1 b2 delta o k p,
j b1 =
Some (
b2,
delta) ->
m b1 o k p ->
inject_perm_condition p ->
m'
b2 (
o +
delta)%
Z k p) ->
top_tframe_prop (
fun tf =>
forall b,
in_frames tf b ->
forall o k p, ~
m'
b o k p) ((
o2,
l2)::
s2) ->
stack_inject_aux j m g ((
o1,
l1)::
s1) ((
o2,
l2)::
s2) ->
stack_inject_aux j m g ((
None,
opt_cons o1 l1)::
s1) ((
None,
opt_cons o2 l2)::
s2).
Proof.
intros j g m o1 l1 s1 o2 l2 s2 m'
PERMINJ NOPERM SI.
inv SI.
simpl in *.
repeat destr_in TAKE.
econstructor.
simpl;
rewrite Heqo.
reflexivity.
simpl.
reflexivity.
auto.
constructor;
auto.
-
red.
simpl.
congruence.
-
inv FI.
eapply Forall_impl. 2:
apply H2.
simpl;
intros.
clear H1 H2.
red.
intros f0 EQ HPF.
exfalso.
specialize (
H0 _ EQ HPF).
destruct HPF as (
b &
o &
k &
p &
NONE &
IFR &
PERM &
IPC).
destruct H0 as (
f3 &
EQQ &
FI);
inv EQQ.
destruct (
j b)
eqn:
JB;
try congruence.
destruct p0.
eapply PERMINJ in PERM;
eauto.
inv NOPERM.
eapply H2 in PERM;
eauto.
red.
simpl.
simpl in *;
subst.
eapply frame_inject_in_frame;
eauto.
Qed.
Lemma stack_inject_tailcall_stage_gen:
forall j g (
m:
perm_type)
f1 l1 s1 f2 l2 s2 (
m':
perm_type),
(
forall b1 b2 delta o k p,
j b1 =
Some (
b2,
delta) ->
m b1 o k p ->
inject_perm_condition p ->
m'
b2 (
o +
delta)%
Z k p) ->
top_tframe_prop (
fun tf =>
forall b,
in_frames tf b ->
forall o k p, ~
m'
b o k p) ((
f2,
l2)::
s2) ->
stack_inject j g m ((
f1,
l1)::
s1) ((
f2,
l2)::
s2) ->
stack_inject j g m ((
None,
opt_cons f1 l1)::
s1) ((
None,
opt_cons f2 l2)::
s2).
Proof.
intros j g m f1 l1 s1 f2 l2 s2 m'
PERMINJ NOPERM SI.
inv SI;
constructor.
eapply stack_inject_aux_tailcall_stage_gen;
eauto.
simpl.
setoid_rewrite in_stack_cons.
intros b1 b2 delta bi2 H H0 FI o k p0 PERM IPC.
destruct FI as [
FI |
FI].
easy.
eapply stack_inject_not_in_source;
eauto.
2:
right;
auto.
rewrite in_stack_cons.
intros [
A|
A].
-
red in A.
simpl in A.
inv NOPERM.
destruct f1;
simpl in *;
intros;
eauto.
assert (
In b2 (
get_opt_frame_blocks f2)).
simpl.
inv stack_inject_frame_inject.
simpl in *.
repeat destr_in TAKE.
inv FI0.
edestruct H4 as (
f3 &
EQ &
FI2).
simpl.
reflexivity.
exists b1,
o,
k,
p0;
repeat apply conj;
auto.
congruence.
simpl in EQ.
inv EQ.
eapply frame_inject_in_frame;
eauto.
eapply PERMINJ in PERM;
eauto.
eapply H2 in PERM;
eauto.
-
apply H0.
auto.
Qed.
Lemma stack_inject_tailcall_stage_gen':
forall j g m m' ,
(
forall (
b1 b2 :
block) (
delta o :
Z) (
k :
perm_kind) (
p :
permission),
j b1 =
Some (
b2,
delta) ->
perm m b1 o k p ->
inject_perm_condition p ->
perm m'
b2 (
o +
delta)%
Z k p) ->
top_frame_no_perm m' ->
forall s1'
s2',
tailcall_stage_stack m =
Some s1' ->
tailcall_stage_stack m' =
Some s2' ->
stack_inject j g (
perm m) (
stack m) (
stack m') ->
stack_inject j g (
perm m)
s1'
s2'.
Proof.
Lemma tailcall_stage_extends:
forall m1 m2 m1',
Mem.extends m1 m2 ->
Mem.tailcall_stage m1 =
Some m1' ->
top_frame_no_perm m2 ->
exists m2',
Mem.tailcall_stage m2 =
Some m2' /\
Mem.extends m1'
m2'.
Proof.
Lemma tailcall_stage_magree:
forall m1 m2 P m1',
magree m1 m2 P ->
tailcall_stage m1 =
Some m1' ->
top_frame_no_perm m2 ->
exists m2',
tailcall_stage m2 =
Some m2' /\
magree m1'
m2'
P.
