Module Separation


Assertions on memory states, in the style of separation logic

This library defines a number of useful logical assertions about CompCert memory states, such as "block b at offset ofs contains value v". Assertions can be grouped using a separating conjunction operator in the style of separation logic. Currently, this library is used only in module Stackingproof to reason about the shapes of stack frames generated during the Stacking pass. This is not a full-fledged separation logic because there is no program logic (Hoare triples) to speak of. Also, there is no general frame rule; instead, a weak form of the frame rule is provided by the lemmas that help us reason about the logical assertions.

Require Import Setoid Program.Basics.
Require Import Coqlib Decidableplus.
Require Import AST Integers Values Memory Events Globalenvs.

Section WITHMEM.
  Existing Instance inject_perm_all.
  Context `{memory_model_prf: Mem.MemoryModel}.

Assertions about memory


An assertion is composed of: This presentation (where the footprint is part of the assertion) makes it possible to define separating conjunction without explicitly defining a separation algebra over CompCert memory states (i.e. the notion of splitting a memory state into two disjoint halves).

Record massert : Type := {
  m_pred : mem -> Prop;
  m_footprint: block -> Z -> Prop;
  m_invar_weak: bool;
  m_invar_stack: bool;
  m_invar: forall m m', m_pred m -> (if m_invar_weak then Mem.strong_unchanged_on else Mem.unchanged_on) m_footprint m m' ->
                   (m_invar_stack = true -> Mem.stack m' = Mem.stack m) ->
                   m_pred m';
  m_valid: forall m b ofs, m_pred m -> m_footprint b ofs -> Mem.valid_block m b
}.

Notation "m |= p" := (m_pred p m) (at level 74, no associativity) : sep_scope.

Implication and logical equivalence between memory predicates

Definition massert_imp (P Q: massert) : Prop :=
  (m_invar_weak Q = true -> m_invar_weak P = true) /\
  (m_invar_stack Q = true -> m_invar_stack P = true) /\
  (forall m, m_pred P m -> m_pred Q m) /\ (forall b ofs, m_footprint Q b ofs -> m_footprint P b ofs).
Definition massert_eqv (P Q: massert) : Prop :=
  massert_imp P Q /\ massert_imp Q P.

Remark massert_imp_refl: forall p, massert_imp p p.
Proof.
  unfold massert_imp; auto.
Qed.

Remark massert_imp_trans: forall p q r, massert_imp p q -> massert_imp q r -> massert_imp p r.
Proof.
  unfold massert_imp; clear; intros; firstorder auto.
Qed.

Remark massert_eqv_refl: forall p, massert_eqv p p.
Proof.
  unfold massert_eqv, massert_imp; clear; intros. tauto.
Qed.

Remark massert_eqv_sym: forall p q, massert_eqv p q -> massert_eqv q p.
Proof.
  unfold massert_eqv, massert_imp; clear; intros. tauto.
Qed.

Remark massert_eqv_trans: forall p q r, massert_eqv p q -> massert_eqv q r -> massert_eqv p r.
Proof.
  unfold massert_eqv, massert_imp; clear; intros. firstorder auto.
Qed.

Record massert_eqv and massert_imp as relations so that they can be used by rewriting tactics.
Global Add Relation massert massert_imp
  reflexivity proved by massert_imp_refl
  transitivity proved by massert_imp_trans
as massert_imp_prel.

Global Add Relation massert massert_eqv
  reflexivity proved by massert_eqv_refl
  symmetry proved by massert_eqv_sym
  transitivity proved by massert_eqv_trans
as massert_eqv_prel.

Global Add Morphism m_pred
  with signature massert_imp ==> eq ==> impl
  as m_pred_morph_1.
Proof.
  intros P Q [? [A [B C]]]. auto.
Qed.

Global Add Morphism m_pred
  with signature massert_eqv ==> eq ==> iff
  as m_pred_morph_2.
Proof.
  intros P Q [[? [A [B B']]] [? [C [D D']]]]. split; auto.
Qed.

Hint Resolve massert_imp_refl massert_eqv_refl.

Separating conjunction


Definition disjoint_footprint (P Q: massert) : Prop :=
  forall b ofs, m_footprint P b ofs -> m_footprint Q b ofs -> False.

Program Definition sepconj (P Q: massert) : massert := {|
  m_pred := fun m => m_pred P m /\ m_pred Q m /\ disjoint_footprint P Q;
  m_footprint := fun b ofs => m_footprint P b ofs \/ m_footprint Q b ofs;
  m_invar_weak := m_invar_weak P || m_invar_weak Q;
  m_invar_stack := m_invar_stack P || m_invar_stack Q
|}.
Next Obligation.
  repeat split; auto.
  + apply (m_invar P) with m; auto.
    destruct (m_invar_weak P); simpl in *.
    - eapply Mem.strong_unchanged_on_implies; eauto. simpl; auto.
    - destruct (m_invar_weak Q).
      * eapply Mem.strong_unchanged_on_weak.
        eapply Mem.strong_unchanged_on_implies; eauto. simpl; auto.
      * eapply Mem.unchanged_on_implies; eauto. simpl; auto.
    - intro A; rewrite A in H1; apply H1. reflexivity.
  + apply (m_invar Q) with m; auto.
    destruct (m_invar_weak Q); try rewrite orb_true_r in *.
    - eapply Mem.strong_unchanged_on_implies; eauto. simpl; auto.
    - destruct (m_invar_weak P); simpl in *.
      * eapply Mem.strong_unchanged_on_weak.
        eapply Mem.strong_unchanged_on_implies; eauto. simpl; auto.
      * eapply Mem.unchanged_on_implies; eauto. simpl; auto.
    - intro A; rewrite A in H1; apply H1. rewrite orb_true_r. reflexivity.
Qed.
Next Obligation.
  destruct H0; [eapply (m_valid P) | eapply (m_valid Q)]; eauto.
Qed.

Global Add Morphism sepconj
  with signature massert_imp ==> massert_imp ==> massert_imp
  as sepconj_morph_1.
Proof.
  intros P1 P2 [I [A B]] Q1 Q2 [J [C D]].
  red; simpl; split; [ | split ] ; intros.
  - rewrite Bool.orb_true_iff in * |- * . tauto.
  - rewrite Bool.orb_true_iff in * |- * . tauto.
  - intuition auto. red; intros. apply (H6 b ofs); auto.
Qed.

Global Add Morphism sepconj
  with signature massert_eqv ==> massert_eqv ==> massert_eqv
  as sepconj_morph_2.
Proof.
  intros. destruct H, H0. split; apply sepconj_morph_1; auto.
Qed.

Infix "**" := sepconj (at level 60, right associativity) : sep_scope.

Local Open Scope sep_scope.

Lemma sep_imp:
  forall P P' Q Q' m,
  m |= P ** Q -> massert_imp P P' -> massert_imp Q Q' -> m |= P' ** Q'.
Proof.
  intros. rewrite <- H0, <- H1; auto.
Qed.

Lemma sep_comm_1:
  forall P Q, massert_imp (P ** Q) (Q ** P).
Proof.
  unfold massert_imp; simpl; split; [ | split] ; intros.
  - rewrite Bool.orb_true_iff in * |- * . tauto.
  - rewrite Bool.orb_true_iff in * |- * . tauto.
  - intuition auto. red; intros; eapply H2; eauto.
Qed.

