Module Unusedglobproof


Elimination of unreferenced static definitions

Require Import FSets Coqlib Maps Ordered Iteration Errors.
Require Import AST Linking.
Require Import Integers Values Memory Globalenvs Events Smallstep.
Require Import Op Registers RTL.
Require Import Unusedglob.

Module ISF := FSetFacts.Facts(IS).
Module ISP := FSetProperties.Properties(IS).


The following property is needed by Unusedglobproof, to prove injection between the initial memory states.
Module Mem.
Export Memtype.Mem.

Class MemoryModelX (mem: Type) `{memory_model_prf: MemoryModel mem}: Prop :=
{
 zero_delta_inject f g m1 m2 {injperm: InjectPerm}:
  (forall b1 b2 delta, f b1 = Some (b2, delta) -> delta = 0) ->
  (forall b1 b2, f b1 = Some (b2, 0) -> valid_block m1 b1 /\ valid_block m2 b2) ->
  (forall b1 p, f b1 = Some p -> forall b2, f b2 = Some p -> b1 = b2) ->
  (forall b1 b2,
     f b1 = Some (b2, 0) ->
     forall o k p,
       perm m1 b1 o k p ->
       perm m2 b2 o k p) ->
  (forall b1 b2,
     f b1 = Some (b2, 0) ->
     forall o k p,
       perm m2 b2 o k p ->
       perm m1 b1 o k p \/ ~ perm m1 b1 o Max Nonempty) ->
  (forall b1 b2,
     f b1 = Some (b2, 0) ->
     forall o v1,
       loadbytes m1 b1 o 1 = Some (v1 :: nil) ->
       exists v2,
         loadbytes m2 b2 o 1 = Some (v2 :: nil) /\
         memval_inject f v1 v2) ->
  stack_inject f g (perm m1) (stack m1) (stack m2) ->
  inject f g m1 m2
}.

End Mem.

Relational specification of the transformation


The transformed program is obtained from the original program by keeping only the global definitions that belong to a given set u of names.

Record match_prog_1 (u: IS.t) (p tp: program) : Prop := {
  match_prog_main:
    tp.(prog_main) = p.(prog_main);
  match_prog_public:
    tp.(prog_public) = p.(prog_public);
  match_prog_option_def:
    forall id,
       (prog_option_defmap tp)!id = if IS.mem id u then (prog_option_defmap p)!id else None;
  match_prog_unique:
    list_norepet (prog_defs_names tp)
}.

Lemma match_prog_def u p tp:
  match_prog_1 u p tp ->
  forall id,
    (prog_defmap tp)!id = if IS.mem id u then (prog_defmap p)!id else None.
Proof.
  intros.
  destruct ((prog_defmap tp) ! id) eqn:TP.
  {
    apply prog_defmap_option_defmap in TP.
    erewrite match_prog_option_def in TP by eassumption.
    destruct (IS.mem id u); try discriminate.
    apply prog_defmap_option_defmap in TP.
    auto.
  }
  destruct (IS.mem id u) eqn:MEM; auto.
  destruct ((prog_defmap p) ! id) eqn:P; auto.
  apply prog_defmap_option_defmap in P.
  generalize (match_prog_option_def _ _ _ H id).
  rewrite MEM.
  rewrite P.
  rewrite prog_defmap_option_defmap.
  congruence.
Qed.

This set u (as "used") must be closed under references, and contain the entry point and the public identifiers of the program.

Definition ref_function (f: function) (id: ident) : Prop :=
  exists pc i, f.(fn_code)!pc = Some i /\ In id (ref_instruction i).

Definition ref_fundef (fd: fundef) (id: ident) : Prop :=
  match fd with Internal f => ref_function f id | External ef => False end.

Definition ref_init (il: list init_data) (id: ident) : Prop :=
  exists ofs, In (Init_addrof id ofs) il.

Definition ref_def (gd: globdef fundef unit) (id: ident) : Prop :=
  match gd with
  | Gfun fd => ref_fundef fd id
  | Gvar gv => ref_init gv.(gvar_init) id
  end.

Record valid_used_set (p: program) (u: IS.t) : Prop := {
  used_closed: forall id gd id',
    IS.In id u -> (prog_defmap p)!id = Some gd -> ref_def gd id' ->
    IS.In id' u;
  used_main:
    IS.In p.(prog_main) u;
  used_public: forall id,
    In id p.(prog_public) -> IS.In id u;
  used_defined_strong: forall id,
    IS.In id u -> (prog_defmap p)!id <> None \/ id = p.(prog_main)
}.

Lemma used_defined p u (VALID: valid_used_set p u):
  forall id,
    IS.In id u -> In id (prog_defs_names p) \/ id = p.(prog_main).
Proof.
  intros id H.
  eapply used_defined_strong in H; eauto.
  destruct H; auto.
  destruct ((prog_defmap p) ! id) eqn:EQ; try congruence.
  apply prog_defmap_option_defmap in EQ.
  apply in_prog_option_defmap in EQ.
  apply (in_map fst) in EQ.
  auto.
Qed.