Proof.
Lemma tailcall_stage_inject:
forall j g m1 m2 m1',
Mem.inject j g m1 m2 ->
Mem.tailcall_stage m1 =
Some m1' ->
top_frame_no_perm m2 ->
exists m2',
Mem.tailcall_stage m2 =
Some m2' /\
Mem.inject j g m1'
m2'.
Proof.
Lemma tailcall_stage_stack_equiv:
forall m1 m2 m1'
m2',
tailcall_stage m1 =
Some m1' ->
tailcall_stage m2 =
Some m2' ->
stack_equiv (
stack m1) (
stack m2) ->
stack_equiv (
stack m1') (
stack m2').
Proof.
unfold tailcall_stage in *.
intros.
pattern m2';
eapply destr_dep_match.
apply H0.
clear H0.
intros;
subst.
pattern m1';
eapply destr_dep_match.
apply H.
clear H.
intros;
subst.
simpl.
unfold tailcall_stage_stack in *.
repeat destr_in pf;
repeat destr_in pf0.
revert H1.
inv t;
inv t0.
intro A;
inv A.
simpl.
constructor;
auto.
split;
simpl;
auto.
destruct LF2.
red.
red in H3.
red in H0,
H2.
repeat destr_in H3.
simpl.
constructor;
auto.
Qed.
Lemma tailcall_stage_same_length_pos:
forall m1 m2,
tailcall_stage m1 =
Some m2 ->
length (
stack m2) =
length (
stack m1) /\
lt O (
length (
stack m1)).
Proof.
Lemma tailcall_stage_stack_eq:
forall m1 m2,
tailcall_stage m1 =
Some m2 ->
exists f r,
stack m1 =
f ::
r /\
stack m2 = (
None,
opt_cons (
fst f) (
snd f))::
r.
Proof.
Lemma stack_inject_aux_new_stage_left_tailcall_right:
forall j n g m t1 s1 t2 s2,
(
forall a l,
take (
n) (
t1::
s1) =
Some l ->
In a l ->
tframe_inject j m a t2 ->
forall b,
in_frames a b ->
forall o k p , ~
m b o k p) ->
stack_inject_aux j m (
n::
g) (
t1::
s1) (
t2::
s2) ->
stack_inject_aux j m (
S n ::
g) ((
None,
nil)::
t1::
s1) ((
None,
opt_cons (
fst t2) (
snd t2))::
s2).
Proof.
intros j n g m t1 s1 t2 s2 NOPERM SI.
inv SI;
simpl in *.
repeat destr_in TAKE.
econstructor;
simpl.
rewrite Heqo.
eauto.
eauto.
eauto.
constructor.
red;
simpl;
congruence.
eapply Forall_impl. 2:
apply FI.
simpl;
intros.
red;
simpl.
intros f0 EQ (
b &
o &
k &
p &
NONE &
IFR &
PERM &
IPC).
eapply NOPERM in PERM;
eauto.
easy.
red.
rewrite EQ.
auto.
Qed.
Lemma stack_inject_new_stage_left_tailcall_right:
forall j n g m t1 s1 t2 s2,
(
forall a l,
take (
n) (
t1::
s1) =
Some l ->
In a l ->
tframe_inject j m a t2 ->
forall b,
in_frames a b ->
forall o k p , ~
m b o k p) ->
stack_inject j (
n::
g)
m (
t1::
s1) (
t2::
s2) ->
stack_inject j (
S n ::
g)
m ((
None,
nil)::
t1::
s1) ((
None,
opt_cons (
fst t2) (
snd t2))::
s2).
Proof.
Lemma inject_new_stage_left_tailcall_right:
forall j n g m1 m2,
inject j (
n ::
g)
m1 m2 ->
(
forall l,
take (
n) (
stack m1) =
Some l ->
Forall (
fun tf =>
forall b,
in_frames tf b ->
forall o k p, ~
perm m1 b o k p)
l) ->
top_frame_no_perm m2 ->
exists m2',
tailcall_stage m2 =
Some m2' /\
inject j (
S n ::
g) (
push_new_stage m1)
m2'.
Proof.
Lemma inject_tailcall_leftnew_stage_right:
forall (
j :
meminj) (
n :
nat) (
g :
list nat) (
m1 m2 m1' :
mem),
Mem.inject j (
S n ::
g)
m1 m2 ->
lt O n ->
tailcall_stage m1 =
Some m1' ->
Mem.inject j (1%
nat::
n ::
g)
m1' (
Mem.push_new_stage m2).
Proof.
intros j n g m1 m2 m1'
INJ LT TC.
unfold tailcall_stage in TC.
pattern m1'.
eapply destr_dep_match.
apply TC.
clear TC.
intros;
subst.
eapply stack_inject_inject;
eauto;
try tauto.
simpl.
change (
perm _)
with (
perm m1).
unfold tailcall_stage_stack in pf.
repeat destr_in pf.
inv t.
simpl.
intro SI;
inv SI.
constructor;
auto.