Lemma sep_comm:
  forall P Q, massert_eqv (P ** Q) (Q ** P).
Proof.
  intros; split; apply sep_comm_1.
Qed.

Lemma sep_assoc_1:
  forall P Q R, massert_imp ((P ** Q) ** R) (P ** (Q ** R)).
Proof.
  intros. unfold massert_imp, sepconj, disjoint_footprint; simpl. clear. firstorder auto.
  repeat rewrite Bool.orb_true_iff in * |- * ; tauto.
  repeat rewrite Bool.orb_true_iff in * |- * ; tauto.
Qed.

Lemma sep_assoc_2:
  forall P Q R, massert_imp (P ** (Q ** R)) ((P ** Q) ** R).
Proof.
  intros. unfold massert_imp, sepconj, disjoint_footprint; simpl; clear; firstorder auto.
  repeat rewrite Bool.orb_true_iff in * |- * ; tauto.
  repeat rewrite Bool.orb_true_iff in * |- * ; tauto.
Qed.

Lemma sep_assoc:
  forall P Q R, massert_eqv ((P ** Q) ** R) (P ** (Q ** R)).
Proof.
  intros; split. apply sep_assoc_1. apply sep_assoc_2.
Qed.

Lemma sep_swap:
  forall P Q R, massert_eqv (P ** Q ** R) (Q ** P ** R).
Proof.
  intros. rewrite <- sep_assoc. rewrite (sep_comm P). rewrite sep_assoc. reflexivity.
Qed.

Definition sep_swap12 := sep_swap.

Lemma sep_swap23:
  forall P Q R S, massert_eqv (P ** Q ** R ** S) (P ** R ** Q ** S).
Proof.
  intros. rewrite (sep_swap Q). reflexivity.
Qed.

Lemma sep_swap34:
  forall P Q R S T, massert_eqv (P ** Q ** R ** S ** T) (P ** Q ** S ** R ** T).
Proof.
  intros. rewrite (sep_swap R). reflexivity.
Qed.

Lemma sep_swap45:
  forall P Q R S T U, massert_eqv (P ** Q ** R ** S ** T ** U) (P ** Q ** R ** T ** S ** U).
Proof.
  intros. rewrite (sep_swap S). reflexivity.
Qed.

Definition sep_swap2 := sep_swap.

Lemma sep_swap3:
  forall P Q R S, massert_eqv (P ** Q ** R ** S) (R ** Q ** P ** S).
Proof.
  intros. rewrite sep_swap. rewrite (sep_swap P). rewrite sep_swap. reflexivity.
Qed.

Lemma sep_swap4:
  forall P Q R S T, massert_eqv (P ** Q ** R ** S ** T) (S ** Q ** R ** P ** T).
Proof.
  intros. rewrite sep_swap. rewrite (sep_swap3 P). rewrite sep_swap. reflexivity.
Qed.

Lemma sep_swap5:
  forall P Q R S T U, massert_eqv (P ** Q ** R ** S ** T ** U) (T ** Q ** R ** S ** P ** U).
Proof.
  intros. rewrite sep_swap. rewrite (sep_swap4 P). rewrite sep_swap. reflexivity.
Qed.

Lemma sep_drop:
  forall P Q m, m |= P ** Q -> m |= Q.
Proof.
  simpl; intros. tauto.
Qed.

Lemma sep_drop2:
  forall P Q R m, m |= P ** Q ** R -> m |= P ** R.
Proof.
  intros. rewrite sep_swap in H. eapply sep_drop; eauto.
Qed.

Lemma sep_proj1:
  forall Q P m, m |= P ** Q -> m |= P.
Proof.
  intros. destruct H; auto.
Qed.

Lemma sep_proj2:
  forall P Q m, m |= P ** Q -> m |= Q.
Proof sep_drop.

Definition sep_pick1 := sep_proj1.

Lemma sep_pick2:
  forall P Q R m, m |= P ** Q ** R -> m |= Q.
Proof.
  intros. eapply sep_proj1; eapply sep_proj2; eauto.
Qed.

Lemma sep_pick3:
  forall P Q R S m, m |= P ** Q ** R ** S -> m |= R.
Proof.
  intros. eapply sep_pick2; eapply sep_proj2; eauto.
Qed.

Lemma sep_pick4:
  forall P Q R S T m, m |= P ** Q ** R ** S ** T -> m |= S.
Proof.
  intros. eapply sep_pick3; eapply sep_proj2; eauto.
Qed.

Lemma sep_pick5:
  forall P Q R S T U m, m |= P ** Q ** R ** S ** T ** U -> m |= T.
Proof.
  intros. eapply sep_pick4; eapply sep_proj2; eauto.
Qed.

Lemma sep_preserved:
  forall m m' P Q,
  m |= P ** Q ->
  (m |= P -> m' |= P) ->
  (m |= Q -> m' |= Q) ->
  m' |= P ** Q.
Proof.
  simpl; intros. intuition auto.
Qed.

Basic memory assertions.


Pure logical assertion

Program Definition pure (P: Prop) : massert := {|
  m_pred := fun m => P;
  m_footprint := fun b ofs => False;
  m_invar_weak := false;
  m_invar_stack := false;
|}.
Next Obligation.
  tauto.
Qed.

Lemma sep_pure:
  forall P Q m, m |= pure P ** Q <-> P /\ m |= Q.
Proof.
  simpl; intros. intuition auto. red; simpl; tauto.
Qed.

A range of bytes, with full permissions and unspecified contents.

Program Definition range (b: block) (lo hi: Z) : massert := {|
  m_pred := fun m =>
       0 <= lo /\ hi <= Ptrofs.modulus
       /\ (forall i k p, lo <= i < hi -> Mem.perm m b i k p);
  m_footprint := fun b' ofs' => b' = b /\ lo <= ofs' < hi
  ;
  m_invar_weak := false ;
  m_invar_stack := false
|}.
Next Obligation.
  split; auto. split; auto. intros. eapply Mem.perm_unchanged_on; eauto. simpl; auto.
Qed.
Next Obligation.
  apply Mem.perm_valid_block with ofs Cur Freeable; auto.
Qed.

Lemma alloc_rule:
  forall m lo hi b m' P,
  Mem.alloc m lo hi = (m', b) ->
  0 <= lo -> hi <= Ptrofs.modulus ->
  m |= P ->
  m_invar_stack P = false ->
  m' |= range b lo hi ** P.
Proof.
  intros; simpl. split; [|split].
- split; auto. split; auto. intros.
  apply Mem.perm_implies with Freeable; auto with mem.
  eapply Mem.perm_alloc_2; eauto.
- apply (m_invar P) with m; auto.
  destruct (m_invar_weak P).
  + eapply Mem.alloc_strong_unchanged_on; eauto.
  + eapply Mem.alloc_unchanged_on; eauto.
  + congruence.
- red; simpl. intros. destruct H4; subst b0.
  eelim Mem.fresh_block_alloc; eauto. eapply (m_valid P); eauto.
Qed.

