Correctness proof for expression simplification.
Require Import Coqlib Maps Errors Integers.
Require Import AST Linking.
Require Import Values Memory Events Globalenvs Smallstep.
Require Import Ctypes Cop Csyntax Csem Cstrategy Clight.
Require Import SimplExpr SimplExprspec.
Relational specification of the translation.
Definition match_prog (
p:
Csyntax.program) (
tp:
Clight.program) :=
match_program (
fun ctx f tf =>
tr_fundef f tf)
eq p tp
/\
prog_types tp =
prog_types p.
Lemma transf_program_match:
forall p tp,
transl_program p =
OK tp ->
match_prog p tp.
Proof.
Semantic preservation
Section PRESERVATION.
Context `{
external_calls_prf:
ExternalCalls}.
Variable fn_stack_requirements:
ident ->
Z.
Hypothesis fn_stack_requirements_pos:
forall i, 0 <=
fn_stack_requirements i.
Variable prog:
Csyntax.program.
Variable tprog:
Clight.program.
Hypothesis TRANSL:
match_prog prog tprog.
Let ge :=
Csem.globalenv prog.
Let tge :=
Clight.globalenv tprog.
Invariance properties.
Lemma comp_env_preserved:
Clight.genv_cenv tge =
Csem.genv_cenv ge.
Proof.
Lemma symbols_preserved:
forall (
s:
ident),
Genv.find_symbol tge s =
Genv.find_symbol ge s.
Proof (
Genv.find_symbol_match (
proj1 TRANSL)).
Lemma senv_preserved:
Senv.equiv ge tge.
Proof (
Genv.senv_match (
proj1 TRANSL)).
Lemma function_ptr_translated:
forall b f,
Genv.find_funct_ptr ge b =
Some f ->
exists tf,
Genv.find_funct_ptr tge b =
Some tf /\
tr_fundef f tf.
Proof.
Lemma functions_translated:
forall v f,
Genv.find_funct ge v =
Some f ->
exists tf,
Genv.find_funct tge v =
Some tf /\
tr_fundef f tf.
Proof.
Lemma type_of_fundef_preserved:
forall f tf,
tr_fundef f tf ->
type_of_fundef tf =
Csyntax.type_of_fundef f.
Proof.
Lemma function_return_preserved:
forall f tf,
tr_function f tf ->
fn_return tf =
Csyntax.fn_return f.
Proof.
intros. inv H; auto.
Qed.
Translation of simple expressions.
Lemma tr_simple_nil:
(
forall le dst r sl a tmps,
tr_expr le dst r sl a tmps ->
dst =
For_val \/
dst =
For_effects ->
simple r =
true ->
sl =
nil)
/\(
forall le rl sl al tmps,
tr_exprlist le rl sl al tmps ->
simplelist rl =
true ->
sl =
nil).
Proof.
assert (
A:
forall dst a,
dst =
For_val \/
dst =
For_effects ->
final dst a =
nil).
intros.
destruct H;
subst dst;
auto.
apply tr_expr_exprlist;
intros;
simpl in *;
try discriminate;
auto.
rewrite H0;
auto.
simpl;
auto.
rewrite H0;
auto.
simpl;
auto.
destruct H1;
congruence.
destruct (
andb_prop _ _ H6).
inv H1.
rewrite H0;
eauto.
simpl;
auto.
unfold chunk_for_volatile_type in H9.
destruct (
type_is_volatile (
Csyntax.typeof e1));
simpl in H8;
congruence.
rewrite H0;
auto.
simpl;
auto.
rewrite H0;
auto.
simpl;
auto.
destruct (
andb_prop _ _ H7).
rewrite H0;
auto.
rewrite H2;
auto.
simpl;
auto.
rewrite H0;
auto.
simpl;
auto.
destruct (
andb_prop _ _ H6).
rewrite H0;
auto.
Qed.
Lemma tr_simple_expr_nil:
forall le dst r sl a tmps,
tr_expr le dst r sl a tmps ->
dst =
For_val \/
dst =
For_effects ->
simple r =
true ->
sl =
nil.
Proof (
proj1 tr_simple_nil).
Lemma tr_simple_exprlist_nil:
forall le rl sl al tmps,
tr_exprlist le rl sl al tmps ->
simplelist rl =
true ->
sl =
nil.
Proof (
proj2 tr_simple_nil).
Translation of deref_loc and assign_loc operations.
Remark deref_loc_translated:
forall ty m b ofs t v,
Csem.deref_loc ge ty m b ofs t v ->
match chunk_for_volatile_type ty with
|
None =>
t =
E0 /\
Clight.deref_loc ty m b ofs v
|
Some chunk =>
volatile_load tge chunk m b ofs t v
end.
Proof.
Remark assign_loc_translated:
forall ty m b ofs v t m',
Csem.assign_loc ge ty m b ofs v t m' ->
match chunk_for_volatile_type ty with
|
None =>
t =
E0 /\
Clight.assign_loc tge ty m b ofs v m'
|
Some chunk =>
volatile_store tge chunk m b ofs v t m'
end.
Proof.
Lemma volatile_store_push:
forall ge chunk m b o v t m',
forall (
STACK_TOP_NO_INFO:
forall b,
is_stack_top (
Mem.stack m)
b ->
forall fi,
get_frame_info (
Mem.stack m)
b =
Some fi ->
forall o,
frame_perm fi o =
Public),
volatile_store ge chunk m b o v t m' ->
exists m1,
volatile_store ge chunk (
Mem.push_new_stage m)
b o v t m1 /\
Mem.unrecord_stack_block m1 =
Some m'.
Proof.
Evaluation of simple expressions and of their translation
Lemma tr_simple:
forall e m,
(
forall r v,
eval_simple_rvalue ge e m r v ->
forall le dst sl a tmps,
tr_expr le dst r sl a tmps ->
match dst with
|
For_val =>
sl =
nil /\
Csyntax.typeof r =
typeof a /\
eval_expr tge e le m a v
|
For_effects =>
sl =
nil
|
For_set sd =>
exists b,
sl =
do_set sd b
/\
Csyntax.typeof r =
typeof b
/\
eval_expr tge e le m b v
end)
/\
(
forall l b ofs,
eval_simple_lvalue ge e m l b ofs ->
forall le sl a tmps,
tr_expr le For_val l sl a tmps ->
sl =
nil /\
Csyntax.typeof l =
typeof a /\
eval_lvalue tge e le m a b ofs).
Proof.
Opaque makeif.
intros e m.
apply (
eval_simple_rvalue_lvalue_ind ge e m);
intros until tmps;
intros TR;
inv TR.
value *)
auto.
auto.
exists a0;
auto.
rvalof *)
inv H7;
try congruence.
exploit H0;
eauto.
intros [
A [
B C]].
subst sl1;
simpl.
assert (
eval_expr tge e le m a v).
eapply eval_Elvalue.
eauto.
rewrite <-
B.
exploit deref_loc_translated;
eauto.
unfold chunk_for_volatile_type;
rewrite H2.
tauto.
destruct dst;
auto.
econstructor.
split.
simpl;
eauto.
auto.
addrof *)
exploit H0;
eauto.
intros [
A [
B C]].
subst sl1;
simpl.
assert (
eval_expr tge e le m (
Eaddrof a1 ty) (
Vptr b ofs)).
econstructor;
eauto.
destruct dst;
auto.
simpl;
econstructor;
eauto.
unop *)
exploit H0;
eauto.
intros [
A [
B C]].
subst sl1;
simpl.
assert (
eval_expr tge e le m (
Eunop op a1 ty)
v).
econstructor;
eauto.
congruence.
destruct dst;
auto.
simpl;
econstructor;
eauto.
binop *)
exploit H0;
eauto.
intros [
A [
B C]].
exploit H2;
eauto.
intros [
D [
E F]].
subst sl1 sl2;
simpl.
assert (
eval_expr tge e le m (
Ebinop op a1 a2 ty)
v).
econstructor;
eauto.
rewrite comp_env_preserved;
congruence.
destruct dst;
auto.
simpl;
econstructor;
eauto.
cast *)
exploit H0;
eauto.
intros [
A [
B C]].
subst sl1;
simpl.
assert (
eval_expr tge e le m (
Ecast a1 ty)
v).
econstructor;
eauto.
congruence.
destruct dst;
auto.
simpl;
econstructor;
eauto.
sizeof *)
rewrite <-
comp_env_preserved.
destruct dst.
split;
auto.
split;
auto.
constructor.
auto.
exists (
Esizeof ty1 ty).
split.
auto.
split.
auto.
constructor.
alignof *)
rewrite <-
comp_env_preserved.
destruct dst.
split;
auto.
split;
auto.
constructor.
auto.
exists (
Ealignof ty1 ty).
split.
auto.
split.
auto.
constructor.
var local *)
split;
auto.
split;
auto.
apply eval_Evar_local;
auto.
var global *)
split;
auto.
split;
auto.
apply eval_Evar_global;
auto.
rewrite symbols_preserved;
auto.
deref *)
exploit H0;
eauto.
intros [
A [
B C]].
subst sl1.
split;
auto.
split;
auto.
constructor;
auto.
field struct *)
rewrite <-
comp_env_preserved in *.
exploit H0;
eauto.
intros [
A [
B C]].
subst sl1.
split;
auto.
split;
auto.
rewrite B in H1.
eapply eval_Efield_struct;
eauto.
field union *)
rewrite <-
comp_env_preserved in *.
exploit H0;
eauto.
intros [
A [
B C]].
subst sl1.
split;
auto.
split;
auto.
rewrite B in H1.
eapply eval_Efield_union;
eauto.
Qed.
