Multi-way branches (``switch'' statements) and their compilation
to comparison trees.
Require Import EqNat.
Require Import Coqlib.
Require Import Maps.
Require Import Integers.
Require Import Values.
A multi-way branch is composed of a list of (key, action) pairs,
plus a default action.
Definition table :
Type :=
list (
Z *
nat).
Fixpoint switch_target (
n:
Z) (
dfl:
nat) (
cases:
table)
{
struct cases} :
nat :=
match cases with
|
nil =>
dfl
| (
key,
action) ::
rem =>
if zeq n key then action else switch_target n dfl rem
end.
Inductive switch_argument:
bool ->
val ->
Z ->
Prop :=
|
switch_argument_32:
forall i,
switch_argument false (
Vint i) (
Int.unsigned i)
|
switch_argument_64:
forall i,
switch_argument true (
Vlong i) (
Int64.unsigned i).
Multi-way branches are translated to comparison trees.
Each node of the tree performs either
-
an equality against one of the keys;
-
or a "less than" test against one of the keys;
-
or a computed branch (jump table) against a range of key values.
Inductive comptree :
Type :=
|
CTaction (
act:
nat)
|
CTifeq (
key:
Z) (
act:
nat) (
cne:
comptree)
|
CTiflt (
key:
Z) (
clt:
comptree) (
cge:
comptree)
|
CTjumptable (
ofs:
Z) (
sz:
Z) (
acts:
list nat) (
cother:
comptree).
Section COMPTREE.
Variable modulus:
Z.
Hypothesis modulus_pos:
modulus > 0.
Fixpoint comptree_match (
n:
Z) (
t:
comptree) {
struct t}:
option nat :=
match t with
|
CTaction act =>
Some act
|
CTifeq key act t' =>
if zeq n key then Some act else comptree_match n t'
|
CTiflt key t1 t2 =>
if zlt n key then comptree_match n t1 else comptree_match n t2
|
CTjumptable ofs sz tbl t' =>
let delta := (
n -
ofs)
mod modulus in
if zlt delta sz
then list_nth_z tbl (
delta mod Int.modulus)
else comptree_match n t'
end.
The translation from a table to a comparison tree is performed
by untrusted Caml code (function compile_switch in
file RTLgenaux.ml). In Coq, we validate a posteriori the
result of this function. In other terms, we now develop
and prove correct Coq functions that take a table and a comparison
tree, and check that their semantics are equivalent.
Fixpoint split_lt (
pivot:
Z) (
cases:
table)
{
struct cases} :
table *
table :=
match cases with
|
nil => (
nil,
nil)
| (
key,
act) ::
rem =>
let (
l,
r) :=
split_lt pivot rem in
if zlt key pivot
then ((
key,
act) ::
l,
r)
else (
l, (
key,
act) ::
r)
end.
Fixpoint split_eq (
pivot:
Z) (
cases:
table)
{
struct cases} :
option nat *
table :=
match cases with
|
nil => (
None,
nil)
| (
key,
act) ::
rem =>
let (
same,
others) :=
split_eq pivot rem in
if zeq key pivot
then (
Some act,
others)
else (
same, (
key,
act) ::
others)
end.
Fixpoint split_between (
dfl:
nat) (
ofs sz:
Z) (
cases:
table)
{
struct cases} :
ZMap.t nat *
table :=
match cases with
|
nil => (
ZMap.init dfl,
nil)
| (
key,
act) ::
rem =>
let (
inside,
outside) :=
split_between dfl ofs sz rem in
if zlt ((
key -
ofs)
mod modulus)
sz
then (
ZMap.set key act inside,
outside)
else (
inside, (
key,
act) ::
outside)
end.
Definition refine_low_bound (
v lo:
Z) :=
if zeq v lo then lo + 1
else lo.
Definition refine_high_bound (
v hi:
Z) :=
if zeq v hi then hi - 1
else hi.
Fixpoint validate_jumptable (
cases:
ZMap.t nat)
(
tbl:
list nat) (
n:
Z) {
struct tbl} :
bool :=
match tbl with
|
nil =>
true
|
act ::
rem =>
beq_nat act (
ZMap.get n cases)
&&
validate_jumptable cases rem (
Zsucc n)
end.