Lemma range_split:
  forall b lo hi P mid m,
  lo <= mid <= hi ->
  m |= range b lo hi ** P ->
  m |= range b lo mid ** range b mid hi ** P.
Proof.
  intros. rewrite <- sep_assoc. eapply sep_imp; eauto.
  split; [ | split; [|split]]; simpl; intros; try assumption.
  - intuition auto; try omega.
    + apply H5; omega.
    + apply H5; omega.
    + red; simpl; intros; omega.
  - intuition omega.
Qed.

Lemma range_drop_left:
  forall b lo hi P mid m,
  lo <= mid <= hi ->
  m |= range b lo hi ** P ->
  m |= range b mid hi ** P.
Proof.
  intros. apply sep_drop with (range b lo mid). apply range_split; auto.
Qed.

Lemma range_drop_right:
  forall b lo hi P mid m,
  lo <= mid <= hi ->
  m |= range b lo hi ** P ->
  m |= range b lo mid ** P.
Proof.
  intros. apply sep_drop2 with (range b mid hi). apply range_split; auto.
Qed.

Lemma range_split_2:
  forall b lo hi P mid al m,
    lo <= align mid al <= hi ->
    al > 0 ->
    m |= range b lo hi ** P ->
    m |= range b lo mid ** range b (align mid al) hi ** P.
Proof.
  intros. rewrite <- sep_assoc. eapply sep_imp; eauto.
  assert (mid <= align mid al) by (apply align_le; auto).
  split; [ | split; [ | split ] ] ; simpl; intros; try assumption.
  - intuition auto; try (apply H7; omega); try omega.
    red; simpl; intros; omega.
  - intuition omega.
Qed.

Lemma range_preserved:
  forall m m' b lo hi,
  m |= range b lo hi ->
  (forall i k p, lo <= i < hi -> Mem.perm m b i k p -> Mem.perm m' b i k p) ->
  m' |= range b lo hi.
Proof.
  intros. destruct H as (A & B & C). simpl; intuition auto.
Qed.

A memory area that contains a value sastifying a given predicate

Program Definition contains (chunk: memory_chunk) (b: block) (ofs: Z) (spec: val -> Prop) : massert := {|
  m_pred := fun m =>
       0 <= ofs <= Ptrofs.max_unsigned
       /\ Mem.range_perm m b ofs (ofs + size_chunk chunk) Cur Freeable
       /\ (align_chunk chunk | ofs)
       /\ exists v, Mem.load chunk m b ofs = Some v /\ spec v;
  m_footprint := fun b' ofs' => b' = b /\ ofs <= ofs' < ofs + size_chunk chunk
  ;
  m_invar_weak := false
  ;
  m_invar_stack := false
|}.
Next Obligation.
  rename H4 into v. split;[|split;[|split]]; auto.
- red; intros; eapply Mem.perm_unchanged_on; eauto. simpl; auto.
- exists v. split; auto. eapply Mem.load_unchanged_on; eauto. simpl; auto.
Qed.
Next Obligation.
  eauto with mem.
Qed.

Lemma contains_no_overflow:
  forall spec m chunk b ofs,
  m |= contains chunk b ofs spec ->
  0 <= ofs <= Ptrofs.max_unsigned.
Proof.
  intros. simpl in H. tauto.
Qed.

Lemma load_rule:
  forall spec m chunk b ofs,
  m |= contains chunk b ofs spec ->
  exists v, Mem.load chunk m b ofs = Some v /\ spec v.
Proof.
  intros. destruct H as (D & E & AL & v & F & G).
  exists v; auto.
Qed.

Lemma loadv_rule:
  forall spec m chunk b ofs,
  m |= contains chunk b ofs spec ->
  exists v, Mem.loadv chunk m (Vptr b (Ptrofs.repr ofs)) = Some v /\ spec v.
Proof.
  intros. exploit load_rule; eauto. intros (v & A & B). exists v; split; auto.
  simpl. rewrite Ptrofs.unsigned_repr; auto. eapply contains_no_overflow; eauto.
Qed.

Lemma store_rule:
  forall chunk m b ofs v (spec1 spec: val -> Prop) P,
    m |= contains chunk b ofs spec1 ** P ->
    stack_access (Mem.stack m) b ofs (ofs + size_chunk chunk) ->
  spec (Val.load_result chunk v) ->
  exists m',
  Mem.store chunk m b ofs v = Some m' /\ m' |= contains chunk b ofs spec ** P.
Proof.
  intros. destruct H as (A & B & C). destruct A as (D & E & v0 & F & G).
  assert (H: Mem.valid_access m chunk b ofs Freeable).
  {
    split;[|split]; eauto.
  }
  assert (H2: Mem.valid_access m chunk b ofs Writable).
  {
    eauto with mem.
  }
  destruct (Mem.valid_access_store _ _ _ _ v H2) as [m' STORE].
  exists m'; split; auto. simpl. intuition auto.
- eapply Mem.store_valid_access_1; eauto.
- exists (Val.load_result chunk v); split; auto. eapply Mem.load_store_same; eauto.
- apply (m_invar P) with m; auto.
  destruct (m_invar_weak P).
  + eapply Mem.store_strong_unchanged_on; eauto.
    intros; red; intros. apply (C b i); simpl; auto.
  + eapply Mem.store_unchanged_on; eauto.
    intros; red; intros. apply (C b i); simpl; auto.
  + intros.
    eapply Mem.store_stack_blocks; eauto.
Qed.

Lemma storev_rule:
  forall chunk m b ofs v (spec1 spec: val -> Prop) P,
    m |= contains chunk b ofs spec1 ** P ->
    stack_access (Mem.stack m) b ofs (ofs + size_chunk chunk) ->
  spec (Val.load_result chunk v) ->
  exists m',
  Mem.storev chunk m (Vptr b (Ptrofs.repr ofs)) v = Some m' /\ m' |= contains chunk b ofs spec ** P.
Proof.
  intros. exploit store_rule; eauto. intros (m' & A & B). exists m'; split; auto.
  simpl. rewrite Ptrofs.unsigned_repr; auto. eapply contains_no_overflow. eapply sep_pick1; eauto.
Qed.

Lemma range_contains:
  forall chunk b ofs P m,
  m |= range b ofs (ofs + size_chunk chunk) ** P ->
  (align_chunk chunk | ofs) ->
  stack_access (Mem.stack m) b ofs (ofs + size_chunk chunk) ->
  m |= contains chunk b ofs (fun v => True) ** P.
Proof.
  intros. destruct H as (A & B & C). destruct A as (D & E & F).
  split; [|split].
- assert (Mem.valid_access m chunk b ofs Freeable).
  { split; auto. red; auto. }
  split. generalize (size_chunk_pos chunk). unfold Ptrofs.max_unsigned. omega.
  split; [|split]; auto.
  apply H.
  destruct (Mem.valid_access_load m chunk b ofs) as [v LOAD].
  eauto with mem.
  exists v; auto.
- auto.
- auto.
Qed.

Lemma contains_imp:
  forall (spec1 spec2: val -> Prop) chunk b ofs,
  (forall v, spec1 v -> spec2 v) ->
  massert_imp (contains chunk b ofs spec1) (contains chunk b ofs spec2).
Proof.
  intros; split; [| split; [ | split ]] ; simpl; intros.
  - assumption.
  - assumption.
  - intuition auto. destruct H5 as (v & A & B). exists v; auto.
  - auto.
Qed.