Lemma tr_simple_rvalue:
forall e m r v,
eval_simple_rvalue ge e m r v ->
forall le dst sl a tmps,
tr_expr le dst r sl a tmps ->
match dst with
|
For_val =>
sl =
nil /\
Csyntax.typeof r =
typeof a /\
eval_expr tge e le m a v
|
For_effects =>
sl =
nil
|
For_set sd =>
exists b,
sl =
do_set sd b
/\
Csyntax.typeof r =
typeof b
/\
eval_expr tge e le m b v
end.
Proof.
Lemma tr_simple_lvalue:
forall e m l b ofs,
eval_simple_lvalue ge e m l b ofs ->
forall le sl a tmps,
tr_expr le For_val l sl a tmps ->
sl =
nil /\
Csyntax.typeof l =
typeof a /\
eval_lvalue tge e le m a b ofs.
Proof.
Lemma tr_simple_exprlist:
forall le rl sl al tmps,
tr_exprlist le rl sl al tmps ->
forall e m tyl vl,
eval_simple_list ge e m rl tyl vl ->
sl =
nil /\
eval_exprlist tge e le m al tyl vl.
Proof.
induction 1;
intros.
inv H.
split.
auto.
constructor.
inv H4.
exploit tr_simple_rvalue;
eauto.
intros [
A [
B C]].
exploit IHtr_exprlist;
eauto.
intros [
D E].
split.
subst;
auto.
econstructor;
eauto.
congruence.
Qed.
Commutation between the translation of expressions and left contexts.
Lemma typeof_context:
forall k1 k2 C,
leftcontext k1 k2 C ->
forall e1 e2,
Csyntax.typeof e1 =
Csyntax.typeof e2 ->
Csyntax.typeof (
C e1) =
Csyntax.typeof (
C e2).
Proof.
induction 1; intros; auto.
Qed.
Scheme leftcontext_ind2 :=
Minimality for leftcontext Sort Prop
with leftcontextlist_ind2 :=
Minimality for leftcontextlist Sort Prop.
Combined Scheme leftcontext_leftcontextlist_ind from leftcontext_ind2,
leftcontextlist_ind2.
Lemma tr_expr_leftcontext_rec:
(
forall from to C,
leftcontext from to C ->
forall le e dst sl a tmps,
tr_expr le dst (
C e)
sl a tmps ->
exists dst',
exists sl1,
exists sl2,
exists a',
exists tmp',
tr_expr le dst'
e sl1 a'
tmp'
/\
sl =
sl1 ++
sl2
/\
incl tmp'
tmps
/\ (
forall le'
e'
sl3,
tr_expr le'
dst'
e'
sl3 a'
tmp' ->
(
forall id, ~
In id tmp' ->
le'!
id =
le!
id) ->
Csyntax.typeof e' =
Csyntax.typeof e ->
tr_expr le'
dst (
C e') (
sl3 ++
sl2)
a tmps)
) /\ (
forall from C,
leftcontextlist from C ->
forall le e sl a tmps,
tr_exprlist le (
C e)
sl a tmps ->
exists dst',
exists sl1,
exists sl2,
exists a',
exists tmp',
tr_expr le dst'
e sl1 a'
tmp'
/\
sl =
sl1 ++
sl2
/\
incl tmp'
tmps
/\ (
forall le'
e'
sl3,
tr_expr le'
dst'
e'
sl3 a'
tmp' ->
(
forall id, ~
In id tmp' ->
le'!
id =
le!
id) ->
Csyntax.typeof e' =
Csyntax.typeof e ->
tr_exprlist le' (
C e') (
sl3 ++
sl2)
a tmps)
).
Proof.
Ltac TR :=
econstructor;
econstructor;
econstructor;
econstructor;
econstructor;
split; [
eauto |
split; [
idtac |
split]].
Ltac NOTIN :=
match goal with
| [
H1:
In ?
x ?
l,
H2:
list_disjoint ?
l _ |- ~
In ?
x _ ] =>
red;
intro;
elim (
H2 x x);
auto;
fail
| [
H1:
In ?
x ?
l,
H2:
list_disjoint _ ?
l |- ~
In ?
x _ ] =>
red;
intro;
elim (
H2 x x);
auto;
fail
end.
Ltac UNCHANGED :=
match goal with
| [
H: (
forall (
id:
ident), ~
In id _ -> ?
le' !
id = ?
le !
id) |-
(
forall (
id:
ident),
In id _ -> ?
le' !
id = ?
le !
id) ] =>
intros;
apply H;
NOTIN
end.
generalize compat_dest_change; intro CDC.*)
apply leftcontext_leftcontextlist_ind;
intros.
base *)
TR.
rewrite <-
app_nil_end;
auto.
red;
auto.
intros.
rewrite <-
app_nil_end;
auto.
deref *)
inv H1.
exploit H0;
eauto.
intros [
dst' [
sl1' [
sl2' [
a' [
tmp' [
P [
Q [
R S]]]]]]]].
TR.
subst sl1;
rewrite app_ass;
eauto.
auto.
intros.
rewrite <-
app_ass.
econstructor;
eauto.
field *)
inv H1.
exploit H0.
eauto.
intros [
dst' [
sl1' [
sl2' [
a' [
tmp' [
P [
Q [
R S]]]]]]]].
TR.
subst sl1;
rewrite app_ass;
eauto.
auto.
intros.
rewrite <-
app_ass.
econstructor;
eauto.
rvalof *)
inv H1.
exploit H0;
eauto.
intros [
dst' [
sl1' [
sl2' [
a' [
tmp' [
P [
Q [
R S]]]]]]]].
TR.
subst sl1;
rewrite app_ass;
eauto.
red;
eauto.
intros.
rewrite <-
app_ass;
econstructor;
eauto.
exploit typeof_context;
eauto.
congruence.
addrof *)
inv H1.
exploit H0;
eauto.
intros [
dst' [
sl1' [
sl2' [
a' [
tmp' [
P [
Q [
R S]]]]]]]].
TR.
subst sl1;
rewrite app_ass;
eauto.
auto.
intros.
rewrite <-
app_ass.
econstructor;
eauto.
unop *)
inv H1.
exploit H0;
eauto.
intros [
dst' [
sl1' [
sl2' [
a' [
tmp' [
P [
Q [
R S]]]]]]]].
TR.
subst sl1;
rewrite app_ass;
eauto.
auto.
intros.
rewrite <-
app_ass.
econstructor;
eauto.
binop left *)
inv H1.
exploit H0;
eauto.
intros [
dst' [
sl1' [
sl2' [
a' [
tmp' [
P [
Q [
R S]]]]]]]].
TR.
subst sl1.
rewrite app_ass.
eauto.
red;
auto.
intros.
rewrite <-
app_ass.
econstructor;
eauto.
eapply tr_expr_invariant;
eauto.
UNCHANGED.
binop right *)
inv H2.
assert (
sl1 =
nil)
by (
eapply tr_simple_expr_nil;
eauto).
subst sl1;
simpl.
exploit H1;
eauto.
intros [
dst' [
sl1' [
sl2' [
a' [
tmp' [
P [
Q [
R S]]]]]]]].
TR.
subst sl2.
rewrite app_ass.
eauto.
red;
auto.
intros.
rewrite <-
app_ass.
change (
sl3 ++
sl2')
with (
nil ++
sl3 ++
sl2').
rewrite app_ass.
econstructor;
eauto.
eapply tr_expr_invariant;
eauto.
UNCHANGED.
cast *)
inv H1.
exploit H0;
eauto.
intros [
dst' [
sl1' [
sl2' [
a' [
tmp' [
P [
Q [
R S]]]]]]]].
TR.
subst sl1;
rewrite app_ass;
eauto.
auto.
intros.
rewrite <-
app_ass.
econstructor;
eauto.
seqand *)
inv H1.
for val *)
exploit H0;
eauto.
intros [
dst' [
sl1' [
sl2' [
a' [
tmp' [
P [
Q [
R S]]]]]]]].
TR.
rewrite Q.
rewrite app_ass.
eauto.
red;
auto.
intros.
rewrite <-
app_ass.
econstructor.
apply S;
auto.
eapply tr_expr_invariant;
eauto.
UNCHANGED.
auto.
auto.
auto.
auto.
for effects *)
exploit H0;
eauto.
intros [
dst' [
sl1' [
sl2' [
a' [
tmp' [
P [
Q [
R S]]]]]]]].
TR.
rewrite Q.
rewrite app_ass.
eauto.
red;
auto.
intros.
rewrite <-
app_ass.
econstructor.
apply S;
auto.
eapply tr_expr_invariant;
eauto.
UNCHANGED.
auto.
auto.
auto.
auto.
for set *)
exploit H0;
eauto.
intros [
dst' [
sl1' [
sl2' [
a' [
tmp' [
P [
Q [
R S]]]]]]]].
TR.
rewrite Q.
rewrite app_ass.
eauto.
red;
auto.
intros.
rewrite <-
app_ass.
econstructor.
apply S;
auto.
eapply tr_expr_invariant;
eauto.
UNCHANGED.
auto.
auto.
auto.
auto.
seqor *)
inv H1.
for val *)
exploit H0;
eauto.
intros [
dst' [
sl1' [
sl2' [
a' [
tmp' [
P [
Q [
R S]]]]]]]].
TR.
rewrite Q.
rewrite app_ass.
eauto.
red;
auto.
intros.
rewrite <-
app_ass.
econstructor.
apply S;
auto.
eapply tr_expr_invariant;
eauto.
UNCHANGED.
auto.
auto.
auto.
auto.
for effects *)
exploit H0;
eauto.
intros [
dst' [
sl1' [
sl2' [
a' [
tmp' [
P [
Q [
R S]]]]]]]].
TR.
rewrite Q.
rewrite app_ass.
eauto.
red;
auto.
intros.
rewrite <-
app_ass.
econstructor.
apply S;
auto.
eapply tr_expr_invariant;
eauto.
UNCHANGED.
auto.
auto.
auto.
auto.
for set *)
exploit H0;
eauto.
intros [
dst' [
sl1' [
sl2' [
a' [
tmp' [
P [
Q [
R S]]]]]]]].