Definition match_prog (p tp: program) : Prop :=
  exists u: IS.t, valid_used_set p u /\ match_prog_1 u p tp.

Properties of the static analysis


Monotonic evolution of the workset.

Inductive workset_incl (w1 w2: workset) : Prop :=
  workset_incl_intro:
    forall (SEEN: IS.Subset w1.(w_seen) w2.(w_seen))
           (TODO: List.incl w1.(w_todo) w2.(w_todo))
           (TRACK: forall id, IS.In id w2.(w_seen) ->
                      IS.In id w1.(w_seen) \/ List.In id w2.(w_todo)),
    workset_incl w1 w2.

Lemma seen_workset_incl:
  forall w1 w2 id, workset_incl w1 w2 -> IS.In id w1 -> IS.In id w2.
Proof.
  intros. destruct H. auto.
Qed.

Lemma workset_incl_refl: forall w, workset_incl w w.
Proof.
  intros; split. red; auto. red; auto. auto.
Qed.

Lemma workset_incl_trans:
  forall w1 w2 w3, workset_incl w1 w2 -> workset_incl w2 w3 -> workset_incl w1 w3.
Proof.
  intros. destruct H, H0; split.
  red; eauto.
  red; eauto.
  intros. edestruct TRACK0; eauto. edestruct TRACK; eauto.
Qed.

Lemma add_workset_incl:
  forall id w, workset_incl w (add_workset id w).
Proof.
  unfold add_workset; intros. destruct (IS.mem id w) eqn:MEM.
- apply workset_incl_refl.
- split; simpl.
  + red; intros. apply IS.add_2; auto.
  + red; simpl; auto.
  + intros. destruct (ident_eq id id0); auto. apply IS.add_3 in H; auto.
Qed.

Lemma addlist_workset_incl:
  forall l w, workset_incl w (addlist_workset l w).
Proof.
  induction l; simpl; intros.
  apply workset_incl_refl.
  eapply workset_incl_trans. apply add_workset_incl. eauto.
Qed.

Lemma add_ref_function_incl:
  forall f w, workset_incl w (add_ref_function f w).
Proof.
  unfold add_ref_function; intros. apply PTree_Properties.fold_rec.
- auto.
- apply workset_incl_refl.
- intros. apply workset_incl_trans with a; auto.
  unfold add_ref_instruction. apply addlist_workset_incl.
Qed.

Lemma add_ref_globvar_incl:
  forall gv w, workset_incl w (add_ref_globvar gv w).
Proof.
  unfold add_ref_globvar; intros.
  revert w. induction (gvar_init gv); simpl; intros.
  apply workset_incl_refl.
  eapply workset_incl_trans; [ | eauto ].
  unfold add_ref_init_data.
  destruct a; (apply workset_incl_refl || apply add_workset_incl).
Qed.

Lemma add_ref_definition_incl:
  forall pm id w, workset_incl w (add_ref_definition pm id w).
Proof.
  unfold add_ref_definition; intros.
  destruct (pm!id) as [ [[[] | ? ] | ] | ] .
  apply add_ref_function_incl.
  apply workset_incl_refl.
  apply add_ref_globvar_incl.
  apply workset_incl_refl.
  apply workset_incl_refl.
Qed.

Lemma initial_workset_incl:
  forall p, workset_incl {| w_seen := IS.empty; w_todo := nil |} (initial_workset p).
Proof.
  unfold initial_workset; intros.
  eapply workset_incl_trans. 2: apply add_workset_incl.
  generalize {| w_seen := IS.empty; w_todo := nil |}. induction (prog_public p); simpl; intros.
  apply workset_incl_refl.
  eapply workset_incl_trans. apply add_workset_incl. apply IHl.
Qed.

Soundness properties for functions that add identifiers to the workset

Lemma seen_add_workset:
  forall id (w: workset), IS.In id (add_workset id w).
Proof.
  unfold add_workset; intros.
  destruct (IS.mem id w) eqn:MEM.
  apply IS.mem_2; auto.
  simpl. apply IS.add_1; auto.
Qed.

Lemma seen_addlist_workset:
  forall id l (w: workset),
  In id l -> IS.In id (addlist_workset l w).
Proof.
  induction l; simpl; intros.
  tauto.
  destruct H. subst a.
  eapply seen_workset_incl. apply addlist_workset_incl. apply seen_add_workset.
  apply IHl; auto.
Qed.