Program Definition contains_ra (b: block) (ofs: Z) (ra: val) : massert := {|
  m_pred := fun m =>
       0 <= ofs <= Ptrofs.max_unsigned
       /\ Mem.range_perm m b ofs (ofs + size_chunk Mptr) Cur Freeable
       /\ (align_chunk Mptr | ofs)
       /\ Mem.loadbytesv Mptr m (Vptr b (Ptrofs.repr ofs)) = Some ra;
  m_footprint := fun b' ofs' => b' = b /\ ofs <= ofs' < ofs + size_chunk Mptr;
  m_invar_weak := false;
  m_invar_stack := false;
|}.
Next Obligation.
  destr_in H4. clear H1.
  repeat apply conj; auto.
- red; intros; eapply Mem.perm_unchanged_on; eauto. simpl; auto.
- erewrite Mem.loadbytes_unchanged_on; eauto. simpl. rewrite Ptrofs.unsigned_repr by omega. auto.
Qed.
Next Obligation.
  eauto with mem.
Qed.

A memory area that contains a given value

Definition hasvalue (chunk: memory_chunk) (b: block) (ofs: Z) (v: val) : massert :=
  contains chunk b ofs (fun v' => v' = v).

Lemma store_rule':
  forall chunk m b ofs v (spec1: val -> Prop) P,
    m |= contains chunk b ofs spec1 ** P ->
    stack_access (Mem.stack m) b ofs (ofs + size_chunk chunk) ->
    exists m',
  Mem.store chunk m b ofs v = Some m' /\ m' |= hasvalue chunk b ofs (Val.load_result chunk v) ** P.
Proof.
  intros. eapply store_rule; eauto.
Qed.

Lemma storev_rule':
  forall chunk m b ofs v (spec1: val -> Prop) P,
    m |= contains chunk b ofs spec1 ** P ->
    stack_access (Mem.stack m) b ofs (ofs + size_chunk chunk) ->
    exists m',
      Mem.storev chunk m (Vptr b (Ptrofs.repr ofs)) v = Some m' /\ m' |= hasvalue chunk b ofs (Val.load_result chunk v) ** P.
Proof.
  intros. eapply storev_rule; eauto.
Qed.

Non-separating conjunction

Program Definition mconj (P Q: massert) : massert := {|
  m_pred := fun m => m_pred P m /\ m_pred Q m;
  m_footprint := fun b ofs => m_footprint P b ofs \/ m_footprint Q b ofs
  ;
  m_invar_weak := m_invar_weak P || m_invar_weak Q;
  m_invar_stack := m_invar_stack P || m_invar_stack Q;
|}.
Next Obligation.
  repeat split; auto.
  + apply (m_invar P) with m; auto.
    destruct (m_invar_weak P); simpl in *.
    - eapply Mem.strong_unchanged_on_implies; eauto. simpl; auto.
    - destruct (m_invar_weak Q).
      * apply Mem.strong_unchanged_on_weak.
        eapply Mem.strong_unchanged_on_implies; eauto. simpl; auto.
      * eapply Mem.unchanged_on_implies; eauto. simpl; auto.
    - intros; apply H1. rewrite H3; reflexivity.
  + apply (m_invar Q) with m; auto.
    destruct (m_invar_weak Q); try rewrite orb_true_r in *.
    - eapply Mem.strong_unchanged_on_implies; eauto. simpl; auto.
    - destruct (m_invar_weak P); simpl in *.
      * apply Mem.strong_unchanged_on_weak.
        eapply Mem.strong_unchanged_on_implies; eauto. simpl; auto.
      * eapply Mem.unchanged_on_implies; eauto. simpl; auto.
    - intros; apply H1. rewrite H3, orb_true_r; reflexivity.
Qed.
Next Obligation.
  destruct H0; [eapply (m_valid P) | eapply (m_valid Q)]; eauto.
Qed.

Lemma mconj_intro:
  forall P Q R m,
  m |= P ** R -> m |= Q ** R -> m |= mconj P Q ** R.
Proof.
  intros. destruct H as (A & B & C). destruct H0 as (D & E & F).
  split; [|split].
- simpl; auto.
- auto.
- red; simpl; intros. destruct H; [eelim C | eelim F]; eauto.
Qed.

Lemma mconj_proj1:
  forall P Q R m, m |= mconj P Q ** R -> m |= P ** R.
Proof.
  intros. destruct H as (A & B & C); simpl in A.
  simpl. intuition auto.
  red; intros; eapply C; eauto; simpl; auto.
Qed.

Lemma mconj_proj2:
  forall P Q R m, m |= mconj P Q ** R -> m |= Q ** R.
Proof.
  intros. destruct H as (A & B & C); simpl in A.
  simpl. intuition auto.
  red; intros; eapply C; eauto; simpl; auto.
Qed.

Lemma frame_mconj:
  forall P P' Q R m m',
  m |= mconj P Q ** R ->
  m' |= P' ** R ->
  m' |= Q ->
  m' |= mconj P' Q ** R.
Proof.
  intros. destruct H as (A & B & C); simpl in A.
  destruct H0 as (D & E & F).
  simpl. intuition auto.
  red; simpl; intros. destruct H2. eapply F; eauto. eapply C; simpl; eauto.
Qed.

Global Add Morphism mconj
  with signature massert_imp ==> massert_imp ==> massert_imp
  as mconj_morph_1.
Proof.
  intros P1 P2 [I [A B]] Q1 Q2 [J [C D]].
  red; simpl; intuition auto.
  repeat rewrite Bool.orb_true_iff in * |- * . tauto.
  repeat rewrite Bool.orb_true_iff in * |- * . tauto.
Qed.

Global Add Morphism mconj
  with signature massert_eqv ==> massert_eqv ==> massert_eqv
  as mconj_morph_2.
Proof.
  intros. destruct H, H0. split; apply mconj_morph_1; auto.
Qed.

The image of a memory injection

Program Definition minjection (j: meminj) g (m0: mem) : massert := {|
  m_pred := fun m => Mem.inject j g m0 m;
  m_footprint := fun b ofs => exists b0 delta, j b0 = Some(b, delta) /\ Mem.perm m0 b0 (ofs - delta) Max Nonempty;
  m_invar_weak := true;
  m_invar_stack := true;
|}.
Next Obligation.
  eapply Mem.inject_strong_unchanged_on; eauto.
Qed.
Next Obligation.
  eapply Mem.valid_block_inject_2; eauto.
Qed.

Lemma loadv_parallel_rule:
  forall j g m1 m2 chunk addr1 v1 addr2,
  m2 |= minjection j g m1 ->
  Mem.loadv chunk m1 addr1 = Some v1 ->
  Val.inject j addr1 addr2 ->
  exists v2, Mem.loadv chunk m2 addr2 = Some v2 /\ Val.inject j v1 v2.
Proof.
  intros. simpl in H. eapply Mem.loadv_inject; eauto.
Qed.