-
inv stack_inject_frame_inject.
simpl in *.
repeat destr_in TAKE.
econstructor;
simpl;
eauto.
destruct n.
omega.
econstructor;
eauto.
+
inv FI.
auto.
+
inv FI.
constructor;
auto.
red;
simpl.
easy.
-
simpl.
unfold in_frames'.
simpl.
setoid_rewrite in_stack_cons.
unfold in_frames.
simpl.
intros;
eapply stack_inject_not_in_source;
eauto.
rewrite in_stack_cons.
intros [
A|
A];
eauto.
eapply H0 in A;
eauto.
intuition.
Qed.
Lemma tailcall_stage_inject_left:
forall j n g m1 m2 m1',
Mem.inject j (
n ::
g)
m1 m2 ->
Mem.tailcall_stage m1 =
Some m1' ->
Mem.inject j (
n::
g)
m1'
m2.
Proof.
intros j n g m1 m2 m1'
INJ TC.
unfold tailcall_stage in TC.
pattern m1'.
eapply destr_dep_match.
apply TC.
clear TC.
intros;
subst.
eapply stack_inject_inject;
eauto;
try tauto.
simpl.
change (
perm _)
with (
perm m1).
unfold tailcall_stage_stack in pf.
repeat destr_in pf.
inv t.
simpl.
intro SI;
inv SI.
constructor;
auto.
-
inv stack_inject_frame_inject.
simpl in *.
repeat destr_in TAKE.
econstructor;
simpl.
rewrite Heqo.
eauto.
all:
eauto.
constructor.
red;
easy.
inv FI;
auto.
-
setoid_rewrite in_stack_cons.
unfold in_frames.
simpl.
intros;
eapply stack_inject_not_in_source;
eauto.
rewrite in_stack_cons.
intros [
A|
A];
eauto.
eapply H0 in A;
eauto.
Qed.
Lemma tailcall_stage_right_extends:
forall m1 m2 (
EXT:
Mem.extends m1 m2)
(
TFNP1:
Mem.top_frame_no_perm m1)
(
TFNP2:
Mem.top_frame_no_perm m2),
exists m2',
Mem.tailcall_stage m2 =
Some m2' /\
Mem.extends m1 m2'.
Proof.
intros.
assert (
exists s2,
tailcall_stage_stack m2 =
Some s2).
{
unfold tailcall_stage_stack.
destr.
eauto.
}
destruct H.
unfold tailcall_stage.
intros.
eexists;
split.
eapply constr_match.
eauto.
Unshelve. 3:
eauto.
inv EXT;
constructor;
simpl;
intros;
eauto.
inv mext_inj0;
constructor;
eauto.
simpl.
unfold tailcall_stage_stack in H.
repeat destr_in H.
simpl.
revert mi_stack_blocks0.
inv TFNP1.
inv TFNP2.
simpl.
intro SI.
inv SI;
constructor;
eauto.
inv stack_inject_frame_inject.
simpl in *.
inv TAKE.
econstructor;
simpl;
eauto.
constructor.
red.
intros f1 EQ (
b &
o &
k &
p &
NONE &
IFR &
PERM &
IPC).
eapply H0 in PERM;
eauto.
easy.
eapply in_frame_in_frames;
eauto.
constructor.
intros;
eapply stack_inject_not_in_source;
eauto.
simpl in FI.
simpl.
destruct FI.
easy.
auto.
unfold tailcall_stage_stack in H.
repeat destr_in H.
simpl.
inv t.
simpl.
rewrite <-
H in mext_length_stack0.
simpl in *;
auto.
Qed.
Lemma record_stack_blocks_mem_inj:
forall j g m1 m2 f1 f2 m1',
mem_inj j g m1 m2 ->
record_stack_blocks m1 f1 =
Some m1' ->
frame_inject j f1 f2 ->
valid_frame f2 m2 ->
(
forall b,
in_stack (
stack m2)
b -> ~
in_frame f2 b) ->
frame_agree_perms (
perm m2)
f2 ->
top_tframe_tc (
stack m2) ->
(
forall b1 b2 delta,
j b1 =
Some (
b2,
delta) ->
in_frame f1 b1 <->
in_frame f2 b2) ->
frame_adt_size f1 =
frame_adt_size f2 ->
(
size_stack (
tl (
stack m2)) <=
size_stack (
tl (
stack m1)))%
Z ->
exists m2',
record_stack_blocks m2 f2 =
Some m2'
/\
mem_inj j g m1'
m2'.
Proof.
Lemma record_stack_inject_left':
forall j g m1 s1 s2
(
SI :
stack_inject j g m1 s1 s2)
f1 f2
(
FAP:
frame_at_pos s2 O f2)
(
FI :
tframe_inject j m1 (
Some f1,
nil)
f2)
s1'
(
PREP:
prepend_to_current_stage f1 s1 =
Some s1'),
stack_inject j g m1 s1'
s2.