Lemma seen_add_ref_function:
  forall id f w,
  ref_function f id -> IS.In id (add_ref_function f w).
Proof.
  intros until w. unfold ref_function, add_ref_function. apply PTree_Properties.fold_rec; intros.
- destruct H1 as (pc & i & A & B). apply H0; auto. exists pc, i; split; auto. rewrite H; auto.
- destruct H as (pc & i & A & B). rewrite PTree.gempty in A; discriminate.
- destruct H2 as (pc & i & A & B). rewrite PTree.gsspec in A. destruct (peq pc k).
  + inv A. unfold add_ref_instruction. apply seen_addlist_workset; auto.
  + unfold add_ref_instruction. eapply seen_workset_incl. apply addlist_workset_incl.
    apply H1. exists pc, i; auto.
Qed.

Lemma seen_add_ref_definition:
  forall pm id gd id' w,
  pm!id = Some (Some gd) -> ref_def gd id' -> IS.In id' (add_ref_definition pm id w).
Proof.
  unfold add_ref_definition; intros. rewrite H. red in H0; destruct gd as [[f|ef]|gv].
  apply seen_add_ref_function; auto.
  contradiction.
  destruct H0 as (ofs & IN).
  unfold add_ref_globvar.
  assert (forall l (w: workset),
          IS.In id' w \/ In (Init_addrof id' ofs) l ->
          IS.In id' (fold_left add_ref_init_data l w)).
  {
    induction l; simpl; intros.
    tauto.
    apply IHl. intuition auto.
    left. destruct a; simpl; auto. eapply seen_workset_incl. apply add_workset_incl. auto.
    subst; left; simpl. apply seen_add_workset.
  }
  apply H0; auto.
Qed.

Lemma seen_main_initial_workset:
  forall p, IS.In p.(prog_main) (initial_workset p).
Proof.
  intros. apply seen_add_workset.
Qed.

Lemma seen_public_initial_workset:
  forall p id, In id p.(prog_public) -> IS.In id (initial_workset p).
Proof.
  intros. unfold initial_workset. eapply seen_workset_incl. apply add_workset_incl.
  assert (forall l (w: workset),
          IS.In id w \/ In id l -> IS.In id (fold_left (fun w id => add_workset id w) l w)).
  {
    induction l; simpl; intros.
    tauto.
    apply IHl. intuition auto; left.
    eapply seen_workset_incl. apply add_workset_incl. auto.
    subst a. apply seen_add_workset.
  }
  apply H0. auto.
Qed.

Correctness of the transformation with respect to the relational specification


Correctness of the dependency graph traversal.

Section ANALYSIS.

Variable p: program.
Let pm := prog_option_defmap p.

Definition workset_invariant (w: workset) : Prop :=
  forall id gd id',
  IS.In id w -> ~List.In id (w_todo w) -> pm!id = Some (Some gd) -> ref_def gd id' ->
  IS.In id' w.

Definition used_set_closed (u: IS.t) : Prop :=
  forall id gd id',
  IS.In id u -> pm!id = Some (Some gd) -> ref_def gd id' -> IS.In id' u.

Lemma iter_step_invariant:
  forall w,
  workset_invariant w ->
  match iter_step pm w with
  | inl u => used_set_closed u
  | inr w' => workset_invariant w'
  end.
Proof.
  unfold iter_step, workset_invariant, used_set_closed; intros.
  destruct (w_todo w) as [ | id rem ]; intros.
- eapply H; eauto.
- set (w' := {| w_seen := w.(w_seen); w_todo := rem |}) in *.
  destruct (add_ref_definition_incl pm id w').
  destruct (ident_eq id id0).
  + subst id0. eapply seen_add_ref_definition; eauto.
  + exploit TRACK; eauto. intros [A|A].
    * apply SEEN. eapply H; eauto. simpl.
      assert (~ In id0 rem).
      { change rem with (w_todo w'). red; intros. elim H1; auto. }
      tauto.
    * contradiction.
Qed.

Theorem used_globals_sound:
  forall u, used_globals p pm = Some u -> used_set_closed u.
Proof.
  unfold used_globals; intros. eapply PrimIter.iterate_prop with (P := workset_invariant); eauto.
- intros. apply iter_step_invariant; auto.
- destruct (initial_workset_incl p).
  red; intros. edestruct TRACK; eauto.
  simpl in H4. eelim IS.empty_1; eauto.
  contradiction.
Qed.

Theorem used_globals_incl:
  forall u, used_globals p pm = Some u -> IS.Subset (initial_workset p) u.
Proof.
  unfold used_globals; intros.
  eapply PrimIter.iterate_prop with (P := fun (w: workset) => IS.Subset (initial_workset p) w); eauto.
- fold pm; unfold iter_step; intros. destruct (w_todo a) as [ | id rem ].
  auto.
  destruct (add_ref_definition_incl pm id {| w_seen := a; w_todo := rem |}).
  red; auto.
- red; auto.
Qed.