Lemma storev_parallel_rule:
  forall j g m1 m2 P chunk addr1 v1 m1' addr2 v2,
  m2 |= minjection j g m1 ** P ->
  Mem.storev chunk m1 addr1 v1 = Some m1' ->
  Val.inject j addr1 addr2 ->
  Val.inject j v1 v2 ->
  exists m2', Mem.storev chunk m2 addr2 v2 = Some m2' /\ m2' |= minjection j g m1' ** P.
Proof.
  intros. destruct H as (A & B & C). simpl in A.
  exploit Mem.storev_mapped_inject; eauto. intros (m2' & STORE & INJ).
  inv H1; simpl in STORE; try discriminate.
  assert (VALID: Mem.valid_access m1 chunk b1 (Ptrofs.unsigned ofs1) Writable)
    by eauto with mem.
  assert (EQ: Ptrofs.unsigned (Ptrofs.add ofs1 (Ptrofs.repr delta)) = Ptrofs.unsigned ofs1 + delta).
  { eapply Mem.address_inject'; eauto with mem. }
  exists m2'; split; auto.
  split; [|split].
- exact INJ.
- apply (m_invar P) with m2; auto.
  cut (Mem.strong_unchanged_on (m_footprint P) m2 m2').
  {
    destruct (m_invar_weak P); auto using Mem.strong_unchanged_on_weak.
  }
  eapply Mem.store_strong_unchanged_on; eauto.
  intros; red; intros. eelim C; eauto. simpl.
  exists b1, delta; split; auto. destruct VALID as [V1 V2].
  apply Mem.perm_cur_max. apply Mem.perm_implies with Writable; auto with mem.
  apply V1. omega.
  intros; eapply Mem.store_stack_blocks; eauto.
- red; simpl; intros. destruct H1 as (b0 & delta0 & U & V).
  eelim C; eauto. simpl. exists b0, delta0; eauto with mem.
Qed.

Lemma alloc_parallel_rule:
  forall m1 sz1 m1' b1 m2 sz2 m2' b2 P j g lo hi delta,
    m2 |= minjection j g m1 ** P ->
    Mem.alloc m1 0 sz1 = (m1', b1) ->
    Mem.alloc m2 0 sz2 = (m2', b2) ->
    (8 | delta) ->
    lo = delta ->
    hi = delta + Zmax 0 sz1 ->
    0 <= sz2 <= Ptrofs.max_unsigned ->
    0 <= delta -> hi <= sz2 ->
    exists j',
      m2' |= range b2 0 lo ** range b2 hi sz2 ** minjection j' g m1' ** P
      /\ inject_incr j j'
      /\ j' b1 = Some(b2, delta)
      /\ (forall b, b <> b1 -> j' b = j b).
Proof.
  intros until delta; intros SEP ALLOC1 ALLOC2 ALIGN LO HI RANGE1 RANGE2 RANGE3.
  assert (RANGE4: lo <= hi) by xomega.
  assert (FRESH1: ~Mem.valid_block m1 b1) by (eapply Mem.fresh_block_alloc; eauto).
  assert (FRESH2: ~Mem.valid_block m2 b2) by (eapply Mem.fresh_block_alloc; eauto).
  destruct SEP as (INJ & SP & DISJ). simpl in INJ.
  exploit Mem.alloc_left_mapped_inject.
  - eapply Mem.alloc_right_inject; eauto.
  - eexact ALLOC1.
  - instantiate (1 := b2). eauto with mem.
  - instantiate (1 := delta). xomega.
  - intros. assert (0 <= ofs < sz2) by (eapply Mem.perm_alloc_3; eauto). omega.
  - intros. apply Mem.perm_implies with Freeable; auto with mem.
    eapply Mem.perm_alloc_2; eauto. xomega.
  - red; intros. apply Zdivides_trans with 8; auto.
    exists (8 / align_chunk chunk). destruct chunk; reflexivity.
  - intros. elim FRESH2. eapply Mem.valid_block_inject_2; eauto.
  - intros fi IFS o k pp PERM IPC. erewrite Mem.alloc_stack_blocks in IFS. 2: eauto.
    exfalso; apply FRESH2. apply Mem.in_frames_valid. eapply in_stack'_in_stack; eauto.
  - intros (j' & INJ' & J1 & J2 & J3).
    exists j'; split; auto.
    rewrite <- ! sep_assoc.
    split; [|split].
    + simpl. intuition auto; try (unfold Ptrofs.max_unsigned in *; omega).
      * apply Mem.perm_implies with Freeable; auto with mem.
        eapply Mem.perm_alloc_2; eauto. omega.
 * red; right; red; erewrite Mem.alloc_get_frame_info_fresh; eauto. *)      * apply Mem.perm_implies with Freeable; auto with mem.
        eapply Mem.perm_alloc_2; eauto. omega.
 * red; right; red; erewrite Mem.alloc_get_frame_info_fresh; eauto. *)      * red; simpl; intros. destruct H1, H2. omega.
      * red; simpl; intros.
        assert (b = b2) by tauto. subst b.
        assert (0 <= ofs < lo \/ hi <= ofs < sz2) by tauto. clear H1.
        destruct H2 as (b0 & delta0 & D & E).
        eapply Mem.perm_alloc_inv in E; eauto.
        destruct (eq_block b0 b1).
        subst b0. rewrite J2 in D. inversion D; clear D; subst delta0. xomega.
        rewrite J3 in D by auto. elim FRESH2. eapply Mem.valid_block_inject_2; eauto.
    + apply (m_invar P) with m2; auto.
      cut (Mem.strong_unchanged_on (m_footprint P) m2 m2').
      {
        destruct (m_invar_weak P); auto using Mem.strong_unchanged_on_weak.
      }
      eapply Mem.alloc_strong_unchanged_on; eauto.
      intros; eapply Mem.alloc_stack_blocks; eauto.
    + red; simpl; intros.
      assert (VALID: Mem.valid_block m2 b) by (eapply (m_valid P); eauto).
      destruct H as [A | (b0 & delta0 & A & B)].
      * assert (b = b2) by tauto. subst b. contradiction.
      * eelim DISJ; eauto. simpl.
        eapply Mem.perm_alloc_inv in B; eauto.
        destruct (eq_block b0 b1).
        subst b0. rewrite J2 in A. inversion A; clear A; subst b delta0. contradiction.
        rewrite J3 in A by auto. exists b0, delta0; auto.
Qed.