TR.
rewrite Q.
rewrite app_ass.
eauto.
red;
auto.
intros.
rewrite <-
app_ass.
econstructor.
apply S;
auto.
eapply tr_expr_invariant;
eauto.
UNCHANGED.
auto.
auto.
auto.
auto.
condition *)
inv H1.
for val *)
exploit H0;
eauto.
intros [
dst' [
sl1' [
sl2' [
a' [
tmp' [
P [
Q [
R S]]]]]]]].
TR.
rewrite Q.
rewrite app_ass.
eauto.
red;
auto.
intros.
rewrite <-
app_ass.
econstructor.
apply S;
auto.
eapply tr_expr_invariant;
eauto.
UNCHANGED.
eapply tr_expr_invariant;
eauto.
UNCHANGED.
auto.
auto.
auto.
auto.
auto.
auto.
for effects *)
exploit H0;
eauto.
intros [
dst' [
sl1' [
sl2' [
a' [
tmp' [
P [
Q [
R S]]]]]]]].
TR.
rewrite Q.
rewrite app_ass.
eauto.
red;
auto.
intros.
rewrite <-
app_ass.
eapply tr_condition_effects.
apply S;
auto.
eapply tr_expr_invariant;
eauto.
UNCHANGED.
eapply tr_expr_invariant;
eauto.
UNCHANGED.
auto.
auto.
auto.
auto.
auto.
for set *)
exploit H0;
eauto.
intros [
dst' [
sl1' [
sl2' [
a' [
tmp' [
P [
Q [
R S]]]]]]]].
TR.
rewrite Q.
rewrite app_ass.
eauto.
red;
auto.
intros.
rewrite <-
app_ass.
eapply tr_condition_set.
apply S;
auto.
eapply tr_expr_invariant;
eauto.
UNCHANGED.
eapply tr_expr_invariant;
eauto.
UNCHANGED.
auto.
auto.
auto.
auto.
auto.
auto.
assign left *)
inv H1.
for effects *)
exploit H0;
eauto.
intros [
dst' [
sl1' [
sl2' [
a' [
tmp' [
P [
Q [
R S]]]]]]]].
TR.
subst sl1.
rewrite app_ass.
eauto.
red;
auto.
intros.
rewrite <-
app_ass.
econstructor.
apply S;
auto.
eapply tr_expr_invariant;
eauto.
UNCHANGED.
auto.
auto.
auto.
for val *)
exploit H0;
eauto.
intros [
dst' [
sl1' [
sl2' [
a' [
tmp' [
P [
Q [
R S]]]]]]]].
TR.
subst sl1.
rewrite app_ass.
eauto.
red;
auto.
intros.
rewrite <-
app_ass.
econstructor.
apply S;
auto.
eapply tr_expr_invariant;
eauto.
UNCHANGED.
auto.
auto.
auto.
auto.
auto.
auto.
eapply typeof_context;
eauto.
auto.
assign right *)
inv H2.
for effects *)
assert (
sl1 =
nil)
by (
eapply tr_simple_expr_nil;
eauto).
subst sl1;
simpl.
exploit H1;
eauto.
intros [
dst' [
sl1' [
sl2' [
a' [
tmp' [
P [
Q [
R S]]]]]]]].
TR.
subst sl2.
rewrite app_ass.
eauto.
red;
auto.
intros.
rewrite <-
app_ass.
change (
sl3 ++
sl2')
with (
nil ++ (
sl3 ++
sl2')).
rewrite app_ass.
econstructor.
eapply tr_expr_invariant;
eauto.
UNCHANGED.
apply S;
auto.
auto.
auto.
auto.
for val *)
assert (
sl1 =
nil)
by (
eapply tr_simple_expr_nil;
eauto).
subst sl1;
simpl.
exploit H1;
eauto.
intros [
dst' [
sl1' [
sl2' [
a' [
tmp' [
P [
Q [
R S]]]]]]]].
TR.
subst sl2.
rewrite app_ass.
eauto.
red;
auto.
intros.
rewrite <-
app_ass.
change (
sl3 ++
sl2')
with (
nil ++ (
sl3 ++
sl2')).
rewrite app_ass.
econstructor.
eapply tr_expr_invariant;
eauto.
UNCHANGED.
apply S;
auto.
auto.
auto.
auto.
auto.
auto.
auto.
auto.
eapply typeof_context;
eauto.
assignop left *)
inv H1.
for effects *)
exploit H0;
eauto.
intros [
dst' [
sl1' [
sl2' [
a' [
tmp' [
P [
Q [
R S]]]]]]]].
TR.
subst sl1.
rewrite app_ass.
eauto.
red;
auto.
intros.
rewrite <-
app_ass.
econstructor.
apply S;
auto.
eapply tr_expr_invariant;
eauto.
UNCHANGED.
symmetry;
eapply typeof_context;
eauto.
eauto.
auto.
auto.
auto.
auto.
auto.
auto.
for val *)
exploit H0;
eauto.
intros [
dst' [
sl1' [
sl2' [
a' [
tmp' [
P [
Q [
R S]]]]]]]].
TR.
subst sl1.
rewrite app_ass.
eauto.
red;
auto.
intros.
rewrite <-
app_ass.
econstructor.
apply S;
auto.
eapply tr_expr_invariant;
eauto.
UNCHANGED.
eauto.
auto.
auto.
auto.
auto.
auto.
auto.
auto.
auto.
auto.
auto.
eapply typeof_context;
eauto.
assignop right *)
inv H2.
for effects *)
assert (
sl1 =
nil)
by (
eapply tr_simple_expr_nil;
eauto).
subst sl1;
simpl.
exploit H1;
eauto.
intros [
dst' [
sl1' [
sl2' [
a' [
tmp' [
P [
Q [
R S]]]]]]]].
TR.
subst sl2.
rewrite app_ass.
eauto.
red;
auto.
intros.
rewrite <-
app_ass.
change (
sl0 ++
sl2')
with (
nil ++
sl0 ++
sl2').
rewrite app_ass.
econstructor.
eapply tr_expr_invariant;
eauto.
UNCHANGED.
apply S;
auto.
auto.
eauto.
auto.
auto.
auto.
auto.
auto.
auto.
for val *)
assert (
sl1 =
nil)
by (
eapply tr_simple_expr_nil;
eauto).
subst sl1;
simpl.
exploit H1;
eauto.
intros [
dst' [
sl1' [
sl2' [
a' [
tmp' [
P [
Q [
R S]]]]]]]].
TR.
subst sl2.
rewrite app_ass.
eauto.
red;
auto.
intros.
rewrite <-
app_ass.
change (
sl0 ++
sl2')
with (
nil ++
sl0 ++
sl2').
rewrite app_ass.
econstructor.
eapply tr_expr_invariant;
eauto.
UNCHANGED.
apply S;
auto.
eauto.
auto.
auto.
auto.
auto.
auto.
auto.
auto.
auto.
auto.
auto.
auto.
postincr *)
inv H1.
for effects *)
exploit H0;
eauto.
intros [
dst' [
sl1' [
sl2' [
a' [
tmp' [
P [
Q [
R S]]]]]]]].
TR.
rewrite Q;
rewrite app_ass;
eauto.
red;
auto.
intros.
rewrite <-
app_ass.
econstructor;
eauto.
symmetry;
eapply typeof_context;
eauto.
for val *)
exploit H0;
eauto.
intros [
dst' [
sl1' [
sl2' [
a' [
tmp' [
P [
Q [
R S]]]]]]]].
TR.
rewrite Q;
rewrite app_ass;
eauto.
red;
auto.
intros.
rewrite <-
app_ass.
econstructor;
eauto.
eapply typeof_context;
eauto.
call left *)
inv H1.
for effects *)
exploit H0;
eauto.
intros [
dst' [
sl1' [
sl2' [
a' [
tmp' [
P [
Q [
R S]]]]]]]].
TR.
rewrite Q;
rewrite app_ass;
eauto.
red;
auto.
intros.
rewrite <-
app_ass.
econstructor.
apply S;
auto.
eapply tr_exprlist_invariant;
eauto.
UNCHANGED.
auto.
auto.
auto.
for val *)
exploit H0;
eauto.
intros [
dst' [
sl1' [
sl2' [
a' [
tmp' [
P [
Q [
R S]]]]]]]].
TR.
rewrite Q;
rewrite app_ass;
eauto.
red;
auto.
intros.
rewrite <-
app_ass.
econstructor.
auto.
apply S;
auto.
eapply tr_exprlist_invariant;
eauto.
UNCHANGED.
auto.
auto.
auto.
auto.
call right *)
inv H2.
for effects *)
assert (
sl1 =
nil)
by (
eapply tr_simple_expr_nil;
eauto).
subst sl1;
simpl.
exploit H1;
eauto.
intros [
dst' [
sl1' [
sl2' [
a' [
tmp' [
P [
Q [
R S]]]]]]]].
TR.
rewrite Q;
rewrite app_ass;
eauto.
destruct dst'; constructor||contradiction.*)
red;
auto.
intros.
rewrite <-
app_ass.
change (
sl3++
sl2')
with (
nil ++
sl3 ++
sl2').
rewrite app_ass.
econstructor.
eapply tr_expr_invariant;
eauto.
UNCHANGED.
apply S;
auto.
auto.
auto.
auto.
for val *)
assert (
sl1 =
nil)
by (
eapply tr_simple_expr_nil;
eauto).
subst sl1;
simpl.
exploit H1;
eauto.
intros [
dst' [
sl1' [
sl2' [
a' [
tmp' [
P [
Q [
R S]]]]]]]].