Corollary used_globals_valid:
  forall u,
  used_globals p pm = Some u ->
  IS.for_all (global_defined p pm) u = true ->
  valid_used_set p u.
Proof.
  intros. constructor.
- intros. eapply used_globals_sound; eauto.
  apply prog_defmap_option_defmap. assumption.
- eapply used_globals_incl; eauto. apply seen_main_initial_workset.
- intros. eapply used_globals_incl; eauto. apply seen_public_initial_workset; auto.
- intros. apply ISF.for_all_iff in H0.
+ red in H0. apply H0 in H1. unfold global_defined in H1.
  destruct pm!id as [[g|]|] eqn:E.
* apply prog_defmap_option_defmap in E. intuition congruence.
* InvBooleans; auto.
* InvBooleans; auto.
+ hnf. simpl; intros; congruence.
Qed.

End ANALYSIS.

Properties of the elimination of unused global definitions.

Section TRANSFORMATION.

Variable p: program.
Variable used: IS.t.

Let add_def (m: prog_map) idg := PTree.set (fst idg) (snd idg) m.

Remark filter_globdefs_accu:
  forall defs accu1 accu2 u,
  filter_globdefs u (accu1 ++ accu2) defs = filter_globdefs u accu1 defs ++ accu2.
Proof.
  induction defs; simpl; intros.
  auto.
  destruct a as [id gd]. destruct (IS.mem id u); auto.
  rewrite <- IHdefs. auto.
Qed.

Remark filter_globdefs_nil:
  forall u accu defs,
  filter_globdefs u accu defs = filter_globdefs u nil defs ++ accu.
Proof.
  intros. rewrite <- filter_globdefs_accu. auto.
Qed.

Lemma filter_globdefs_map_1:
  forall id l u m1,
  IS.mem id u = false ->
  m1!id = None ->
  (fold_left add_def (filter_globdefs u nil l) m1)!id = None.
Proof.
  induction l as [ | [id1 gd1] l]; simpl; intros.
- auto.
- destruct (IS.mem id1 u) eqn:MEM.
+ rewrite filter_globdefs_nil. rewrite fold_left_app. simpl.
  unfold add_def at 1. simpl.
  rewrite PTree.gso by congruence. eapply IHl; eauto.
  rewrite ISF.remove_b. rewrite H; auto.
+ eapply IHl; eauto.
Qed.

Lemma filter_globdefs_map_2:
  forall id l u m1 m2,
  IS.mem id u = true ->
  m1!id = m2!id ->
  (fold_left add_def (filter_globdefs u nil l) m1)!id = (fold_left add_def (List.rev l) m2)!id.
Proof.
  induction l as [ | [id1 gd1] l]; simpl; intros.
- auto.
- rewrite fold_left_app. simpl.
  destruct (IS.mem id1 u) eqn:MEM.
+ rewrite filter_globdefs_nil. rewrite fold_left_app. simpl.
  unfold add_def at 1 3. simpl.
  rewrite ! PTree.gsspec. destruct (peq id id1). auto.
  apply IHl; auto.
  apply IS.mem_1. apply IS.remove_2; auto. apply IS.mem_2; auto.
+ unfold add_def at 2. simpl.
  rewrite PTree.gso by congruence. apply IHl; auto.
Qed.

Lemma filter_globdefs_map:
  forall id u defs,
  (PTree_Properties.of_list (filter_globdefs u nil (List.rev defs)))! id =
  if IS.mem id u then (PTree_Properties.of_list defs)!id else None.
Proof.
  intros. unfold PTree_Properties.of_list. fold prog_map. unfold PTree.elt. fold add_def.
  destruct (IS.mem id u) eqn:MEM.
- erewrite filter_globdefs_map_2. rewrite List.rev_involutive. reflexivity.
  auto. auto.
- apply filter_globdefs_map_1. auto. apply PTree.gempty.
Qed.

Lemma filter_globdefs_domain:
  forall id l u,
  In id (map fst (filter_globdefs u nil l)) -> IS.In id u /\ In id (map fst l).
Proof.
  induction l as [ | [id1 gd1] l]; simpl; intros.
- tauto.
- destruct (IS.mem id1 u) eqn:MEM.
+ rewrite filter_globdefs_nil, map_app, in_app_iff in H. destruct H.
  apply IHl in H. rewrite ISF.remove_iff in H. tauto.
  simpl in H. destruct H; try tauto. subst id1. split; auto. apply IS.mem_2; auto.
+ apply IHl in H. tauto.
Qed.

Lemma filter_globdefs_unique_names:
  forall l u, list_norepet (map fst (filter_globdefs u nil l)).
Proof.
  induction l as [ | [id1 gd1] l]; simpl; intros.
- constructor.
- destruct (IS.mem id1 u) eqn:MEM; auto.
  rewrite filter_globdefs_nil, map_app. simpl.
  apply list_norepet_append; auto.
  constructor. simpl; tauto. constructor.
  red; simpl; intros. destruct H0; try tauto. subst y.
  apply filter_globdefs_domain in H. rewrite ISF.remove_iff in H. intuition.
Qed.

End TRANSFORMATION.