Fixpoint validate (
default:
nat) (
cases:
table) (
t:
comptree)
(
lo hi:
Z) {
struct t} :
bool :=
match t with
|
CTaction act =>
match cases with
|
nil =>
beq_nat act default
| (
key1,
act1) ::
_ =>
zeq key1 lo &&
zeq lo hi &&
beq_nat act act1
end
|
CTifeq pivot act t' =>
zle 0
pivot &&
zlt pivot modulus &&
match split_eq pivot cases with
| (
None,
_) =>
false
| (
Some act',
others) =>
beq_nat act act'
&&
validate default others t'
(
refine_low_bound pivot lo)
(
refine_high_bound pivot hi)
end
|
CTiflt pivot t1 t2 =>
zle 0
pivot &&
zlt pivot modulus &&
match split_lt pivot cases with
| (
lcases,
rcases) =>
validate default lcases t1 lo (
pivot - 1)
&&
validate default rcases t2 pivot hi
end
|
CTjumptable ofs sz tbl t' =>
let tbl_len :=
list_length_z tbl in
zle 0
ofs &&
zlt ofs modulus &&
zle 0
sz &&
zlt sz modulus &&
zle (
ofs +
sz)
modulus &&
zle sz tbl_len &&
zlt sz Int.modulus &&
match split_between default ofs sz cases with
| (
inside,
outside) =>
validate_jumptable inside tbl ofs
&&
validate default outside t'
lo hi
end
end.
Definition validate_switch (
default:
nat) (
cases:
table) (
t:
comptree) :=
validate default cases t 0 (
modulus - 1).
Structural properties checked by validation
Inductive wf_comptree:
comptree ->
Prop :=
|
wf_action:
forall act,
wf_comptree (
CTaction act)
|
wf_ifeq:
forall key act cne,
0 <=
key <
modulus ->
wf_comptree cne ->
wf_comptree (
CTifeq key act cne)
|
wf_iflt:
forall key clt cge,
0 <=
key <
modulus ->
wf_comptree clt ->
wf_comptree cge ->
wf_comptree (
CTiflt key clt cge)
|
wf_jumptable:
forall ofs sz acts cother,
0 <=
ofs <
modulus -> 0 <=
sz <
modulus ->
wf_comptree cother ->
wf_comptree (
CTjumptable ofs sz acts cother).
Lemma validate_wf:
forall default t cases lo hi,
validate default cases t lo hi =
true ->
wf_comptree t.
Proof.
induction t;
simpl;
intros;
InvBooleans.
-
constructor.
-
destruct (
split_eq key cases)
as [[
act'|]
others];
try discriminate;
InvBooleans.
constructor;
eauto.
-
destruct (
split_lt key cases)
as [
lc rc];
InvBooleans.
constructor;
eauto.
-
destruct (
split_between default ofs sz cases)
as [
ins out];
InvBooleans.
constructor;
eauto.
Qed.
Semantic correctness proof for validation.
Lemma split_eq_prop:
forall v default n cases optact cases',
split_eq n cases = (
optact,
cases') ->
switch_target v default cases =
(
if zeq v n
then match optact with Some act =>
act |
None =>
default end
else switch_target v default cases').
Proof.
induction cases;
simpl;
intros until cases'.
-
intros.
inv H.
simpl.
destruct (
zeq v n);
auto.
-
destruct a as [
key act].
destruct (
split_eq n cases)
as [
same other]
eqn:
SEQ.
rewrite (
IHcases same other)
by auto.
destruct (
zeq key n);
intros EQ;
inv EQ.
+
destruct (
zeq v n);
auto.
+
simpl.
destruct (
zeq v key).
*
subst v.
rewrite zeq_false by auto.
auto.
*
auto.
Qed.
Lemma split_lt_prop:
forall v default n cases lcases rcases,
split_lt n cases = (
lcases,
rcases) ->
switch_target v default cases =
(
if zlt v n
then switch_target v default lcases
else switch_target v default rcases).
Proof.
induction cases;
intros until rcases;
simpl.
-
intros.
inv H.
simpl.
destruct (
zlt v n);
auto.
-
destruct a as [
key act].
destruct (
split_lt n cases)
as [
lc rc]
eqn:
SEQ.
rewrite (
IHcases lc rc)
by auto.
destruct (
zlt key n);
intros EQ;
inv EQ;
simpl.
+
destruct (
zeq v key).
rewrite zlt_true by omega.
auto.
auto.
+
destruct (
zeq v key).
rewrite zlt_false by omega.
auto.
auto.
Qed.
Lemma split_between_prop:
forall v default ofs sz cases inside outside,
split_between default ofs sz cases = (
inside,
outside) ->
switch_target v default cases =
(
if zlt ((
v -
ofs)
mod modulus)
sz
then ZMap.get v inside
else switch_target v default outside).