TR.
rewrite Q;
rewrite app_ass;
eauto.
destruct dst'; constructor||contradiction.*)
red;
auto.
intros.
rewrite <-
app_ass.
change (
sl3++
sl2')
with (
nil ++
sl3 ++
sl2').
rewrite app_ass.
econstructor.
auto.
eapply tr_expr_invariant;
eauto.
UNCHANGED.
apply S;
auto.
auto.
auto.
auto.
auto.
builtin *)
inv H1.
for effects *)
exploit H0;
eauto.
intros [
dst' [
sl1' [
sl2' [
a' [
tmp' [
P [
Q [
R S]]]]]]]].
TR.
rewrite Q;
rewrite app_ass;
eauto.
red;
auto.
intros.
rewrite <-
app_ass.
change (
sl3++
sl2')
with (
nil ++
sl3 ++
sl2').
rewrite app_ass.
econstructor.
apply S;
auto.
auto.
for val *)
exploit H0;
eauto.
intros [
dst' [
sl1' [
sl2' [
a' [
tmp' [
P [
Q [
R S]]]]]]]].
TR.
rewrite Q;
rewrite app_ass;
eauto.
red;
auto.
intros.
rewrite <-
app_ass.
change (
sl3++
sl2')
with (
nil ++
sl3 ++
sl2').
rewrite app_ass.
econstructor.
auto.
apply S;
auto.
auto.
auto.
comma *)
inv H1.
exploit H0;
eauto.
intros [
dst' [
sl1' [
sl2' [
a' [
tmp' [
P [
Q [
R S]]]]]]]].
TR.
rewrite Q;
rewrite app_ass;
eauto.
red;
auto.
intros.
rewrite <-
app_ass.
econstructor.
apply S;
auto.
eapply tr_expr_invariant;
eauto.
UNCHANGED.
auto.
auto.
auto.
paren *)
inv H1.
for val *)
exploit H0;
eauto.
intros [
dst' [
sl1' [
sl2' [
a' [
tmp' [
P [
Q [
R S]]]]]]]].
TR.
rewrite Q.
eauto.
red;
auto.
intros.
econstructor;
eauto.
for effects *)
exploit H0;
eauto.
intros [
dst' [
sl1' [
sl2' [
a' [
tmp' [
P [
Q [
R S]]]]]]]].
TR.
rewrite Q.
eauto.
auto.
intros.
econstructor;
eauto.
for set *)
exploit H0;
eauto.
intros [
dst' [
sl1' [
sl2' [
a' [
tmp' [
P [
Q [
R S]]]]]]]].
TR.
rewrite Q.
eauto.
auto.
intros.
econstructor;
eauto.
cons left *)
inv H1.
exploit H0;
eauto.
intros [
dst' [
sl1' [
sl2' [
a' [
tmp' [
P [
Q [
R S]]]]]]]].
TR.
subst sl1.
rewrite app_ass.
eauto.
red;
auto.
intros.
rewrite <-
app_ass.
econstructor.
apply S;
auto.
eapply tr_exprlist_invariant;
eauto.
UNCHANGED.
auto.
auto.
auto.
cons right *)
inv H2.
assert (
sl1 =
nil)
by (
eapply tr_simple_expr_nil;
eauto).
subst sl1;
simpl.
exploit H1;
eauto.
intros [
dst' [
sl1' [
sl2' [
a' [
tmp' [
P [
Q [
R S]]]]]]]].
TR.
subst sl2.
eauto.
red;
auto.
intros.
change sl3 with (
nil ++
sl3).
rewrite app_ass.
econstructor.
eapply tr_expr_invariant;
eauto.
UNCHANGED.
apply S;
auto.
auto.
auto.
auto.
Qed.
Theorem tr_expr_leftcontext:
forall C le r dst sl a tmps,
leftcontext RV RV C ->
tr_expr le dst (
C r)
sl a tmps ->
exists dst',
exists sl1,
exists sl2,
exists a',
exists tmp',
tr_expr le dst'
r sl1 a'
tmp'
/\
sl =
sl1 ++
sl2
/\
incl tmp'
tmps
/\ (
forall le'
r'
sl3,
tr_expr le'
dst'
r'
sl3 a'
tmp' ->
(
forall id, ~
In id tmp' ->
le'!
id =
le!
id) ->
Csyntax.typeof r' =
Csyntax.typeof r ->
tr_expr le'
dst (
C r') (
sl3 ++
sl2)
a tmps).
Proof.
Theorem tr_top_leftcontext:
forall e le m dst rtop sl a tmps,
tr_top tge e le m dst rtop sl a tmps ->
forall r C,
rtop =
C r ->
leftcontext RV RV C ->
exists dst',
exists sl1,
exists sl2,
exists a',
exists tmp',
tr_top tge e le m dst'
r sl1 a'
tmp'
/\
sl =
sl1 ++
sl2
/\
incl tmp'
tmps
/\ (
forall le'
m'
r'
sl3,
tr_expr le'
dst'
r'
sl3 a'
tmp' ->
(
forall id, ~
In id tmp' ->
le'!
id =
le!
id) ->
Csyntax.typeof r' =
Csyntax.typeof r ->
tr_top tge e le'
m'
dst (
C r') (
sl3 ++
sl2)
a tmps).
Proof.
induction 1;
intros.
val for val *)
inv H2;
inv H1.
exists For_val;
econstructor;
econstructor;
econstructor;
econstructor.
split.
apply tr_top_val_val;
eauto.
split.
instantiate (1 :=
nil);
auto.
split.
apply incl_refl.
intros.
rewrite <-
app_nil_end.
constructor;
auto.
base *)
subst r.
exploit tr_expr_leftcontext;
eauto.
intros [
dst' [
sl1 [
sl2 [
a' [
tmp' [
P [
Q [
R S]]]]]]]].
exists dst';
exists sl1;
exists sl2;
exists a';
exists tmp'.
split.
apply tr_top_base;
auto.
split.
auto.
split.
auto.
intros.
apply tr_top_base.
apply S;
auto.
Qed.
Semantics of smart constructors
Remark sem_cast_deterministic:
forall {
T1 valid_pointer1} {
sem_cast_prf1:
SemCast (
T :=
T1)
valid_pointer1},
forall {
T2 valid_pointer2} {
sem_cast_prf2:
SemCast (
T :=
T2)
valid_pointer2},
forall v ty ty' (
m1:
T1)
v1 (
m2:
T2)
v2,
sem_cast v ty ty'
m1 =
Some v1 ->
sem_cast v ty ty'
m2 =
Some v2 ->
v1 =
v2.
Proof.
Lemma eval_simpl_expr_sound:
forall e le m a v,
eval_expr tge e le m a v ->
match eval_simpl_expr a with Some v' =>
v' =
v |
None =>
True end.
Proof.
Lemma static_bool_val_sound:
forall v t m b,
bool_val v t tt =
Some b ->
bool_val v t m =
Some b.
Proof.
Lemma step_makeif:
forall f a s1 s2 k e le m v1 b,
eval_expr tge e le m a v1 ->
bool_val v1 (
typeof a)
m =
Some b ->
star (
step1 fn_stack_requirements)
tge (
State f (
makeif a s1 s2)
k e le m)
E0 (
State f (
if b then s1 else s2)
k e le m).
Proof.
Lemma step_make_set:
forall id a ty m b ofs t v e le f k,
Csem.deref_loc ge ty m b ofs t v ->
eval_lvalue tge e le m a b ofs ->
typeof a =
ty ->
(
step1 fn_stack_requirements)
tge (
State f (
make_set id a)
k e le m)
t (
State f Sskip k e (
PTree.set id v le)
m).
Proof.
Lemma step_make_assign:
forall a1 a2 ty m b ofs t v m'
v2 e le f k,
forall (
STACK_TOP_NO_INFO:
forall b,
is_stack_top (
Mem.stack m)
b ->
forall fi,
get_frame_info (
Mem.stack m)
b =
Some fi ->
forall o,
frame_perm fi o =
Public),
Csem.assign_loc ge ty m b ofs v t m' ->
eval_lvalue tge e le m a1 b ofs ->
eval_expr tge e le m a2 v2 ->
sem_cast v2 (
typeof a2)
ty m =
Some v ->
typeof a1 =
ty ->
(
step1 fn_stack_requirements)
tge (
State f (
make_assign a1 a2)
k e le m)
t (
State f Sskip k e le m').
Proof.
Fixpoint Kseqlist (
sl:
list statement) (
k:
cont) :=
match sl with
|
nil =>
k
|
s ::
l =>
Kseq s (
Kseqlist l k)
end.
Remark Kseqlist_app:
forall sl1 sl2 k,
Kseqlist (
sl1 ++
sl2)
k =
Kseqlist sl1 (
Kseqlist sl2 k).
Proof.
induction sl1; simpl; congruence.
Qed.
Lemma push_seq:
forall f sl k e le m,
star (
step1 fn_stack_requirements)
tge (
State f (
makeseq sl)
k e le m)
E0 (
State f Sskip (
Kseqlist sl k)
e le m).
Proof.
intros.
unfold makeseq.
generalize Sskip.
revert sl k.
induction sl;
simpl;
intros.
apply star_refl.
eapply star_right.
apply IHsl.
constructor.
traceEq.
Qed.
Lemma step_tr_rvalof:
forall ty m b ofs t v e le a sl a'
tmp f k,
Csem.deref_loc ge ty m b ofs t v ->
eval_lvalue tge e le m a b ofs ->
tr_rvalof ty a sl a'
tmp ->
typeof a =
ty ->
exists le',
star (
step1 fn_stack_requirements)
tge (
State f Sskip (
Kseqlist sl k)
e le m)
t (
State f Sskip k e le'
m)
/\
eval_expr tge e le'
m a'
v
/\
typeof a' =
typeof a
/\
forall x, ~
In x tmp ->
le'!
x =
le!
x.
Proof.