Theorem transf_program_match:
  forall p tp, transform_program p = OK tp -> match_prog p tp.
Proof.
  unfold transform_program; intros p tp TR. set (pm := prog_option_defmap p) in *.
  destruct (used_globals p pm) as [u|] eqn:U; try discriminate.
  destruct (IS.for_all (global_defined p pm) u) eqn:DEF; inv TR.
  exists u; split.
  apply used_globals_valid; auto.
  constructor; simpl; auto.
  intros. unfold prog_option_defmap; simpl. apply filter_globdefs_map.
  apply filter_globdefs_unique_names.
Qed.

Semantic preservation


Section WITHEXTERNALCALLS.
Local Existing Instance symbols_inject_instance.
Existing Instance inject_perm_all.
Context `{external_calls_prf: ExternalCalls (symbols_inject_instance := symbols_inject_instance)}.
Context `{memory_model_x_prf: !Mem.MemoryModelX mem}.

Variable fn_stack_requirements: ident -> Z.

Section SOUNDNESS.

Variable p: program.
Variable tp: program.
Variable used: IS.t.
Hypothesis USED_VALID: valid_used_set p used.
Hypothesis TRANSF: match_prog_1 used p tp.
Let ge := Genv.globalenv p.
Let tge := Genv.globalenv tp.
Let pm := prog_defmap p.

Definition kept (id: ident) : Prop := IS.In id used.

Lemma kept_closed:
  forall id gd id',
  kept id -> pm!id = Some gd -> ref_def gd id' -> kept id'.
Proof.
  intros. eapply used_closed; eauto.
Qed.

Lemma kept_main:
  kept p.(prog_main).
Proof.
  eapply used_main; eauto.
Qed.

Lemma kept_public:
  forall id, In id p.(prog_public) -> kept id.
Proof.
  intros. eapply used_public; eauto.
Qed.

Relating Genv.find_symbol operations in the original and transformed program

Lemma transform_find_symbol_1:
  forall id b,
  Genv.find_symbol ge id = Some b -> kept id -> exists b', Genv.find_symbol tge id = Some b'.
Proof.
  intros.
  assert (A: exists g, (prog_option_defmap p)!id = Some g).
  { apply prog_option_defmap_dom. eapply Genv.find_symbol_inversion; eauto. }
  destruct A as (g & P).
  apply Genv.find_symbol_exists with g.
  apply in_prog_option_defmap.
  erewrite match_prog_option_def by eauto. rewrite IS.mem_1 by auto. auto.
Qed.

Lemma transform_find_symbol_2:
  forall id b,
  Genv.find_symbol tge id = Some b -> kept id /\ exists b', Genv.find_symbol ge id = Some b'.
Proof.
  intros.
  assert (A: exists g, (prog_option_defmap tp)!id = Some g).
  { apply prog_option_defmap_dom. eapply Genv.find_symbol_inversion; eauto. }
  destruct A as (g & P).
  erewrite match_prog_option_def in P by eauto.
  destruct (IS.mem id used) eqn:U; try discriminate.
  split. apply IS.mem_2; auto.
  apply Genv.find_symbol_exists with g.
  apply in_prog_option_defmap. auto.
Qed.

Injections that preserve used globals.

Record meminj_preserves_globals (f: meminj) : Prop := {
  symbols_inject_1: forall id b b' delta,
    f b = Some(b', delta) -> Genv.find_symbol ge id = Some b ->
    delta = 0 /\ Genv.find_symbol tge id = Some b';
  symbols_inject_2: forall id b,
    kept id -> Genv.find_symbol ge id = Some b ->
    exists b', Genv.find_symbol tge id = Some b' /\ f b = Some(b', 0);
  symbols_inject_3: forall id b',
    Genv.find_symbol tge id = Some b' ->
    exists b, Genv.find_symbol ge id = Some b /\ f b = Some(b', 0);
  defs_inject: forall b b' delta gd,
    f b = Some(b', delta) -> Genv.find_def ge b = Some gd ->
    Genv.find_def tge b' = Some gd /\ delta = 0 /\
    (forall id, ref_def gd id -> kept id);
  defs_rev_inject: forall b b' delta gd,
    f b = Some(b', delta) -> Genv.find_def tge b' = Some gd ->
    Genv.find_def ge b = Some gd /\ delta = 0
}.

Definition init_meminj : meminj :=
  fun b =>
    match Genv.invert_symbol ge b with
    | Some id =>
        match Genv.find_symbol tge id with
        | Some b' => Some (b', 0)
        | None => None
        end
    | None => None
    end.

Remark init_meminj_eq:
  forall id b b',
  Genv.find_symbol ge id = Some b -> Genv.find_symbol tge id = Some b' ->
  init_meminj b = Some(b', 0).
Proof.
  intros. unfold init_meminj. erewrite Genv.find_invert_symbol by eauto. rewrite H0. auto.
Qed.