Lemma free_parallel_rule:
  forall j g m1 b1 sz1 m1' m2 b2 sz2 lo hi delta P,
  m2 |= range b2 0 lo ** range b2 hi sz2 ** minjection j g m1 ** P ->
  Mem.free m1 b1 0 sz1 = Some m1' ->
  inject_perm_condition Freeable ->
  j b1 = Some (b2, delta) ->
  lo = delta -> hi = delta + Zmax 0 sz1 ->
  exists m2',
     Mem.free m2 b2 0 sz2 = Some m2'
  /\ m2' |= minjection j g m1' ** P.
Proof.
  intros. rewrite <- ! sep_assoc in H.
  destruct H as (A & B & C).
  destruct A as (D & E & F).
  destruct D as (J & K & L).
  destruct J as (_ & _ & J). destruct K as (_ & _ & K).
  simpl in E.
  assert (PERM: Mem.range_perm m2 b2 0 sz2 Cur Freeable).
  { red; intros.
    destruct (zlt ofs lo). apply J; omega.
    destruct (zle hi ofs). apply K; omega.
    replace ofs with ((ofs - delta) + delta) by omega.
    eapply Mem.perm_inject; eauto.
    eapply Mem.free_range_perm; eauto. xomega.
  }
  destruct (Mem.range_perm_free _ _ _ _ PERM) as [m2' FREE].
  exists m2'; split; auto. split; [|split].
- simpl. eapply Mem.free_right_inject; eauto. eapply Mem.free_left_inject; eauto.
  intros. apply (F b2 (ofs + delta0)).
+ simpl.
  destruct (zlt (ofs + delta0) lo). intuition auto.
  destruct (zle hi (ofs + delta0)). intuition auto.
  destruct (eq_block b0 b1).
* subst b0. rewrite H2 in H; inversion H; clear H; subst delta0.
  eelim (Mem.perm_free_2 m1); eauto. xomega.
* exploit Mem.mi_no_overlap; eauto.
  apply Mem.perm_max with k. apply Mem.perm_implies with p; auto with mem.
  eapply Mem.perm_free_3; eauto.
  apply Mem.perm_cur_max. apply Mem.perm_implies with Freeable; auto with mem.
  eapply (Mem.free_range_perm m1); eauto.
  instantiate (1 := ofs + delta0 - delta). xomega.
  intros [X|X]. congruence. omega.
+ simpl. exists b0, delta0; split; auto.
  replace (ofs + delta0 - delta0) with ofs by omega.
  apply Mem.perm_max with k. apply Mem.perm_implies with p; auto with mem.
  eapply Mem.perm_free_3; eauto.
- apply (m_invar P) with m2; auto.
  cut (Mem.strong_unchanged_on (m_footprint P) m2 m2').
  {
    destruct (m_invar_weak P); auto using Mem.strong_unchanged_on_weak.
  }
  eapply Mem.free_strong_unchanged_on; eauto.
  intros; red; intros. eelim C; eauto. simpl.
  destruct (zlt i lo). intuition auto.
  destruct (zle hi i). intuition auto.
  right; exists b1, delta; split; auto.
  apply Mem.perm_cur_max. apply Mem.perm_implies with Freeable; auto with mem.
  eapply Mem.free_range_perm; eauto. xomega.
  intros; eapply Mem.free_stack_blocks; eauto.
- red; simpl; intros. eelim C; eauto.
  simpl. right. destruct H as (b0 & delta0 & U & V).
  exists b0, delta0; split; auto.
  eapply Mem.perm_free_3; eauto.
Qed.

Preservation of a global environment by a memory injection

Inductive globalenv_preserved {F V: Type} (ge: Genv.t F V) (j: meminj) (bound: block) : Prop :=
  | globalenv_preserved_intro
      (DOMAIN: forall b, Plt b bound -> j b = Some(b, 0))
      (IMAGE: forall b1 b2 delta, j b1 = Some(b2, delta) -> Plt b2 bound -> b1 = b2)
      (SYMBOLS: forall id b, Genv.find_symbol ge id = Some b -> Plt b bound)
      (FUNCTIONS: forall b fd, Genv.find_funct_ptr ge b = Some fd -> Plt b bound)
      (VARINFOS: forall b gv, Genv.find_var_info ge b = Some gv -> Plt b bound).

Program Definition globalenv_inject {F V: Type} (ge: Genv.t F V) (j: meminj) : massert := {|
  m_pred := fun m => exists bound, Ple bound (Mem.nextblock m) /\ globalenv_preserved ge j bound;
  m_footprint := fun b ofs => False;
  m_invar_weak := false;
  m_invar_stack := false;
|}.
Next Obligation.
  rename H into bound. exists bound; split; auto. eapply Ple_trans; eauto. eapply Mem.unchanged_on_nextblock; eauto.
Qed.
Next Obligation.
  tauto.
Qed.

Lemma globalenv_inject_preserves_globals:
  forall (F V: Type) (ge: Genv.t F V) j m,
  m |= globalenv_inject ge j ->
  meminj_preserves_globals ge j.
Proof.
  intros. destruct H as (bound & A & B). destruct B.
  split; [|split]; intros.
- eauto.
- eauto.
- symmetry; eauto.
Qed.

Lemma globalenv_inject_incr:
  forall j m0 (F V: Type) (ge: Genv.t F V) m j' P,
  inject_incr j j' ->
  inject_separated j j' m0 m ->
  m |= globalenv_inject ge j ** P ->
  m |= globalenv_inject ge j' ** P.
Proof.
  intros. destruct H1 as (A & B & C). destruct A as (bound & D & E).
  split; [|split]; auto.
  exists bound; split; auto.
  inv E; constructor; intros.
- eauto.
- destruct (j b1) as [[b0 delta0]|] eqn:JB1.
+ erewrite H in H1 by eauto. inv H1. eauto.
+ exploit H0; eauto. intros (X & Y). elim Y. apply Plt_le_trans with bound; auto.
- eauto.
- eauto.
- eauto.
Qed.

Context `{external_calls_ops: !ExternalCallsOps mem}.
Context `{symbols_inject'_instance: !SymbolsInject}.
Context `{external_calls_props: !ExternalCallsProps mem}.
Context `{enable_builtins_instance: !EnableBuiltins mem}.
Context `{external_calls_prf: !ExternalCalls mem}.

Lemma external_call_parallel_rule:
  forall (F V: Type) ef (ge: Genv.t F V) vargs1 m1 t vres1 m1' m2 j g P vargs2,
  m_invar_weak P = false ->
  external_call ef ge vargs1 m1 t vres1 m1' ->
  m2 |= minjection j g m1 ** globalenv_inject ge j ** P ->
  Val.inject_list j vargs1 vargs2 ->
  exists j' vres2 m2',
     external_call ef ge vargs2 m2 t vres2 m2'
  /\ Val.inject j' vres1 vres2
  /\ m2' |= minjection j' g m1' ** globalenv_inject ge j' ** P
  /\ inject_incr j j'
  /\ inject_separated j j' m1 m2.
Proof.
  intros until vargs2; intros INV_STRONG CALL SEP ARGS.
  destruct SEP as (A & B & C). simpl in A.
  exploit external_call_mem_inject; eauto.
  eapply globalenv_inject_preserves_globals. eapply sep_pick1; eauto.
  intros (j' & vres2 & m2' & CALL' & RES & INJ' & UNCH1 & UNCH2 & INCR & ISEP).
  assert (MAXPERMS: forall b ofs p,
            Mem.valid_block m1 b -> Mem.perm m1' b ofs Max p -> Mem.perm m1 b ofs Max p).
  { intros. eapply external_call_max_perm; eauto. }
  exists j', vres2, m2'; intuition auto.
  split; [|split].
- exact INJ'.
- apply m_invar with (m0 := m2).
+ apply globalenv_inject_incr with j m1; auto.
+ simpl. rewrite INV_STRONG.
  eapply Mem.unchanged_on_implies; eauto.
  intros; red; intros; red; intros.
  eelim C; simpl; eauto.
+ symmetry; eapply external_call_stack_blocks; eauto.
- red; intros. destruct H as (b0 & delta & J' & E).
  destruct (j b0) as [[b' delta'] | ] eqn:J.
+ erewrite INCR in J' by eauto. inv J'.
  eelim C; eauto. simpl. exists b0, delta; split; auto. apply MAXPERMS; auto.
  eapply Mem.valid_block_inject_1; eauto.
+ exploit ISEP; eauto. intros (X & Y). elim Y. eapply m_valid; eauto.
Qed.