Matching between continuations
Inductive match_cont :
Csem.cont ->
cont ->
Prop :=
|
match_Kstop:
match_cont Csem.Kstop Kstop
|
match_Kseq:
forall s k ts tk,
tr_stmt s ts ->
match_cont k tk ->
match_cont (
Csem.Kseq s k) (
Kseq ts tk)
|
match_Kwhile2:
forall r s k s'
ts tk,
tr_if r Sskip Sbreak s' ->
tr_stmt s ts ->
match_cont k tk ->
match_cont (
Csem.Kwhile2 r s k)
(
Kloop1 (
Ssequence s'
ts)
Sskip tk)
|
match_Kdowhile1:
forall r s k s'
ts tk,
tr_if r Sskip Sbreak s' ->
tr_stmt s ts ->
match_cont k tk ->
match_cont (
Csem.Kdowhile1 r s k)
(
Kloop1 ts s'
tk)
|
match_Kfor3:
forall r s3 s k ts3 s'
ts tk,
tr_if r Sskip Sbreak s' ->
tr_stmt s3 ts3 ->
tr_stmt s ts ->
match_cont k tk ->
match_cont (
Csem.Kfor3 r s3 s k)
(
Kloop1 (
Ssequence s'
ts)
ts3 tk)
|
match_Kfor4:
forall r s3 s k ts3 s'
ts tk,
tr_if r Sskip Sbreak s' ->
tr_stmt s3 ts3 ->
tr_stmt s ts ->
match_cont k tk ->
match_cont (
Csem.Kfor4 r s3 s k)
(
Kloop2 (
Ssequence s'
ts)
ts3 tk)
|
match_Kswitch2:
forall k tk,
match_cont k tk ->
match_cont (
Csem.Kswitch2 k) (
Kswitch tk)
|
match_Kcall:
forall f e C ty k optid tf le sl tk a dest tmps,
tr_function f tf ->
leftcontext RV RV C ->
(
forall v m,
tr_top tge e (
set_opttemp optid v le)
m dest (
C (
Csyntax.Eval v ty))
sl a tmps) ->
match_cont_exp dest a k tk ->
match_cont (
Csem.Kcall f e C ty k)
(
Kcall optid tf e le (
Kseqlist sl tk))
with match_cont_exp :
destination ->
expr ->
Csem.cont ->
cont ->
Prop :=
|
match_Kdo:
forall k a tk,
match_cont k tk ->
match_cont_exp For_effects a (
Csem.Kdo k)
tk
|
match_Kifthenelse_1:
forall a s1 s2 k ts1 ts2 tk,
tr_stmt s1 ts1 ->
tr_stmt s2 ts2 ->
match_cont k tk ->
match_cont_exp For_val a (
Csem.Kifthenelse s1 s2 k) (
Kseq (
Sifthenelse a ts1 ts2)
tk)
|
match_Kwhile1:
forall r s k s'
a ts tk,
tr_if r Sskip Sbreak s' ->
tr_stmt s ts ->
match_cont k tk ->
match_cont_exp For_val a
(
Csem.Kwhile1 r s k)
(
Kseq (
makeif a Sskip Sbreak)
(
Kseq ts (
Kloop1 (
Ssequence s'
ts)
Sskip tk)))
|
match_Kdowhile2:
forall r s k s'
a ts tk,
tr_if r Sskip Sbreak s' ->
tr_stmt s ts ->
match_cont k tk ->
match_cont_exp For_val a
(
Csem.Kdowhile2 r s k)
(
Kseq (
makeif a Sskip Sbreak) (
Kloop2 ts s'
tk))
|
match_Kfor2:
forall r s3 s k s'
a ts3 ts tk,
tr_if r Sskip Sbreak s' ->
tr_stmt s3 ts3 ->
tr_stmt s ts ->
match_cont k tk ->
match_cont_exp For_val a
(
Csem.Kfor2 r s3 s k)
(
Kseq (
makeif a Sskip Sbreak)
(
Kseq ts (
Kloop1 (
Ssequence s'
ts)
ts3 tk)))
|
match_Kswitch1:
forall ls k a tls tk,
tr_lblstmts ls tls ->
match_cont k tk ->
match_cont_exp For_val a (
Csem.Kswitch1 ls k) (
Kseq (
Sswitch a tls)
tk)
|
match_Kreturn:
forall k a tk,
match_cont k tk ->
match_cont_exp For_val a (
Csem.Kreturn k) (
Kseq (
Sreturn (
Some a))
tk).
Lemma match_cont_call:
forall k tk,
match_cont k tk ->
match_cont (
Csem.call_cont k) (
call_cont tk).
Proof.
induction 1; simpl; auto. constructor. econstructor; eauto.
Qed.
Matching between states
Fixpoint nostackinfo (
adt:
stack) (
k:
cont) :
Prop :=
match k with
Kstop =>
True
|
Kseq _ k
|
Kloop1 _ _ k |
Kloop2 _ _ k
|
Kswitch k =>
nostackinfo adt k
|
Kcall oi f e te k =>
match adt with
| (
f,
_)::
r =>
nostackinfo r k /\
forall a,
f =
Some a ->
Forall (
fun bfi =>
forall o,
frame_perm (
snd bfi)
o =
Public) (
frame_adt_blocks a)
|
_ =>
False
end
end.
Inductive match_states:
Csem.state ->
state ->
Prop :=
|
match_exprstates:
forall f r k e m tf sl tk le dest a tmps,
tr_function f tf ->
tr_top tge e le m dest r sl a tmps ->
match_cont_exp dest a k tk ->
nostackinfo (
Mem.stack m) (
Kcall None tf e le tk) ->
match_states (
Csem.ExprState f r k e m)
(
State tf Sskip (
Kseqlist sl tk)
e le m)
|
match_regularstates:
forall f s k e m tf ts tk le,
tr_function f tf ->
tr_stmt s ts ->
match_cont k tk ->
nostackinfo (
Mem.stack m) (
Kcall None tf e le tk) ->
match_states (
Csem.State f s k e m)
(
State tf ts tk e le m)
|
match_callstates:
forall fd args k m tfd tk sz (
SZpos: 0 <=
sz),
tr_fundef fd tfd ->
match_cont k tk ->
top_tframe_tc (
Mem.stack m) ->
nostackinfo (
tl (
Mem.stack m))
tk ->
match_states (
Csem.Callstate fd args k m sz)
(
Callstate tfd args tk m sz)
|
match_returnstates:
forall res k m tk,
match_cont k tk ->
nostackinfo (
tl (
Mem.stack m))
tk ->
match_states (
Csem.Returnstate res k m)
(
Returnstate res tk m)
|
match_stuckstate:
forall S,
match_states Csem.Stuckstate S.
Additional results on translation of statements
Lemma tr_select_switch:
forall n ls tls,
tr_lblstmts ls tls ->
tr_lblstmts (
Csem.select_switch n ls) (
select_switch n tls).
Proof.
Lemma tr_seq_of_labeled_statement:
forall ls tls,
tr_lblstmts ls tls ->
tr_stmt (
Csem.seq_of_labeled_statement ls) (
seq_of_labeled_statement tls).
Proof.
induction 1; simpl; constructor; auto.
Qed.
Commutation between translation and the "find label" operation.
Section FIND_LABEL.
Variable lbl:
label.
Definition nolabel (
s:
statement) :
Prop :=
forall k,
find_label lbl s k =
None.
Fixpoint nolabel_list (
sl:
list statement) :
Prop :=
match sl with
|
nil =>
True
|
s1 ::
sl' =>
nolabel s1 /\
nolabel_list sl'
end.
Lemma nolabel_list_app:
forall sl2 sl1,
nolabel_list sl1 ->
nolabel_list sl2 ->
nolabel_list (
sl1 ++
sl2).
Proof.
induction sl1; simpl; intros. auto. tauto.
Qed.
Lemma makeseq_nolabel:
forall sl,
nolabel_list sl ->
nolabel (
makeseq sl).
Proof.
Lemma makeif_nolabel:
forall a s1 s2,
nolabel s1 ->
nolabel s2 ->
nolabel (
makeif a s1 s2).
Proof.
intros.
functional induction (
makeif a s1 s2);
auto.
red;
simpl;
intros.
rewrite H;
auto.
red;
simpl;
intros.
rewrite H;
auto.
Qed.
Lemma make_set_nolabel:
forall t a,
nolabel (
make_set t a).
Proof.
Lemma make_assign_nolabel:
forall l r,
nolabel (
make_assign l r).
Proof.
Lemma tr_rvalof_nolabel:
forall ty a sl a'
tmp,
tr_rvalof ty a sl a'
tmp ->
nolabel_list sl.
Proof.
Lemma nolabel_do_set:
forall sd a,
nolabel_list (
do_set sd a).
Proof.
induction sd; intros; simpl; split; auto; red; auto.
Qed.
Lemma nolabel_final:
forall dst a,
nolabel_list (
final dst a).
Proof.
Ltac NoLabelTac :=
match goal with
| [ |-
nolabel_list nil ] =>
exact I
| [ |-
nolabel_list (
final _ _) ] =>
apply nolabel_final
| [ |-
nolabel_list (
_ ::
_) ] =>
simpl;
split;
NoLabelTac
| [ |-
nolabel_list (
_ ++
_) ] =>
apply nolabel_list_app;
NoLabelTac
| [
H:
_ ->
nolabel_list ?
x |-
nolabel_list ?
x ] =>
apply H;
NoLabelTac
| [ |-
nolabel (
makeseq _) ] =>
apply makeseq_nolabel;
NoLabelTac
| [ |-
nolabel (
makeif _ _ _) ] =>
apply makeif_nolabel;
NoLabelTac
| [ |-
nolabel (
make_set _ _) ] =>
apply make_set_nolabel
| [ |-
nolabel (
make_assign _ _) ] =>
apply make_assign_nolabel
| [ |-
nolabel _ ] =>
red;
intros;
simpl;
auto
| [ |-
_ /\
_ ] =>
split;
NoLabelTac
|
_ =>
auto
end.