Remark init_meminj_invert:
  forall b b' delta,
  init_meminj b = Some(b', delta) ->
  delta = 0 /\ exists id, Genv.find_symbol ge id = Some b /\ Genv.find_symbol tge id = Some b'.
Proof.
  unfold init_meminj; intros.
  destruct (Genv.invert_symbol ge b) as [id|] eqn:S; try discriminate.
  destruct (Genv.find_symbol tge id) as [b''|] eqn:F; inv H.
  split. auto. exists id. split. apply Genv.invert_find_symbol; auto. auto.
Qed.

Lemma init_meminj_preserves_globals:
  meminj_preserves_globals init_meminj.
Proof.
  constructor; intros.
- exploit init_meminj_invert; eauto. intros (A & id1 & B & C).
  assert (id1 = id) by (eapply (Genv.genv_vars_inj ge); eauto). subst id1.
  auto.
- exploit transform_find_symbol_1; eauto. intros (b' & F). exists b'; split; auto.
  eapply init_meminj_eq; eauto.
- exploit transform_find_symbol_2; eauto. intros (K & b & F).
  exists b; split; auto. eapply init_meminj_eq; eauto.
- exploit init_meminj_invert; eauto. intros (A & id & B & C).
  assert (kept id) by (eapply transform_find_symbol_2; eauto).
  assert (pm!id = Some gd).
  { unfold pm; rewrite Genv.find_def_symbol. exists b; auto. }
  assert ((prog_defmap tp)!id = Some gd).
  { erewrite match_prog_def by eauto. rewrite IS.mem_1 by auto. auto. }
  rewrite Genv.find_def_symbol in H3. destruct H3 as (b1 & P & Q).
  fold tge in P. replace b' with b1 by congruence. split; auto. split; auto.
  intros. eapply kept_closed; eauto.
- exploit init_meminj_invert; eauto. intros (A & id & B & C).
  assert ((prog_defmap tp)!id = Some gd).
  { rewrite Genv.find_def_symbol. exists b'; auto. }
  erewrite match_prog_def in H1 by eauto.
  destruct (IS.mem id used); try discriminate.
  rewrite Genv.find_def_symbol in H1. destruct H1 as (b1 & P & Q).
  fold ge in P. replace b with b1 by congruence. auto.
Qed.

Lemma globals_symbols_inject:
  forall j, meminj_preserves_globals j -> symbols_inject j ge tge.
Proof.
  intros.
  assert (E1: Genv.genv_public ge = p.(prog_public)).
  { apply Genv.globalenv_public. }
  assert (E2: Genv.genv_public tge = p.(prog_public)).
  { unfold tge; rewrite Genv.globalenv_public. eapply match_prog_public; eauto. }
  split; [|split;[|split]]; intros.
  + simpl; unfold Genv.public_symbol; rewrite E1, E2.
    destruct (Genv.find_symbol tge id) as [b'|] eqn:TFS.
    exploit symbols_inject_3; eauto. intros (b & FS & INJ). rewrite FS. auto.
    destruct (Genv.find_symbol ge id) as [b|] eqn:FS; auto.
    destruct (in_dec ident_eq id (prog_public p)); simpl; auto.
    exploit symbols_inject_2; eauto.
    eapply kept_public; eauto.
    intros (b' & TFS' & INJ). congruence.
  + eapply symbols_inject_1; eauto.
  + simpl in *; unfold Genv.public_symbol in H0.
    destruct (Genv.find_symbol ge id) as [b|] eqn:FS; try discriminate.
    rewrite E1 in H0.
    destruct (in_dec ident_eq id (prog_public p)); try discriminate. inv H1.
    exploit symbols_inject_2; eauto.
    eapply kept_public; eauto.
    intros (b' & A & B); exists b'; auto.
  + simpl. unfold Genv.block_is_volatile.
    destruct (Genv.find_var_info ge b1) as [gv|] eqn:V1.
    rewrite Genv.find_var_info_iff in V1.
    exploit defs_inject; eauto. intros (A & B & C).
    rewrite <- Genv.find_var_info_iff in A. rewrite A; auto.
    destruct (Genv.find_var_info tge b2) as [gv|] eqn:V2; auto.
    rewrite Genv.find_var_info_iff in V2.
    exploit defs_rev_inject; eauto. intros (A & B).
    rewrite <- Genv.find_var_info_iff in A. congruence.
Qed.

Lemma symbol_address_inject:
  forall j id ofs,
  meminj_preserves_globals j -> kept id ->
  Val.inject j (Genv.symbol_address ge id ofs) (Genv.symbol_address tge id ofs).
Proof.
  intros. unfold Genv.symbol_address. destruct (Genv.find_symbol ge id) as [b|] eqn:FS; auto.
  exploit symbols_inject_2; eauto. intros (b' & TFS & INJ). rewrite TFS.
  econstructor; eauto. rewrite Ptrofs.add_zero; auto.
Qed.

Semantic preservation

Definition regset_inject (f: meminj) (rs rs': regset): Prop :=
  forall r, Val.inject f rs#r rs'#r.