Proof.
intros j g m1 s1 s2 SI f1 f2 FAP FI s1'
PREP.
destruct SI.
unfold prepend_to_current_stage in PREP.
destr_in PREP.
inv PREP.
constructor;
eauto.
-
inv stack_inject_frame_inject.
simpl in *.
repeat destr_in TAKE.
specialize (
FI _ (
eq_refl)).
apply frame_at_pos_last in FAP.
subst.
repeat destr_in H0.
econstructor.
simpl.
rewrite Heqo.
eauto.
simpl.
eauto.
eauto.
inv FI0;
constructor;
auto.
intros ff EQ.
inv EQ.
auto.
-
intros.
eapply stack_inject_not_in_source;
eauto.
intro IS;
apply NIS.
repeat destr_in H0.
rewrite in_stack_cons in IS |- *.
rewrite in_frames_cons in IS |- *.
destruct IS as [(
fa &
EQ &
IFR) |
INS]; [
inv EQ|].
auto.
Qed.
Lemma record_stack_blocks_mem_inj_left':
forall j g m1 m2 f1 f2 m1',
mem_inj j g m1 m2 ->
record_stack_blocks m1 f1 =
Some m1' ->
frame_at_pos (
stack m2)
O f2 ->
tframe_inject j (
perm m1) (
Some f1,
nil)
f2 ->
mem_inj j g m1'
m2.
Proof.
intros j g m1 m2 f1 f2 m1'
INJ ADT FAP FI.
unfold record_stack_blocks in ADT.
repeat destr_in ADT.
pattern m1'.
eapply destr_dep_match.
apply H0.
clear H0.
intros;
subst.
inversion INJ;
subst;
constructor;
simpl;
intros;
eauto.
eapply stack_inject_invariant_strong.
intros.
change (
perm m1 b ofs k p)
in H0.
apply H0.
eapply record_stack_inject_left';
eauto.
Qed.
Lemma record_stack_blocks_valid:
forall m1 fi m2,
record_stack_blocks m1 fi =
Some m2 ->
valid_frame fi m1.
Proof.
Lemma record_stack_blocks_bounds:
forall m1 fi m2,
record_stack_blocks m1 fi =
Some m2 ->
frame_agree_perms (
perm m1)
fi.
Proof.
Lemma record_stack_blocks_stack:
forall m f m'
of1 s1,
record_stack_blocks m f =
Some m' ->
stack m =
of1::
s1 ->
stack m' = (
Some f,
snd of1)::
s1.
Proof.
Lemma record_stack_blocks_stack_original:
forall m f m',
record_stack_blocks m f =
Some m' ->
exists f r,
stack m = (
None,
f)::
r.
Proof.
Lemma record_stack_blocks_stack':
forall m f m',
record_stack_blocks m f =
Some m' ->
exists f1 r,
stack m = (
None,
f1)::
r /\
stack m' = (
Some f,
f1)::
r.
Proof.
Lemma record_stack_blocks_extends:
forall m1 m2 fi m1',
extends m1 m2 ->
record_stack_blocks m1 fi =
Some m1' ->
(
forall bb,
in_frame fi bb -> ~
in_stack (
stack m2)
bb) ->
frame_agree_perms (
perm m2)
fi ->
top_tframe_tc (
stack m2) ->
(
size_stack (
tl (
stack m2)) <=
size_stack (
tl (
stack m1)))%
Z ->
exists m2',
record_stack_blocks m2 fi =
Some m2'
/\
extends m1'
m2'.
Proof.
intros m1 m2 fi m1'
EXT ADT NIN BNDS TTNP SZ;
autospe.
inversion EXT.
exploit record_stack_blocks_mem_inj;
eauto.
-
eapply frame_inject_id.
-
red.
red.
rewrite <-
mext_next0.
eapply record_stack_blocks_valid;
eauto.
-
intros b INS INF.
eapply NIN;
eauto.
-
inversion 1.
subst.
tauto.
-
intros (
m2' &
ADT' &
INJ).
edestruct (
record_stack_blocks_stack'
_ _ _ ADT)
as (
f1 &
r &
EQ1 &
EQ2).
edestruct (
record_stack_blocks_stack'
_ _ _ ADT')
as (
f2 &
r2 &
EQ3 &
EQ4).
eexists;
split;
eauto.
edestruct (
record_stack_blocks_mem_unchanged _ _ _ ADT)
as (
NB1 &
PERM1 &
_) ;
edestruct (
record_stack_blocks_mem_unchanged _ _ _ ADT')
as (
NB &
PERM &
_);
simpl in *.
constructor;
simpl;
intros;
eauto.
congruence.
revert INJ.
rewrite EQ1,
EQ2.
simpl.
auto.
rewrite !
PERM1,
PERM in *.
eauto.
revert mext_length_stack0.
rewrite EQ1,
EQ2,
EQ3,
EQ4;
simpl.
intros;
omega.