Lemma tr_find_label_expr:
(
forall le dst r sl a tmps,
tr_expr le dst r sl a tmps ->
nolabel_list sl)
/\(
forall le rl sl al tmps,
tr_exprlist le rl sl al tmps ->
nolabel_list sl).
Proof.
Lemma tr_find_label_top:
forall e le m dst r sl a tmps,
tr_top tge e le m dst r sl a tmps ->
nolabel_list sl.
Proof.
Lemma tr_find_label_expression:
forall r s a,
tr_expression r s a ->
forall k,
find_label lbl s k =
None.
Proof.
Lemma tr_find_label_expr_stmt:
forall r s,
tr_expr_stmt r s ->
forall k,
find_label lbl s k =
None.
Proof.
Lemma tr_find_label_if:
forall r s,
tr_if r Sskip Sbreak s ->
forall k,
find_label lbl s k =
None.
Proof.
Lemma tr_find_label:
forall s k ts tk
(
TR:
tr_stmt s ts)
(
MC:
match_cont k tk),
match Csem.find_label lbl s k with
|
None =>
find_label lbl ts tk =
None
|
Some (
s',
k') =>
exists ts',
exists tk',
find_label lbl ts tk =
Some (
ts',
tk')
/\
tr_stmt s'
ts'
/\
match_cont k'
tk'
end
with tr_find_label_ls:
forall s k ts tk
(
TR:
tr_lblstmts s ts)
(
MC:
match_cont k tk),
match Csem.find_label_ls lbl s k with
|
None =>
find_label_ls lbl ts tk =
None
|
Some (
s',
k') =>
exists ts',
exists tk',
find_label_ls lbl ts tk =
Some (
ts',
tk')
/\
tr_stmt s'
ts'
/\
match_cont k'
tk'
end.
Proof.
induction s;
intros;
inversion TR;
subst;
clear TR;
simpl.
auto.
eapply tr_find_label_expr_stmt;
eauto.
seq *)
exploit (
IHs1 (
Csem.Kseq s2 k));
eauto.
constructor;
eauto.
destruct (
Csem.find_label lbl s1 (
Csem.Kseq s2 k))
as [[
s'
k'] | ].
intros [
ts' [
tk' [
A [
B C]]]].
rewrite A.
exists ts';
exists tk';
auto.
intro EQ.
rewrite EQ.
eapply IHs2;
eauto.
if *)
rename s'
into sr.
rewrite (
tr_find_label_expression _ _ _ H2).
exploit (
IHs1 k);
eauto.
destruct (
Csem.find_label lbl s1 k)
as [[
s'
k'] | ].
intros [
ts' [
tk' [
A [
B C]]]].
rewrite A.
exists ts';
exists tk';
intuition.
intro EQ.
rewrite EQ.
eapply IHs2;
eauto.
while *)
rename s'
into sr.
rewrite (
tr_find_label_if _ _ H1);
auto.
exploit (
IHs (
Kwhile2 e s k));
eauto.
econstructor;
eauto.
destruct (
Csem.find_label lbl s (
Kwhile2 e s k))
as [[
s'
k'] | ].
intros [
ts' [
tk' [
A [
B C]]]].
rewrite A.
exists ts';
exists tk';
intuition.
intro EQ.
rewrite EQ.
auto.
dowhile *)
rename s'
into sr.
rewrite (
tr_find_label_if _ _ H1);
auto.
exploit (
IHs (
Kdowhile1 e s k));
eauto.
econstructor;
eauto.
destruct (
Csem.find_label lbl s (
Kdowhile1 e s k))
as [[
s'
k'] | ].
intros [
ts' [
tk' [
A [
B C]]]].
rewrite A.
exists ts';
exists tk';
intuition.
intro EQ.
rewrite EQ.
auto.
for skip *)
rename s'
into sr.
rewrite (
tr_find_label_if _ _ H4);
auto.
exploit (
IHs3 (
Csem.Kfor3 e s2 s3 k));
eauto.
econstructor;
eauto.
destruct (
Csem.find_label lbl s3 (
Csem.Kfor3 e s2 s3 k))
as [[
s'
k'] | ].
intros [
ts' [
tk' [
A [
B C]]]].
rewrite A.
exists ts';
exists tk';
intuition.
intro EQ.
rewrite EQ.
exploit (
IHs2 (
Csem.Kfor4 e s2 s3 k));
eauto.
econstructor;
eauto.
for not skip *)
rename s'
into sr.
rewrite (
tr_find_label_if _ _ H3);
auto.
exploit (
IHs1 (
Csem.Kseq (
Csyntax.Sfor Csyntax.Sskip e s2 s3)
k));
eauto.
econstructor;
eauto.
econstructor;
eauto.
destruct (
Csem.find_label lbl s1
(
Csem.Kseq (
Csyntax.Sfor Csyntax.Sskip e s2 s3)
k))
as [[
s'
k'] | ].
intros [
ts' [
tk' [
A [
B C]]]].
rewrite A.
exists ts';
exists tk';
intuition.
intro EQ;
rewrite EQ.
exploit (
IHs3 (
Csem.Kfor3 e s2 s3 k));
eauto.
econstructor;
eauto.
destruct (
Csem.find_label lbl s3 (
Csem.Kfor3 e s2 s3 k))
as [[
s''
k''] | ].
intros [
ts' [
tk' [
A [
B C]]]].
rewrite A.
exists ts';
exists tk';
intuition.
intro EQ'.
rewrite EQ'.
exploit (
IHs2 (
Csem.Kfor4 e s2 s3 k));
eauto.
econstructor;
eauto.
break, continue, return 0 *)
auto.
auto.
auto.
return 1 *)
rewrite (
tr_find_label_expression _ _ _ H0).
auto.
switch *)
rewrite (
tr_find_label_expression _ _ _ H1).
apply tr_find_label_ls.
auto.
constructor;
auto.
labeled stmt *)
destruct (
ident_eq lbl l).
exists ts0;
exists tk;
auto.
apply IHs;
auto.
goto *)
auto.
induction s;
intros;
inversion TR;
subst;
clear TR;
simpl.
nil *)
auto.
case *)
exploit (
tr_find_label s (
Csem.Kseq (
Csem.seq_of_labeled_statement s0)
k));
eauto.
econstructor;
eauto.
apply tr_seq_of_labeled_statement;
eauto.
destruct (
Csem.find_label lbl s
(
Csem.Kseq (
Csem.seq_of_labeled_statement s0)
k))
as [[
s'
k'] | ].
intros [
ts' [
tk' [
A [
B C]]]].
rewrite A.
exists ts';
exists tk';
auto.
intro EQ.
rewrite EQ.
eapply IHs;
eauto.
Qed.
End FIND_LABEL.
Anti-stuttering measure
There are some stuttering steps in the translation:
-
The execution of Sdo a where a is side-effect free,
which is three transitions in the source:
Sdo a, k ---> a, Kdo k ---> rval v, Kdo k ---> Sskip, k
but the translation, which is Sskip, makes no transitions.
-
The reduction Ecomma (Eval v) r2 --> r2.
-
The reduction Eparen (Eval v) --> Eval v in a For_effects context.
The following measure decreases for these stuttering steps.
Fixpoint esize (
a:
Csyntax.expr) :
nat :=
match a with
|
Csyntax.Eloc _ _ _ => 1%
nat
|
Csyntax.Evar _ _ => 1%
nat
|
Csyntax.Ederef r1 _ =>
S(
esize r1)
|
Csyntax.Efield l1 _ _ =>
S(
esize l1)
|
Csyntax.Eval _ _ =>
O
|
Csyntax.Evalof l1 _ =>
S(
esize l1)
|
Csyntax.Eaddrof l1 _ =>
S(
esize l1)
|
Csyntax.Eunop _ r1 _ =>
S(
esize r1)
|
Csyntax.Ebinop _ r1 r2 _ =>
S(
esize r1 +
esize r2)%
nat
|
Csyntax.Ecast r1 _ =>
S(
esize r1)
|
Csyntax.Eseqand r1 _ _ =>
S(
esize r1)
|
Csyntax.Eseqor r1 _ _ =>
S(
esize r1)
|
Csyntax.Econdition r1 _ _ _ =>
S(
esize r1)
|
Csyntax.Esizeof _ _ => 1%
nat
|
Csyntax.Ealignof _ _ => 1%
nat
|
Csyntax.Eassign l1 r2 _ =>
S(
esize l1 +
esize r2)%
nat
|
Csyntax.Eassignop _ l1 r2 _ _ =>
S(
esize l1 +
esize r2)%
nat
|
Csyntax.Epostincr _ l1 _ =>
S(
esize l1)
|
Csyntax.Ecomma r1 r2 _ =>
S(
esize r1 +
esize r2)%
nat
|
Csyntax.Ecall r1 rl2 _ =>
S(
esize r1 +
esizelist rl2)%
nat
|
Csyntax.Ebuiltin ef _ rl _ =>
S(
esizelist rl)%
nat
|
Csyntax.Eparen r1 _ _ =>
S(
esize r1)
end
with esizelist (
el:
Csyntax.exprlist) :
nat :=
match el with
|
Csyntax.Enil =>
O
|
Csyntax.Econs r1 rl2 => (
esize r1 +
esizelist rl2)%
nat
end.
Definition measure (
st:
Csem.state) :
nat :=
match st with
|
Csem.ExprState _ r _ _ _ => (
esize r + 1)%
nat
|
Csem.State _ Csyntax.Sskip _ _ _ => 0%
nat
|
Csem.State _ (
Csyntax.Sdo r)
_ _ _ => (
esize r + 2)%
nat
|
Csem.State _ (
Csyntax.Sifthenelse r _ _)
_ _ _ => (
esize r + 2)%
nat
|
_ => 0%
nat
end.