Lemma regs_inject:
  forall f rs rs', regset_inject f rs rs' -> forall l, Val.inject_list f rs##l rs'##l.
Proof.
  induction l; simpl. constructor. constructor; auto.
Qed.

Lemma set_reg_inject:
  forall f rs rs' r v v',
  regset_inject f rs rs' -> Val.inject f v v' ->
  regset_inject f (rs#r <- v) (rs'#r <- v').
Proof.
  intros; red; intros. rewrite ! Regmap.gsspec. destruct (peq r0 r); auto.
Qed.

Lemma set_res_inject:
  forall f rs rs' res v v',
  regset_inject f rs rs' -> Val.inject f v v' ->
  regset_inject f (regmap_setres res v rs) (regmap_setres res v' rs').
Proof.
  intros. destruct res; auto. apply set_reg_inject; auto.
Qed.

Lemma regset_inject_incr:
  forall f f' rs rs', regset_inject f rs rs' -> inject_incr f f' -> regset_inject f' rs rs'.
Proof.
  intros; red; intros. apply val_inject_incr with f; auto.
Qed.

Lemma regset_undef_inject:
  forall f, regset_inject f (Regmap.init Vundef) (Regmap.init Vundef).
Proof.
  intros; red; intros. rewrite Regmap.gi. auto.
Qed.

Lemma init_regs_inject:
  forall f args args', Val.inject_list f args args' ->
  forall params,
  regset_inject f (init_regs args params) (init_regs args' params).
Proof.
  induction 1; intros; destruct params; simpl; try (apply regset_undef_inject).
  apply set_reg_inject; auto.
Qed.

Inductive match_stacks (j: meminj):
        list stackframe -> list stackframe -> block -> block -> Prop :=
  | match_stacks_nil: forall bound tbound,
      meminj_preserves_globals j ->
      Ple (Genv.genv_next ge) bound -> Ple (Genv.genv_next tge) tbound ->
      match_stacks j nil nil bound tbound
  | match_stacks_cons: forall res f sp pc rs s tsp trs ts bound tbound
         (STACKS: match_stacks j s ts sp tsp)
         (KEPT: forall id, ref_function f id -> kept id)
         (SPINJ: j sp = Some(tsp, 0))
         (REGINJ: regset_inject j rs trs)
         (BELOW: Plt sp bound)
         (TBELOW: Plt tsp tbound),
      match_stacks j (Stackframe res f (Vptr sp Ptrofs.zero) pc rs :: s)
                     (Stackframe res f (Vptr tsp Ptrofs.zero) pc trs :: ts)
                     bound tbound.

Lemma match_stacks_preserves_globals:
  forall j s ts bound tbound,
  match_stacks j s ts bound tbound ->
  meminj_preserves_globals j.
Proof.
  induction 1; auto.
Qed.

Lemma match_stacks_incr:
  forall j j', inject_incr j j' ->
  forall s ts bound tbound, match_stacks j s ts bound tbound ->
  (forall b1 b2 delta,
      j b1 = None -> j' b1 = Some(b2, delta) -> Ple bound b1 /\ Ple tbound b2) ->
  match_stacks j' s ts bound tbound.
Proof.
  induction 2; intros.
- assert (SAME: forall b b' delta, Plt b (Genv.genv_next ge) ->
                                   j' b = Some(b', delta) -> j b = Some(b', delta)).
  { intros. destruct (j b) as [[b1 delta1] | ] eqn: J.
    exploit H; eauto. congruence.
    exploit H3; eauto. intros [A B]. elim (Plt_strict b).
    eapply Plt_Ple_trans. eauto. eapply Ple_trans; eauto. }
  assert (SAME': forall b b' delta, Plt b' (Genv.genv_next tge) ->
                                   j' b = Some(b', delta) -> j b = Some (b', delta)).
  { intros. destruct (j b) as [[b1 delta1] | ] eqn: J.
    exploit H; eauto. congruence.
    exploit H3; eauto. intros [A B]. elim (Plt_strict b').
    eapply Plt_Ple_trans. eauto. eapply Ple_trans; eauto. }
  constructor; auto. constructor; intros.
  + exploit symbols_inject_1; eauto. apply SAME; auto.
    eapply Genv.genv_symb_range; eauto.
  + exploit symbols_inject_2; eauto. intros (b' & A & B).
    exists b'; auto.
  + exploit symbols_inject_3; eauto. intros (b & A & B).
    exists b; auto.
  + eapply defs_inject; eauto. apply SAME; auto.
    eapply Genv.genv_defs_range; eauto.
  + eapply defs_rev_inject; eauto. apply SAME'; auto.
    eapply Genv.genv_defs_range; eauto.
- econstructor; eauto.
  apply IHmatch_stacks.
  intros. exploit H1; eauto. intros [A B]. split; eapply Ple_trans; eauto.
  apply Plt_Ple; auto. apply Plt_Ple; auto.
  apply regset_inject_incr with j; auto.
Qed.