Lemma alloc_parallel_rule_2:
  forall (F V: Type) (ge: Genv.t F V) m1 sz1 m1' b1 m2 sz2 m2' b2 P j g lo hi delta,
  m2 |= minjection j g m1 ** globalenv_inject ge j ** P ->
  Mem.alloc m1 0 sz1 = (m1', b1) ->
  Mem.alloc m2 0 sz2 = (m2', b2) ->
  (8 | delta) ->
  lo = delta ->
  hi = delta + Zmax 0 sz1 ->
  0 <= sz2 <= Ptrofs.max_unsigned ->
  0 <= delta -> hi <= sz2 ->
  exists j',
     m2' |= range b2 0 lo ** range b2 hi sz2 ** minjection j' g m1' ** globalenv_inject ge j' ** P
  /\ inject_incr j j'
  /\ j' b1 = Some(b2, delta)
  /\ inject_separated j j' m1 m2 .
Proof.
  intros.
  set (j1 := fun b => if eq_block b b1 then Some(b2, delta) else j b).
  assert (X: inject_incr j j1).
  { unfold j1; red; intros. destruct (eq_block b b1); auto.
    subst b. eelim Mem.fresh_block_alloc. eexact H0.
    eapply Mem.valid_block_inject_1. eauto. apply sep_proj1 in H. apply H. }
  assert (Y: inject_separated j j1 m1 m2).
  { unfold j1; red; intros. destruct (eq_block b0 b1).
  - inversion H9; clear H9; subst b3 delta0 b0. split; eapply Mem.fresh_block_alloc; eauto.
  - congruence. }
  rewrite sep_swap in H. eapply globalenv_inject_incr with (j' := j1) in H; eauto. rewrite sep_swap in H.
  clear X Y.
  exploit alloc_parallel_rule; eauto.
  intros (j' & A & B & C & D).
  exists j'; split; auto.
  rewrite sep_swap4 in A. rewrite sep_swap4. apply globalenv_inject_incr with j1 m1; auto.
- red; unfold j1; intros. destruct (eq_block b b1). congruence. rewrite D; auto.
- red; unfold j1; intros. destruct (eq_block b0 b1). congruence. rewrite D in H9 by auto. congruence.
- split; auto.
  split; auto.
  red. intros b0 b3 delta0 H8 H9.
  destruct (peq b0 b1).
  + subst.
    rewrite C in H9. inversion H9. subst delta0 b3.
    eauto with mem.
  + rewrite D in H9; congruence.
Qed.

Lemma alloc_parallel_rule_2_flat:
  forall (F V: Type) (ge: Genv.t F V) m1 sz1 m1' b1 m2 sz2 m2' b2 P j lo hi delta,
  m2 |= minjection j (flat_frameinj (length (Mem.stack m1))) m1 ** globalenv_inject ge j ** P ->
  Mem.alloc m1 0 sz1 = (m1', b1) ->
  Mem.alloc m2 0 sz2 = (m2', b2) ->
  (8 | delta) ->
  lo = delta ->
  hi = delta + Zmax 0 sz1 ->
  0 <= sz2 <= Ptrofs.max_unsigned ->
  0 <= delta -> hi <= sz2 ->
  exists j',
     m2' |= range b2 0 lo ** range b2 hi sz2 ** minjection j' (flat_frameinj (length (Mem.stack m1'))) m1' ** globalenv_inject ge j' ** P
  /\ inject_incr j j'
  /\ j' b1 = Some(b2, delta)
  /\ inject_separated j j' m1 m2 .
Proof.
  intros.
  edestruct alloc_parallel_rule_2 as (j' & SEP & INCR & JNEW & JSEP); eauto.
  exists j'; split; eauto.
  rewrite sep_swap3 in SEP |- *.
  eapply sep_imp; eauto.
  red; simpl; intros.
  split; auto.
  split; auto.
  split; auto.
  repeat rewrite_stack_blocks. auto.
Qed.

Lemma record_stack_block_parallel_rule:
  forall m1 m1' m2 j P fi b b' delta n,
    j b = Some (b', delta) ->
    m_invar_stack P = false ->
    m2 |= minjection j (flat_frameinj (length (Mem.stack m1))) m1 ** P ->
    forall (NIN: ~ in_stack (Mem.stack m2) b') fa finone,
      frame_adt_blocks fa = (b,finone)::nil ->
      frame_adt_size fa = Z.max 0 n ->
      Mem.record_stack_blocks m1 fa = Some m1' ->
      (forall o, 0 <= o < frame_size finone -> Mem.perm m1 b o Cur Writable) ->
      (forall (ofs : Z) (k : perm_kind) (p : permission),
       Mem.perm m1 b ofs k p ->
       frame_public fi (ofs + delta)) ->
    (forall (ofs : Z) (k : perm_kind) (p : permission),
        Mem.perm m2 b' ofs k p -> 0 <= ofs < frame_size fi) ->
    (forall bb delta0, j bb = Some (b', delta0) -> bb = b) ->
    forall fa',
      fa' = {| frame_adt_blocks := (b',fi)::nil;
               frame_adt_size := Z.max 0 n;
               frame_adt_blocks_norepet := norepet_1 _;
               frame_adt_size_pos:= Z.le_max_l _ _

            |} ->
      (top_tframe_tc (Mem.stack m2)) ->
      stack_equiv (Mem.stack m1) (Mem.stack m2) ->
    exists m2',
      Mem.record_stack_blocks m2 fa' = Some m2' /\
      m2' |= minjection j (flat_frameinj (length (Mem.stack m1'))) m1' ** P.
Proof.
  intros m1 m1' m2 j P fi b b' delta n FB INVAR MINJ NIN fa finone (* PUB *) fablocks fasize
         RSB1 PERM0 PERM1 PERM2 UNIQ fa' fa'eq TTNP SEQ.
  destruct MINJ as (MINJ & PM & DISJ).
  edestruct (Mem.record_push_inject_flat _ _ _ MINJ fa fa') as (m2' & RSB2 & MINJ'); simpl in *.
  - setoid_rewrite Forall_forall. intros. destruct x. simpl in *.
    rewrite fablocks in H. simpl in H. destruct H; try easy. inv H.
    simpl in *. rewrite FB in H0; inv H0.
    eexists; split; eauto.
    constructor.
    + intros.
      erewrite PERM1; eauto.
      red. destr.
    + intros. eapply PERM2. eapply Mem.perm_inject. eauto. eauto. eauto.
      apply inject_perm_condition_writable. constructor.
  - intros. unfold in_frame in H0. subst. simpl in *. destruct H0; try easy. subst. congruence.
  - red; unfold in_frame; simpl. subst; simpl. intros ? [B|[]]. subst. simpl in *; eapply Mem.valid_block_inject_2; eauto.
  - subst; simpl in *; intros ? ? ? ? ? [B|[]]. inv B. eauto.
  - intros. subst. simpl in *. unfold in_frame, get_frame_blocks. setoid_rewrite fablocks. simpl.
    split; intros [B|[]]; left; subst. congruence. eapply UNIQ in H. auto.
  - subst; simpl in *; congruence.
  - eauto.
  - eauto.
  - apply stack_equiv_tail in SEQ. apply stack_equiv_fsize in SEQ. omega.
  - eexists; split; eauto.
    split; [|split].
    + simpl in *. auto.
    + eapply m_invar. eauto.
      *
        destruct (m_invar_weak P); eauto using Mem.strong_unchanged_on_weak.
        eapply Mem.record_stack_block_unchanged_on; eauto.
        eapply Mem.strong_unchanged_on_weak, Mem.record_stack_block_unchanged_on; eauto.
      * congruence.
    + red; intros. eapply DISJ; eauto.
      simpl in *. decompose [ex and] H.
      repeat eexists; eauto.
      eapply Mem.record_stack_block_perm in H3. 2: eauto. auto.
Qed.