Lemma leftcontext_size:
forall from to C,
leftcontext from to C ->
forall e1 e2,
(
esize e1 <
esize e2)%
nat ->
(
esize (
C e1) <
esize (
C e2))%
nat
with leftcontextlist_size:
forall from C,
leftcontextlist from C ->
forall e1 e2,
(
esize e1 <
esize e2)%
nat ->
(
esizelist (
C e1) <
esizelist (
C e2))%
nat.
Proof.
induction 1; intros; simpl; auto with arith.
exploit leftcontextlist_size; eauto. auto with arith.
exploit leftcontextlist_size; eauto. auto with arith.
induction 1; intros; simpl; auto with arith. exploit leftcontext_size; eauto. auto with arith.
Qed.
Forward simulation for expressions.
Lemma tr_val_gen:
forall le dst v ty a tmp,
typeof a =
ty ->
(
forall `{
memory_model_ops:
Mem.MemoryModelOps},
forall tge e le'
m,
(
forall id,
In id tmp ->
le'!
id =
le!
id) ->
eval_expr tge e le'
m a v) ->
tr_expr le dst (
Csyntax.Eval v ty) (
final dst a)
a tmp.
Proof.
intros. destruct dst; simpl; econstructor; auto.
Qed.
Lemma nostackinfo_public:
forall m oi tf e le tk,
nostackinfo (
Mem.stack m) (
Kcall oi tf e le tk) ->
forall b,
is_stack_top (
Mem.stack m)
b ->
forall fi :
frame_info,
get_frame_info (
Mem.stack m)
b =
Some fi ->
forall o :
Z,
frame_perm fi o =
Public.
Proof.
intros m oi tf e le tk NSI b IST fi GFI o.
simpl in NSI.
destr_in NSI.
unfold is_stack_top,
get_frames_blocks in IST.
simpl in *.
intros.
destruct t;
simpl in *.
destruct NSI as [
_ F].
unfold get_frames_blocks in IST.
simpl in IST.
destruct o0;
try easy.
simpl in *.
specialize (
F _ eq_refl).
destr_in GFI.
edestruct get_assoc_tframes_in as (
ff &
INFl &
INblocks);
eauto.
rewrite Forall_forall in F.
simpl in INFl.
inv INFl.
specialize (
F _ INblocks).
eapply F;
eauto.
exfalso;
apply n.
apply IST.
Qed.
Lemma assign_loc_nostackinfo:
forall ge t m b o v t'
m',
Csem.assign_loc ge t m b o v t'
m' ->
forall tk oi tf e le oi'
tf'
e'
le',
nostackinfo (
Mem.stack m) (
Kcall oi tf e le tk) ->
nostackinfo (
Mem.stack m' ) (
Kcall oi'
tf'
e'
le'
tk).
Proof.
intros ge0 t m b o v t' m' AL tk oi tf e le oi' tf' e' le' NSI.
inv AL. rewrite_stack_blocks. simpl in *; auto.
inv H1. simpl in *; auto.
rewrite_stack_blocks; auto.
rewrite_stack_blocks; auto.
Qed.
Lemma nostackinfo_kseqlist:
forall s ts tk,
nostackinfo s tk ->
nostackinfo s (
Kseqlist ts tk).
Proof.
induction ts; simpl; intros; eauto.
Qed.
Lemma nostackinfo_kseqlist' :
forall s ts tk,
nostackinfo s (
Kseqlist ts tk) ->
nostackinfo s tk.
Proof.
induction ts; simpl; intros; eauto.
Qed.
Lemma estep_simulation:
forall S1 t S2,
Cstrategy.estep fn_stack_requirements ge S1 t S2 ->
forall S1' (
MS:
match_states S1 S1'),
exists S2',
(
plus (
step1 fn_stack_requirements)
tge S1'
t S2' \/
(
star (
step1 fn_stack_requirements)
tge S1'
t S2' /\
measure S2 <
measure S1)%
nat)
/\
match_states S2 S2'.
Proof.
Forward simulation for statements.
Lemma tr_top_val_for_val_inv:
forall e le m v ty sl a tmps,
tr_top tge e le m For_val (
Csyntax.Eval v ty)
sl a tmps ->
sl =
nil /\
typeof a =
ty /\
eval_expr tge e le m a v.
Proof.
intros. inv H. auto. inv H0. auto.
Qed.
Lemma alloc_variables_preserved:
forall e m params e'
m',
Csem.alloc_variables ge e m params e'
m' ->
alloc_variables tge e m params e'
m'.
Proof.
Lemma bind_parameters_preserved:
forall e m params args m',
Csem.bind_parameters ge e m params args m' ->
bind_parameters tge e m params args m'.
Proof.
Lemma blocks_of_env_preserved:
forall e,
blocks_of_env tge e =
Csem.blocks_of_env ge e.
Proof.
Lemma nostackinfo_callcont:
forall s k,
nostackinfo s k ->
nostackinfo s (
call_cont k).
Proof.
induction k; simpl; intros; auto.
Qed.
Lemma nostackinfo_find_label:
forall lbl ss s tk ts'
tk'
(
FL:
find_label lbl ss tk =
Some (
ts',
tk'))
(
NSI :
nostackinfo s tk),
nostackinfo s tk'
with nostackinfo_find_label_ls:
forall lbl ss s tk ts'
tk'
(
FL:
find_label_ls lbl ss tk =
Some (
ts',
tk'))
(
NSI :
nostackinfo s tk),
nostackinfo s tk'
.
Proof.
- destruct ss; simpl; intros; eauto; try congruence;
repeat destr_in FL; eauto.
- destruct ss; simpl; intros; eauto; try congruence;
repeat destr_in FL; eauto.
Qed.
Lemma assign_loc_stack:
forall ge t m b o v t'
m',
Csem.assign_loc ge t m b o v t'
m' ->
Mem.stack m' =
Mem.stack m.
Proof.
intros ge0 t m b o v t' m' AL.
inv AL; repeat rewrite_stack_blocks; auto.
inv H1; repeat rewrite_stack_blocks; auto.
Qed.
Lemma bind_parameters_stack:
forall ge e m1 pars vargs m2,
Csem.bind_parameters ge e m1 pars vargs m2 ->
Mem.stack m2 =
Mem.stack m1.
Proof.
induction 1;
simpl;
intros;
eauto.
eapply assign_loc_stack in H0;
eauto.
congruence.
Qed.
Lemma alloc_variables_stack:
forall ge e m1 vars e2 m2,
Csem.alloc_variables ge e m1 vars e2 m2 ->
Mem.stack m2 =
Mem.stack m1.
Proof.
induction 1; simpl; intros; eauto.
rewrite IHalloc_variables. rewrite_stack_blocks. auto.
Qed.
Lemma sstep_simulation:
forall S1 t S2,
Csem.sstep ge S1 t S2 ->
forall S1' (
MS:
match_states S1 S1'),
exists S2',
(
plus (
step1 fn_stack_requirements)
tge S1'
t S2' \/
(
star (
step1 fn_stack_requirements)
tge S1'
t S2' /\
measure S2 <
measure S1)%
nat)
/\
match_states S2 S2'.
Proof.
induction 1;
intros;
inv MS.
do 1 *)
inv H6.
inv H0.
econstructor;
split.
right;
split.
apply push_seq.
simpl.
omega.
econstructor;
eauto.
constructor.
auto.
do 2 *)
inv H7.
inv H6.
inv H.
econstructor;
split.
right;
split.
apply star_refl.
simpl.
omega.
econstructor;
eauto.
constructor.
seq *)
inv H6.
econstructor;
split.
left.
apply plus_one.
constructor.
econstructor;
eauto.
constructor;
auto.
skip seq *)
inv H6;
inv H7.
econstructor;
split.
left.
apply plus_one;
constructor.
econstructor;
eauto.
continue seq *)
inv H6;
inv H7.
econstructor;
split.
left.
apply plus_one;
constructor.
econstructor;
eauto.
constructor.
break seq *)
inv H6;
inv H7.
econstructor;
split.
left.
apply plus_one;
constructor.
econstructor;
eauto.
constructor.
ifthenelse *)
inv H6.
inv H2.
econstructor;
split.
left.
eapply plus_left.
constructor.
apply push_seq.
traceEq.
econstructor;
eauto.
econstructor;
eauto.
ifthenelse *)
inv H8.
exploit tr_top_val_for_val_inv;
eauto.
intros [
A [
B C]].
subst.
econstructor;
split.
left.
eapply plus_two.
constructor.
apply step_ifthenelse with (
v1 :=
v) (
b0 :=
b);
auto.
traceEq.
destruct b;
econstructor;
eauto.
while *)
inv H6.
inv H1.
econstructor;
split.
left.
eapply plus_left.
constructor.
eapply star_left.
constructor.
apply push_seq.
reflexivity.
traceEq.
rewrite Kseqlist_app.
econstructor;
eauto.
simpl.
econstructor;
eauto.
econstructor;
eauto.
while false *)
inv H8.
exploit tr_top_val_for_val_inv;
eauto.
intros [
A [
B C]].
subst.
econstructor;
split.
left.
simpl.
eapply plus_left.
constructor.
eapply star_trans.
apply step_makeif with (
v1 :=
v) (
b :=
false);
auto.
eapply star_two.
constructor.
apply step_break_loop1.
reflexivity.
reflexivity.
traceEq.
constructor;
auto.
constructor.
while true *)
inv H8.
exploit tr_top_val_for_val_inv;
eauto.
intros [
A [
B C]].
subst.
econstructor;
split.
left.
simpl.
eapply plus_left.
constructor.
eapply star_right.
apply step_makeif with (
v1 :=
v) (
b :=
true);
auto.
constructor.
reflexivity.
traceEq.
constructor;
auto.
constructor;
auto.