Qed.
Lemma free_list_stack_blocks:
forall bl m m',
free_list m bl =
Some m' ->
stack m' =
stack m.
Proof.
induction bl;
simpl;
intros;
autospe.
auto.
eapply free_stack in Heqo;
congruence.
Qed.
Lemma in_frames_valid:
forall m b,
in_stack (
stack m)
b ->
valid_block m b.
Proof.
Lemma record_stack_block_inject:
forall m1 m1'
m2 j g f1 f2
(
INJ:
inject j g m1 m2)
(
FI:
frame_inject j f1 f2)
(
NOIN:
forall b,
in_stack (
stack m2)
b -> ~
in_frame f2 b)
(
VF:
valid_frame f2 m2)
(
BOUNDS:
frame_agree_perms (
perm m2)
f2)
(
EQINF:
forall (
b1 b2 :
block) (
delta :
Z),
j b1 =
Some (
b2,
delta) ->
in_frame f1 b1 <->
in_frame f2 b2)
(
EQsz:
frame_adt_size f1 =
frame_adt_size f2)
(
TTNP:
top_tframe_tc (
stack m2))
(
RSB:
record_stack_blocks m1 f1 =
Some m1')
(
SZ: (
size_stack (
tl (
stack m2)) <=
size_stack (
tl (
stack m1)))%
Z),
exists m2',
record_stack_blocks m2 f2 =
Some m2' /\
inject j g m1'
m2'.
Proof.
intros.
exploit record_stack_blocks_mem_inj.
inversion INJ;
eauto.
all:
eauto.
intros (
m2' &
ADT &
INJ').
eexists;
split;
eauto.
edestruct (
record_stack_blocks_mem_unchanged _ _ _ RSB)
as (
NB1 &
PERM1 &
U1 &
C1) ;
edestruct (
record_stack_blocks_mem_unchanged _ _ _ ADT)
as (
NB &
PERM &
U &
C);
simpl in *.
inversion INJ;
econstructor;
simpl;
intros;
eauto.
+
eapply mi_freeblocks0;
eauto.
unfold valid_block in H;
rewrite NB1 in H;
eauto.
+
unfold valid_block;
rewrite NB;
eauto.
eapply mi_mappedblocks0;
eauto.
+
red;
intros.
rewrite PERM1 in H3,
H2.
eapply mi_no_overlap0;
eauto.
+
exploit mi_representable0;
eauto.
intros (
A &
B);
split;
auto.
intro ofs;
rewrite !
PERM1.
eauto.
+
rewrite !
PERM1.
rewrite PERM in H0.
eapply mi_perm_inv0 in H0;
eauto.
Qed.
Lemma record_stack_block_inject_flat:
forall m1 m1'
m2 j f1 f2
(
INJ:
inject j (
flat_frameinj (
length (
Mem.stack m1)))
m1 m2)
(
FI:
frame_inject j f1 f2)
(
NOIN:
forall b,
in_stack (
stack m2)
b -> ~
in_frame f2 b)
(
VF:
valid_frame f2 m2)
(
BOUNDS:
frame_agree_perms (
perm m2)
f2)
(
EQINF:
forall (
b1 b2 :
block) (
delta :
Z),
j b1 =
Some (
b2,
delta) ->
in_frame f1 b1 <->
in_frame f2 b2)
(
EQsz:
frame_adt_size f1 =
frame_adt_size f2)
(
TTNP:
top_tframe_tc (
stack m2))
(
RSB:
record_stack_blocks m1 f1 =
Some m1')
(
SZ: (
size_stack (
tl (
stack m2)) <=
size_stack (
tl (
stack m1)))%
Z),
exists m2',
record_stack_blocks m2 f2 =
Some m2' /\
inject j (
flat_frameinj (
length (
Mem.stack m1')))
m1'
m2'.
Proof.
intros.
edestruct record_stack_blocks_stack'
as (
ff1 &
r1 &
EQ1 &
EQ2);
eauto.
destruct (
record_stack_block_inject _ m1'
_ _ _ _ _ INJ FI NOIN VF)
as (
m2' &
RSB' &
INJ');
eauto.
eexists;
split;
eauto.
revert INJ'.
rewrite EQ1,
EQ2.
auto.
Qed.
Lemma record_stack_block_inject_left':
forall m1 m1'
m2 j g f1 f2
(
INJ:
inject j g m1 m2)
(
FAP:
frame_at_pos (
stack m2) 0
f2)
(
FI:
tframe_inject j (
perm m1) (
Some f1,
nil)
f2)
(
RSB:
record_stack_blocks m1 f1 =
Some m1'),
inject j g m1'
m2.
Proof.
intros.
inversion INJ;
eauto.
exploit record_stack_blocks_mem_inj_left';
eauto.
intro MINJ.
edestruct (
record_stack_blocks_mem_unchanged _ _ _ RSB)
as (
NB1 &
PERM1 &
U1 &
C1) ;
simpl in *.
inversion INJ;
econstructor;
simpl;
intros;
eauto.
