Module Num
Require
Import
Coqlib
.
Lemma
of_nat_le_mono
:
forall
m
n
,
(
m
<=
n
)%
nat
->
Ple
(
Pos.of_nat
m
) (
Pos.of_nat
n
).
Proof.
induction
1;
intros
.
-
apply
Ple_refl
.
-
apply
Ple_trans
with
(
Pos.of_nat
m0
);
auto
.
simpl
.
destruct
m0
.
simpl
.
apply
Ple_refl
.
apply
Ple_succ
.
Qed.
Lemma
pos_incr_comm
:
forall
p
,
Pos.of_nat
(
Datatypes.S
(
Pos.to_nat
p
))%
nat
=
Psucc
p
.
Proof.
clear
.
intros
p
.
rewrite
<-
Pos2Nat.inj_succ
.
rewrite
Pos2Nat.id
.
auto
.
Qed.
Lemma
Plt_le_absurd
:
forall
a
b
,
Plt
a
b
->
Ple
b
a
->
False
.
Proof.
intros
a
b
H
H0
.
apply
Pos.lt_nle
in
H
.
unfold
Ple
in
*.
contradiction
.
Qed.