skip-or-continue while *)
assert (
ts =
Sskip \/
ts =
Scontinue).
destruct H;
subst s0;
inv H7;
auto.
inv H8.
econstructor;
split.
left.
eapply plus_two.
apply step_skip_or_continue_loop1;
auto.
apply step_skip_loop2.
traceEq.
constructor;
auto.
constructor;
auto.
break while *)
inv H6.
inv H7.
econstructor;
split.
left.
apply plus_one.
apply step_break_loop1.
constructor;
auto.
constructor.
dowhile *)
inv H6.
econstructor;
split.
left.
apply plus_one.
apply step_loop.
constructor;
auto.
constructor;
auto.
skip_or_continue dowhile *)
assert (
ts =
Sskip \/
ts =
Scontinue).
destruct H;
subst s0;
inv H7;
auto.
inv H8.
inv H4.
econstructor;
split.
left.
eapply plus_left.
apply step_skip_or_continue_loop1.
auto.
apply push_seq.
traceEq.
rewrite Kseqlist_app.
econstructor;
eauto.
simpl.
econstructor;
auto.
econstructor;
eauto.
dowhile false *)
inv H8.
exploit tr_top_val_for_val_inv;
eauto.
intros [
A [
B C]].
subst.
econstructor;
split.
left.
simpl.
eapply plus_left.
constructor.
eapply star_right.
apply step_makeif with (
v1 :=
v) (
b :=
false);
auto.
constructor.
reflexivity.
traceEq.
constructor;
auto.
constructor.
dowhile true *)
inv H8.
exploit tr_top_val_for_val_inv;
eauto.
intros [
A [
B C]].
subst.
econstructor;
split.
left.
simpl.
eapply plus_left.
constructor.
eapply star_right.
apply step_makeif with (
v1 :=
v) (
b :=
true);
auto.
constructor.
reflexivity.
traceEq.
constructor;
auto.
constructor;
auto.
break dowhile *)
inv H6.
inv H7.
econstructor;
split.
left.
apply plus_one.
apply step_break_loop1.
constructor;
auto.
constructor.
for start *)
inv H7.
congruence.
econstructor;
split.
left;
apply plus_one.
constructor.
econstructor;
eauto.
constructor;
auto.
econstructor;
eauto.
for *)
inv H6;
try congruence.
inv H2.
econstructor;
split.
left.
eapply plus_left.
apply step_loop.
eapply star_left.
constructor.
apply push_seq.
reflexivity.
traceEq.
rewrite Kseqlist_app.
econstructor;
eauto.
simpl.
constructor;
auto.
econstructor;
eauto.
for false *)
inv H8.
exploit tr_top_val_for_val_inv;
eauto.
intros [
A [
B C]].
subst.
econstructor;
split.
left.
simpl.
eapply plus_left.
constructor.
eapply star_trans.
apply step_makeif with (
v1 :=
v) (
b :=
false);
auto.
eapply star_two.
constructor.
apply step_break_loop1.
reflexivity.
reflexivity.
traceEq.
constructor;
auto.
constructor.
for true *)
inv H8.
exploit tr_top_val_for_val_inv;
eauto.
intros [
A [
B C]].
subst.
econstructor;
split.
left.
simpl.
eapply plus_left.
constructor.
eapply star_right.
apply step_makeif with (
v1 :=
v) (
b :=
true);
auto.
constructor.
reflexivity.
traceEq.
constructor;
auto.
constructor;
auto.
skip_or_continue for3 *)
assert (
ts =
Sskip \/
ts =
Scontinue).
destruct H;
subst x;
inv H7;
auto.
inv H8.
econstructor;
split.
left.
apply plus_one.
apply step_skip_or_continue_loop1.
auto.
econstructor;
eauto.
econstructor;
auto.
break for3 *)
inv H6.
inv H7.
econstructor;
split.
left.
apply plus_one.
apply step_break_loop1.
econstructor;
eauto.
constructor.
skip for4 *)
inv H6.
inv H7.
econstructor;
split.
left.
apply plus_one.
constructor.
econstructor;
eauto.
constructor;
auto.
return none *)
inv H7.
econstructor;
split.
left.
apply plus_one.
econstructor;
eauto.
rewrite blocks_of_env_preserved;
eauto.
constructor.
apply match_cont_call;
auto.
rewrite_stack_blocks.
simpl in H9;
repeat destr_in H9.
simpl.
eauto using nostackinfo_callcont.
return some 1 *)
inv H6.
inv H0.
econstructor;
split.
left;
eapply plus_left.
constructor.
apply push_seq.
traceEq.
econstructor;
eauto.
constructor.
auto.
return some 2 *)
inv H9.
exploit tr_top_val_for_val_inv;
eauto.
intros [
A [
B C]].
subst.
econstructor;
split.
left.
eapply plus_two.
constructor.
econstructor.
eauto.
erewrite function_return_preserved;
eauto.
rewrite blocks_of_env_preserved;
eauto.
eauto.
traceEq.
constructor.
apply match_cont_call;
auto.
rewrite_stack_blocks.
simpl in H10;
repeat destr_in H10.
simpl.
eauto using nostackinfo_callcont.
skip return *)
inv H8.
assert (
is_call_cont tk).
inv H9;
simpl in *;
auto.
econstructor;
split.
left.
apply plus_one.
eapply step_skip_call;
eauto.
rewrite blocks_of_env_preserved;
eauto.
constructor.
auto.
rewrite_stack_blocks.
simpl in H10;
repeat destr_in H10.
simpl.
eauto using nostackinfo_callcont.
switch *)
inv H6.
inv H1.
econstructor;
split.
left;
eapply plus_left.
constructor.
apply push_seq.
traceEq.
econstructor;
eauto.
constructor;
auto.
expr switch *)
inv H8.
exploit tr_top_val_for_val_inv;
eauto.
intros [
A [
B C]].
subst.
econstructor;
split.
left;
eapply plus_two.
constructor.
econstructor;
eauto.
traceEq.
econstructor;
eauto.
apply tr_seq_of_labeled_statement.
apply tr_select_switch.
auto.
constructor;
auto.
skip-or-break switch *)
assert (
ts =
Sskip \/
ts =
Sbreak).
destruct H;
subst x;
inv H7;
auto.
inv H8.
econstructor;
split.
left;
apply plus_one.
apply step_skip_break_switch.
auto.
constructor;
auto.
constructor.
continue switch *)
inv H6.
inv H7.
econstructor;
split.
left;
apply plus_one.
apply step_continue_switch.
constructor;
auto.
constructor.
label *)
inv H6.
econstructor;
split.
left;
apply plus_one.
constructor.
constructor;
auto.
goto *)
inv H7.
inversion H6;
subst.
exploit tr_find_label.
eauto.
apply match_cont_call.
eauto.
instantiate (1 :=
lbl).
rewrite H.
intros [
ts' [
tk' [
P [
Q R]]]].
econstructor;
split.
left.
apply plus_one.
econstructor;
eauto.
econstructor;
eauto.
simpl in *.
repeat destr_in H9.
split;
auto.
eapply nostackinfo_find_label;
eauto using nostackinfo_callcont.
internal function *)
inv H11.
inversion H6;
subst.
econstructor;
split.
left;
apply plus_one.
eapply step_internal_function.
econstructor.
rewrite H9,
H10;
auto.
rewrite H9,
H10.
eapply alloc_variables_preserved;
eauto.
unfold blocks_with_info.
rewrite blocks_of_env_preserved.
eauto.
rewrite H2.
apply Z.max_r.
auto.
eauto.
rewrite H9.
eapply bind_parameters_preserved;
eauto.
eauto.
constructor;
auto.
erewrite bind_parameters_stack;
eauto.
rewrite_stack_blocks.
erewrite alloc_variables_stack;
eauto.
intro EQ1.
rewrite EQ1 in H14.
simpl in H14.
simpl.
split;
auto.
rewrite EQ1 in H13;
inv H13.
intros a A;
inv A.
rewrite H1.
rewrite Forall_forall;
setoid_rewrite in_map_iff.
intros (
b &
fi) (
blohi &
EQ &
IN).
repeat destr_in EQ.
reflexivity.
external function *)
inv H6.
econstructor;
split.
left;
apply plus_one.
econstructor;
eauto.
eapply external_call_symbols_preserved;
eauto.
apply senv_preserved.
constructor;
auto.
rewrite_stack_blocks.
auto.
return *)
inv H4.
econstructor;
split.
left;
apply plus_one.
constructor.
eauto.
econstructor;
eauto.
rewrite_stack_blocks.
simpl in *;
auto.
destr_in H5;
auto.
destr.
destruct H5;
split;
auto.
eapply nostackinfo_kseqlist';
eauto.
Qed.
Semantic preservation
Theorem simulation:
forall S1 t S2,
Cstrategy.step fn_stack_requirements ge S1 t S2 ->
forall S1' (
MS:
match_states S1 S1'),
exists S2',
(
plus (
step1 fn_stack_requirements)
tge S1'
t S2' \/
(
star (
step1 fn_stack_requirements)
tge S1'
t S2' /\
measure S2 <
measure S1)%
nat)
/\
match_states S2 S2'.
Proof.
Lemma transl_initial_states:
forall S,
Csem.initial_state fn_stack_requirements prog S ->
exists S',
Clight.initial_state fn_stack_requirements tprog S' /\
match_states S S'.
Proof.
Lemma transl_final_states:
forall S S'
r,
match_states S S' ->
Csem.final_state S r ->
Clight.final_state S'
r.
Proof.
intros. inv H0. inv H. inv H4. constructor.
Qed.
Theorem transl_program_correct:
forward_simulation (
Cstrategy.semantics fn_stack_requirements prog) (
Clight.semantics1 fn_stack_requirements tprog).
Proof.
End PRESERVATION.
Commutation with linking
Instance TransfSimplExprLink :
TransfLink match_prog.
Proof.