+
eapply mi_freeblocks0;
eauto.
unfold valid_block in H;
rewrite NB1 in H;
eauto.
+
red;
intros.
rewrite PERM1 in H3,
H2.
eapply mi_no_overlap0;
eauto.
+
exploit mi_representable0;
eauto.
intros (
A &
B);
split;
auto.
intro ofs;
rewrite !
PERM1.
eauto.
+
rewrite !
PERM1.
eapply mi_perm_inv0 in H0;
eauto.
Qed.
Lemma public_stack_access_magree:
forall P (
m1 m2 :
mem) (
b :
block) (
lo hi :
Z)
p,
magree m1 m2 P ->
range_perm m1 b lo hi Cur p ->
inject_perm_condition p ->
public_stack_access (
stack m1)
b lo hi ->
public_stack_access (
stack m2)
b lo hi.
Proof.
Lemma inject_frame_flat a thr:
frame_inject (
flat_inj thr)
a a.
Proof.
destruct a;
try (
econstructor;
inversion 1;
tauto).
apply Forall_forall.
unfold flat_inj;
intros.
destr_in H0.
simpl in *.
inv H0.
destruct x.
simpl in *.
eauto.
Qed.
Lemma record_stack_blocks_sep:
forall m1 fi m2 ,
record_stack_blocks m1 fi =
Some m2 ->
forall b :
block,
in_stack (
stack m1)
b -> ~
in_frame fi b.
Proof.
Lemma unrecord_stack_block_inject_neutral:
forall thr m m',
inject_neutral thr m ->
unrecord_stack_block m =
Some m' ->
inject_neutral thr m'.
Proof.
Lemma store_no_abstract:
forall (
chunk :
memory_chunk) (
b :
block) (
o :
Z) (
v :
val),
stack_unchanged (
fun m1 m2 :
mem =>
store chunk m1 b o v =
Some m2).
Proof.
Lemma storebytes_no_abstract:
forall (
b :
block) (
o :
Z) (
bytes :
list memval),
stack_unchanged (
fun m1 m2 :
mem =>
storebytes m1 b o bytes =
Some m2).
Proof.
Lemma alloc_no_abstract:
forall (
lo hi :
Z) (
b :
block),
stack_unchanged (
fun m1 m2 :
mem =>
alloc m1 lo hi = (
m2,
b)).
Proof.
Lemma free_no_abstract:
forall (
lo hi :
Z) (
b :
block),
stack_unchanged (
fun m1 m2 :
mem =>
free m1 b lo hi =
Some m2).
Proof.
red;
intros.
eapply free_stack;
simpl;
eauto.
Qed.
Lemma freelist_no_abstract:
forall bl :
list (
block *
Z *
Z),
stack_unchanged (
fun m1 m2 :
mem =>
free_list m1 bl =
Some m2).
Proof.
Lemma drop_perm_no_abstract:
forall (
b :
block) (
lo hi :
Z) (
p :
permission),
stack_unchanged (
fun m1 m2 :
mem =>
drop_perm m1 b lo hi p =
Some m2).
Proof.
Lemma record_stack_inject_left_zero:
forall j n g m1 s1 s2 f1 f2
(
FAP:
frame_at_pos s2 0
f2)
(
FI:
tframe_inject j m1 f1 f2)
(
SI:
stack_inject j (
n ::
g)
m1 s1 s2)
,
stack_inject j (
S n ::
g)
m1 (
f1 ::
s1)
s2.
Proof.
intros j n g m1 s1 s2 f1 f2 FAP FI SI .
destruct SI.
constructor.
-
inv stack_inject_frame_inject.
simpl in *;
repeat destr_in TAKE.
econstructor.
simpl;
rewrite Heqo;
eauto.
all:
eauto.
constructor;
auto.
apply frame_at_pos_last in FAP;
subst.
red;
intros.
apply FI;
auto.
-
intros.
eapply stack_inject_not_in_source;
eauto.
rewrite in_stack_cons in NIS.
intuition.
Qed.
Lemma record_stack_inject_left_zero':
forall j g m1 s1 s2 f1 f2 l
(
FAP:
frame_at_pos s2 0
f2)
(
FI:
tframe_inject j m1 f1 f2)
(
SI:
stack_inject j g m1 ((
None,
l) ::
s1)
s2),
stack_inject j g m1 (
f1 ::
s1)
s2.
Proof.
intros j g m1 s1 s2 f1 f2 l FAP FI SI .
destruct SI.
constructor;
auto.
-
inv stack_inject_frame_inject.
simpl in TAKE;
repeat destr_in TAKE.
apply frame_at_pos_last in FAP;
subst.
econstructor.
simpl.
rewrite Heqo.
eauto.
all:
eauto.
inv FI0;
constructor;
auto.