Proof.
induction cases;
intros until outside;
simpl;
intros SEQ.
-
inv SEQ.
rewrite ZMap.gi.
simpl.
destruct (
zlt ((
v -
ofs)
mod modulus)
sz);
auto.
-
destruct a as [
key act].
destruct (
split_between default ofs sz cases)
as [
ins outs].
erewrite IHcases;
eauto.
destruct (
zlt ((
key -
ofs)
mod modulus)
sz);
inv SEQ.
+
rewrite ZMap.gsspec.
unfold ZIndexed.eq.
destruct (
zeq v key).
subst v.
rewrite zlt_true by auto.
auto.
auto.
+
simpl.
destruct (
zeq v key).
subst v.
rewrite zlt_false by auto.
auto.
auto.
Qed.
Lemma validate_jumptable_correct_rec:
forall cases tbl base v,
validate_jumptable cases tbl base =
true ->
0 <=
v <
list_length_z tbl ->
list_nth_z tbl v =
Some(
ZMap.get (
base +
v)
cases).
Proof.
induction tbl;
simpl;
intros.
-
unfold list_length_z in H0.
simpl in H0.
omegaContradiction.
-
InvBooleans.
rewrite list_length_z_cons in H0.
apply beq_nat_true in H1.
destruct (
zeq v 0).
+
replace (
base +
v)
with base by omega.
congruence.
+
replace (
base +
v)
with (
Z.succ base +
Z.pred v)
by omega.
apply IHtbl.
auto.
omega.
Qed.
Lemma validate_jumptable_correct:
forall cases tbl ofs v sz,
validate_jumptable cases tbl ofs =
true ->
(
v -
ofs)
mod modulus <
sz ->
0 <=
sz -> 0 <=
ofs ->
ofs +
sz <=
modulus ->
0 <=
v <
modulus ->
sz <=
list_length_z tbl ->
list_nth_z tbl ((
v -
ofs)
mod modulus) =
Some(
ZMap.get v cases).
Proof.
Lemma validate_correct_rec:
forall default v,
0 <=
v <
modulus ->
forall t cases lo hi,
validate default cases t lo hi =
true ->
lo <=
v <=
hi ->
comptree_match v t =
Some (
switch_target v default cases).
Proof.
intros default v VRANGE.
induction t;
simpl;
intros until hi.
-
destruct cases as [ | [
key1 act1]
cases1];
intros.
+
apply beq_nat_true in H.
subst act.
reflexivity.
+
InvBooleans.
apply beq_nat_true in H2.
subst.
simpl.
destruct (
zeq v hi).
auto.
omegaContradiction.
-
destruct (
split_eq key cases)
as [
optact others]
eqn:
EQ.
intros.
destruct optact as [
act1|];
InvBooleans;
try discriminate.
apply beq_nat_true in H.
rewrite (
split_eq_prop v default _ _ _ _ EQ).
destruct (
zeq v key).
+
congruence.
+
eapply IHt;
eauto.
unfold refine_low_bound,
refine_high_bound.
split.
destruct (
zeq key lo);
omega.
destruct (
zeq key hi);
omega.
-
destruct (
split_lt key cases)
as [
lcases rcases]
eqn:
EQ;
intros;
InvBooleans.
rewrite (
split_lt_prop v default _ _ _ _ EQ).
destruct (
zlt v key).
eapply IHt1.
eauto.
omega.
eapply IHt2.
eauto.
omega.
-
destruct (
split_between default ofs sz cases)
as [
ins outs]
eqn:
EQ;
intros;
InvBooleans.
rewrite (
split_between_prop v _ _ _ _ _ _ EQ).
assert (0 <= (
v -
ofs)
mod modulus <
modulus)
by (
apply Z_mod_lt;
omega).
destruct (
zlt ((
v -
ofs)
mod modulus)
sz).
rewrite Zmod_small by omega.
eapply validate_jumptable_correct;
eauto.
eapply IHt;
eauto.
Qed.
Definition table_tree_agree
(
default:
nat) (
cases:
table) (
t:
comptree) :
Prop :=
forall v, 0 <=
v <
modulus ->
comptree_match v t =
Some(
switch_target v default cases).
Theorem validate_switch_correct:
forall default t cases,
validate_switch default cases t =
true ->
wf_comptree t /\
table_tree_agree default cases t.
Proof.
End COMPTREE.