Lemma record_stack_block_parallel_rule_2:
  forall m1 m1' m2 j P fi b b' delta n,
    j b = Some (b', delta) ->
    m_invar_stack P = false ->
    m2 |= minjection j (flat_frameinj (length (Mem.stack m1))) m1 ** P ->
    forall (NIN: ~ in_stack (Mem.stack m2) b') sz,
      Mem.record_stack_blocks m1 (make_singleton_frame_adt b sz n) = Some m1' ->
      (forall o, 0 <= o < sz -> Mem.perm m1 b o Cur Writable) ->
      (forall (ofs : Z) (k : perm_kind) (p : permission),
       Mem.perm m1 b ofs k p ->
       frame_public fi (ofs + delta)) ->
    (forall (ofs : Z) (k : perm_kind) (p : permission),
        Mem.perm m2 b' ofs k p -> 0 <= ofs < frame_size fi) ->
    (forall bb delta0, j bb = Some (b', delta0) -> bb = b) ->
    (top_tframe_tc (Mem.stack m2 )) ->
    stack_equiv (Mem.stack m1) (Mem.stack m2) ->
    exists m2',
      Mem.record_stack_blocks m2 (make_singleton_frame_adt' b' fi n) = Some m2' /\
      m2' |= minjection j (flat_frameinj (length (Mem.stack m1'))) m1' ** P.
Proof.
  intros m1 m1' m2 j P fi b b' delta n H H0 H1 NIN sz H2 H3 H4 H5 H6 TTNP SEQ.
  edestruct record_stack_block_parallel_rule as (m2' & RSB & INJ); eauto.
  reflexivity. reflexivity.
  simpl. intros. rewrite Zmax_spec in H7. destr_in H7. omega. eauto.
Qed.

Lemma push_rule:
  forall j g m1 m2 P,
    m2 |= minjection j g m1 ** P ->
    m_invar_stack P = false ->
    Mem.push_new_stage m2 |= minjection j (1%nat :: g) (Mem.push_new_stage m1) ** P.
Proof.
  intros j g m1 m2 P (INJ & RP & DISJ).
  split;[|split].
  apply Mem.push_new_stage_inject.
  apply INJ.
  eapply m_invar. eauto.
  generalize (Mem.push_new_stage_unchanged_on (m_footprint P) m2).
  destruct (m_invar_weak P); eauto using Mem.strong_unchanged_on_weak.
  congruence.
  red; simpl; intros.
  destruct H0 as (b0 & delta & JB & PERM).
  rewrite Mem.push_new_stage_perm in PERM.
  eapply DISJ; eauto.
  exists b0, delta; split; eauto.
Qed.

Lemma push_rule_2:
  forall j g m1 m2 P Q,
    m2 |= mconj (minjection j g m1) Q ** P ->
    m_invar_stack P = false ->
    m_invar_stack Q = false ->
    Mem.push_new_stage m2 |= mconj (minjection j (1%nat:: g) (Mem.push_new_stage m1)) Q ** P.
Proof.
  intros j g m1 m2 P Q SEP FALSE1 FALSE2.
  eapply frame_mconj. apply SEP.
  apply mconj_proj1 in SEP.
  apply push_rule in SEP.
  eapply sep_imp. apply SEP.
  red; split; auto. split; auto. auto.
  eapply m_invar. apply mconj_proj2 in SEP. apply SEP.
  destr.
  eapply Mem.push_new_stage_unchanged_on.
  eapply Mem.strong_unchanged_on_weak, Mem.push_new_stage_unchanged_on.
  simpl. congruence.
Qed.

Lemma unrecord_stack_block_parallel_rule:
  forall m1 m1' m2 j g P,
    m_invar_stack P = false ->
    m2 |= minjection j (1%nat::g) m1 ** P ->
    Mem.unrecord_stack_block m1 = Some m1' ->
    exists m2', Mem.unrecord_stack_block m2 = Some m2' /\
           m2' |= minjection j g m1' ** P.
Proof.
  intros m1 m1' m2 j g P (* fi b b' delta FB *) INVAR MINJ RSB.
  exploit Mem.unrecord_stack_block_inject_parallel; eauto. apply MINJ.
  intros (m2' & UNRECORD & INJ).
  eexists; split; eauto.
  destruct MINJ as (MINJ & PM & DISJ).
  split; [|split].
  - simpl in *. auto.
  - eapply m_invar. eauto.
    exploit Mem.unrecord_stack_block_unchanged_on. eauto.
    destruct (m_invar_weak P); eauto using Mem.strong_unchanged_on_weak.
    congruence.
  - red; intros. eapply DISJ. 2: eauto. simpl in H |- *.
    decompose [ex and] H.
    repeat eexists; eauto.
    eapply Mem.unrecord_stack_block_perm; eauto.
Qed.

Lemma pop_frame_parallel_rule:
  forall (j : meminj) g (m1 : mem) (b1 : block) (sz1 sz2 : Z) (m1' m1'' m2 : mem) (b2 : block) (lo hi delta n : Z) (P : massert),
    m_invar_stack P = false ->
    m2 |= range b2 0 lo ** range b2 hi sz2 ** minjection j (1%nat::g) m1 ** P ->
    Mem.free m1 b1 0 sz1 = Some m1' ->
    Mem.unrecord_stack_block m1' = Some m1'' ->
    j b1 = Some (b2, delta) ->
    lo = delta -> hi = delta + Z.max 0 sz1 ->
    exists m2_ m2',
      Mem.free m2 b2 0 sz2 = Some m2_ /\
      Mem.unrecord_stack_block m2_ = Some m2'
      /\ m2' |= minjection j g m1'' ** P.
Proof.
  intros j g m1 b1 sz1 sz2 m1' m1'' m2 b2 lo hi delta n P INVAR SEP FREE UNRECORD JB LOEQ HIEQ.
  exploit free_parallel_rule; eauto.
  simpl. auto.
  intros (m2' & FREE' & SEP').
  exploit unrecord_stack_block_parallel_rule; eauto.
  repeat rewrite_stack_blocks. auto.
  intros (m2'0 & UNRECORD' & SEP'').
  eexists; eexists; eauto.
Qed.

End WITHMEM.

Notation "m |= p" := (m_pred p m) (at level 74, no associativity) : sep_scope.

Hint Resolve massert_imp_refl massert_eqv_refl.

Infix "**" := sepconj (at level 60, right associativity) : sep_scope.