-
intros.
eapply stack_inject_not_in_source;
eauto.
rewrite in_stack_cons in NIS.
rewrite in_stack_cons.
intuition.
Qed.
Lemma record_stack_blocks_mem_inj_left_zero':
forall j g m1 m2 f1 f2 m1',
mem_inj j g m1 m2 ->
record_stack_blocks m1 f1 =
Some m1' ->
frame_at_pos (
stack m2)
O f2 ->
tframe_inject j (
perm m1) (
Some f1,
nil)
f2 ->
mem_inj j g m1'
m2.
Proof.
Lemma record_stack_block_inject_left_zero':
forall m1 m1'
m2 j g f1 f2
(
INJ:
inject j g m1 m2)
(
FAP:
frame_at_pos (
stack m2) 0
f2)
(
FI:
tframe_inject j (
perm m1) (
Some f1,
nil)
f2)
(
RSB:
record_stack_blocks m1 f1 =
Some m1'),
inject j g m1'
m2.
Proof.
intros.
inversion INJ;
eauto.
exploit record_stack_blocks_mem_inj_left_zero';
eauto.
intro MINJ.
edestruct (
record_stack_blocks_mem_unchanged _ _ _ RSB)
as (
NB1 &
PERM1 &
U1 &
C1) ;
simpl in *.
inversion INJ;
econstructor;
simpl;
intros;
eauto.
+
eapply mi_freeblocks0;
eauto.
unfold valid_block in H;
rewrite NB1 in H;
eauto.
+
red;
intros.
rewrite PERM1 in H3,
H2.
eapply mi_no_overlap0;
eauto.
+
exploit mi_representable0;
eauto.
intros (
A &
B);
split;
auto.
intro ofs;
rewrite !
PERM1.
eauto.
+
rewrite !
PERM1.
eapply mi_perm_inv0 in H0;
eauto.
Qed.
Lemma unrecord_stack_inject_left_zero:
forall j n g m1 f s1 s2
(
SI:
stack_inject j (
S n ::
g)
m1 (
f ::
s1)
s2)
(
LE: 1 <=
n)
(
TOPNOPERM:
top_tframe_prop (
fun tf =>
forall b,
in_frames tf b ->
forall o k p, ~
m1 b o k p) (
f::
s1)),
stack_inject j (
n ::
g)
m1 s1 s2.
Proof.
intros j n g m1 f s1 s2 SI LE TOPNOPERM.
inversion SI;
constructor;
auto.
+
inv stack_inject_frame_inject.
simpl in TAKE;
repeat destr_in TAKE.
destruct n.
omega.
econstructor;
eauto.
inv FI;
auto.
+
simpl.
intros b1 b2 delta fi JB NIN INS o k p PERM IPC.
destruct (
in_frames_dec f b1).
*
inv TOPNOPERM.
eapply H0 in PERM;
eauto.
easy.
*
eapply stack_inject_not_in_source;
eauto.
rewrite in_stack_cons.
intros [
A|
A].
congruence.
congruence.
Qed.
Lemma unrecord_stack_block_mem_inj_left_zero:
forall (
m1 m1'
m2 :
mem) (
j :
meminj)
n g,
mem_inj j (
S n ::
g)
m1 m2 ->
unrecord_stack_block m1 =
Some m1' ->
top_frame_no_perm m1 ->
1 <=
n ->
mem_inj j (
n ::
g)
m1'
m2.
Proof.
intros m1 m1'
m2 j n g MI USB TOPNOPERM LE.
unfold_unrecord.
inv MI;
constructor;
simpl;
intros;
eauto.
eapply stack_inject_invariant_strong.
-
intros b ofs k p b'
delta JB PERM.
change (
perm m1 b ofs k p)
in PERM.
eauto.
-
rewrite H in *.
simpl in *.
eapply unrecord_stack_inject_left_zero;
eauto.
rewrite <-
H;
auto.
Qed.
Lemma unrecord_stack_block_inject_left_zero:
forall (
m1 m1'
m2 :
mem) (
j :
meminj)
n g,
inject j (
S n ::
g)
m1 m2 ->
unrecord_stack_block m1 =
Some m1' ->
top_frame_no_perm m1 ->
1 <=
n ->
inject j (
n ::
g)
m1'
m2.
Proof.
intros m1 m1'
m2 j n g INJ USB NOPERM LE.
generalize (
unrecord_stack_block_mem_unchanged _ _ USB).
simpl.
intros (
NB &
PERM &
UNCH &
LOAD).
inv INJ;
constructor;
eauto.
-
eapply unrecord_stack_block_mem_inj_left_zero;
eauto.
-
unfold valid_block;
rewrite NB;
eauto.
-
red;
intros.
rewrite PERM in H2,
H3.
eauto.
-
intros.
exploit mi_representable0.
eauto.
intros (
A &
B).
split;
auto.
intros ofs.
rewrite !
PERM.
eauto.
-
intros.
rewrite !
PERM;
eauto.
Qed.
Lemma mem_inj_ext':
forall j1 j2 g m1 m2,
mem_inj j1 g m1 m2 ->
(
forall x,
j1 x =
j2 x) ->
mem_inj j2 g m1 m2.
Proof.
intros j1 j2 g m1 m2 INJ EXT.
inv INJ;
constructor;
auto;
intros;
rewrite <- ?
EXT in *;
eauto.
eapply memval_inject_ext;
eauto.
eapply stack_inject_ext';
eauto.
Qed.
Lemma mem_inject_ext':
forall j1 j2 g m1 m2,
inject j1 g m1 m2 ->
(
forall x,
j1 x =
j2 x) ->
inject j2 g m1 m2.
Proof.
intros j1 j2 g m1 m2 INJ EXT.
inv INJ; constructor; auto; intros; rewrite <- ? EXT in *; eauto.
eapply mem_inj_ext'; eauto.
red; intros. eapply mi_no_overlap0; rewrite ? EXT; eauto.
Qed.
Lemma mem_inj_unrecord_parallel_frameinj_flat:
forall j m1 m2
(
MI:
mem_inj j (
flat_frameinj (
length (
stack m2)))
m1 m2)
m1'
(
USB:
unrecord_stack_block m1 =
Some m1')
,
exists m2',
unrecord_stack_block m2 =
Some m2' /\
mem_inj j (
flat_frameinj (
pred (
length (
stack m2))))
m1'
m2'.
Proof.
Lemma inject_unrecord_parallel_frameinj_flat:
forall j m1 m2
(
MI:
inject j (
flat_frameinj (
length (
stack m2)))
m1 m2)
m1'
(
USB:
unrecord_stack_block m1 =
Some m1'),
exists m2',
unrecord_stack_block m2 =
Some m2' /\
inject j (
flat_frameinj (
pred (
length (
stack m2))))
m1'
m2'.
Proof.
intros j m1 m2 MI m1'
USB.
inv MI.
edestruct (
mem_inj_unrecord_parallel_frameinj_flat _ _ _ mi_inj0)
as (
m2' &
USB' &
MI');
eauto.
eexists;
split;
eauto.
generalize (
unrecord_stack_block_mem_unchanged _ _ USB).
simpl.
intros (
NB &
PERM &
UNCH &
LOAD).
generalize (
unrecord_stack_block_mem_unchanged _ _ USB').
simpl.
intros (
NB' &
PERM' &
UNCH' &
LOAD').
constructor;
simpl;
intros;
eauto.
-
eapply mi_freeblocks0;
eauto.
unfold valid_block;
erewrite <-
NB;
eauto.
-
eapply mi_mappedblocks0 in H;
eauto.
unfold valid_block;
rewrite NB';
eauto.
-
red;
intros;
eapply mi_no_overlap0;
eauto.
rewrite <-
PERM;
eauto.
rewrite <-
PERM;
eauto.
-
eapply mi_representable0 in H.
destruct H as (
A &
B);
split;
intros;
eauto.
destruct H as [
C|
C];
rewrite PERM in C;
eauto.
-
rewrite PERM'
in H0.
eapply mi_perm_inv0 in H0;
eauto.
destruct H0 as [
C|
C];
rewrite <-
PERM in C;
eauto.
Qed.
Lemma record_stack_blocks_top_noperm:
forall m1 f m1',
record_stack_blocks m1 f =
Some m1' ->
top_tframe_tc (
stack m1).
Proof.
Lemma in_range:
forall (
a b c :
Z),
(
a <=
b <
c \/ ~ (
a <=
b <
c))%
Z.
Proof.
intros; omega. Qed.
Lemma free_perm:
forall m1 b lo hi m2,
free m1 b lo hi =
Some m2 ->
forall b'
o k p,
perm m1 b'
o k p ->
if peq b b'
then ((
lo <=
o <
hi)%
Z) <->
forall k p, ~
perm m2 b'
o k p else perm m2 b'
o k p.
Proof.
intros m1 b lo hi m2 FREE b'
o k p PERM.
destr.
-
subst.
eapply perm_free_inv in PERM;
eauto.
destruct PERM as [(
_ &
RNG)|
P].
split;
intros;
auto.
eapply perm_free_2;
eauto.
split;
intros;
try congruence.
eapply perm_free_2;
eauto.
apply H in P.
easy.
-
eapply perm_free_1;
eauto.
Qed.
Lemma record_stack_blocks_inject_neutral:
forall thr m fi m',
inject_neutral thr m ->
record_stack_blocks m fi =
Some m' ->
inject_neutral thr m'.
Proof.
Lemma unrecord_push:
forall m,
unrecord_stack_block (
push_new_stage m) =
Some m.
Proof.
End WITHINJPERM.
Local Instance memory_model_prf:
MemoryModel mem.
Proof.
End Mem.
Global Opaque Mem.alloc Mem.free Mem.store Mem.load Mem.storebytes Mem.loadbytes.