Lemma match_stacks_bound:
  forall j s ts bound tbound bound' tbound',
  match_stacks j s ts bound tbound ->
  Ple bound bound' -> Ple tbound tbound' ->
  match_stacks j s ts bound' tbound'.
Proof.
  induction 1; intros.
- constructor; auto. eapply Ple_trans; eauto. eapply Ple_trans; eauto.
- econstructor; eauto. eapply Plt_Ple_trans; eauto. eapply Plt_Ple_trans; eauto.
Qed.

Inductive match_states: state -> state -> Prop :=
  | match_states_regular: forall s f sp pc rs m ts tsp trs tm j
         (STACKS: match_stacks j s ts sp tsp)
         (KEPT: forall id, ref_function f id -> kept id)
         (SPINJ: j sp = Some(tsp, 0))
         (REGINJ: regset_inject j rs trs)
         (MEMINJ: Mem.inject j (flat_frameinj (length (Mem.stack m))) m tm),
      match_states (State s f (Vptr sp Ptrofs.zero) pc rs m)
                   (State ts f (Vptr tsp Ptrofs.zero) pc trs tm)
  | match_states_call: forall s fd args m ts targs tm j sz
         (STACKS: match_stacks j s ts (Mem.nextblock m) (Mem.nextblock tm))
         (KEPT: forall id, ref_fundef fd id -> kept id)
         (ARGINJ: Val.inject_list j args targs)
         (MEMINJ: Mem.inject j (flat_frameinj (length (Mem.stack m))) m tm),
      match_states (Callstate s fd args m sz)
                   (Callstate ts fd targs tm sz)
  | match_states_return: forall s res m ts tres tm j
         (STACKS: match_stacks j s ts (Mem.nextblock m) (Mem.nextblock tm))
         (RESINJ: Val.inject j res tres)
         (MEMINJ: Mem.inject j (flat_frameinj (length (Mem.stack m))) m tm),
      match_states (Returnstate s res m)
                   (Returnstate ts tres tm).

Lemma find_function_inject:
  forall j ros rs fd trs,
  meminj_preserves_globals j ->
  find_function ge ros rs = Some fd ->
  match ros with inl r => regset_inject j rs trs | inr id => kept id end ->
  find_function tge ros trs = Some fd /\ (forall id, ref_fundef fd id -> kept id).
Proof.
  intros. destruct ros as [r|id]; simpl in *.
- exploit Genv.find_funct_inv; eauto. intros (b & R). rewrite R in H0.
  rewrite Genv.find_funct_find_funct_ptr in H0.
  specialize (H1 r). rewrite R in H1. inv H1.
  rewrite Genv.find_funct_ptr_iff in H0.
  exploit defs_inject; eauto. intros (A & B & C).
  rewrite <- Genv.find_funct_ptr_iff in A.
  rewrite B; auto.
- destruct (Genv.find_symbol ge id) as [b|] eqn:FS; try discriminate.
  exploit symbols_inject_2; eauto. intros (tb & P & Q). rewrite P.
  rewrite Genv.find_funct_ptr_iff in H0.
  exploit defs_inject; eauto. intros (A & B & C).
  rewrite <- Genv.find_funct_ptr_iff in A.
  auto.
Qed.

Lemma stack_equiv_inv_step:
  forall S1 t S2
    (STEP: step fn_stack_requirements ge S1 t S2)
    S1' (MS: match_states S1 S1')
    S2' (STEP': step fn_stack_requirements tge S1' t S2')
    (SEI: stack_equiv_inv S1 S1'),
    stack_equiv_inv S2 S2'.
Proof.
  intros.
  inv STEP; inv MS; inv STEP'; try congruence;
    unfold stack_equiv_inv in *; simpl in *; repeat rewrite_stack_blocks; eauto using stack_equiv_tail.
  - rewrite H in H8; inv H8.
    edestruct find_function_inject as (FFT & KEPT').
    eapply match_stacks_preserves_globals; eauto.
    eauto. destr. eapply REGINJ.
    apply KEPT. red. exists pc. setoid_rewrite H. eexists; split; eauto. simpl. auto.
    rewrite FFT in H9; inv H9.
    repeat constructor; auto.
  - rewrite <- EQ0, <- EQ2.
    intros; eapply Mem.tailcall_stage_stack_equiv; eauto.
    repeat rewrite_stack_blocks. eauto.
  - intros A B; rewrite A , B in SEI.
    inv SEI; constructor; auto.
    constructor; auto.
    simpl. reflexivity. simpl. destruct LF2. auto.
Qed.

Lemma external_call_inject:
  forall ef vargs m1 t vres m2 f g m1' vargs',
  meminj_preserves_globals f ->
  external_call ef ge vargs m1 t vres m2 ->
  Mem.inject f g m1 m1' ->
  Val.inject_list f vargs vargs' ->
  exists f', exists vres', exists m2',
    external_call ef tge vargs' m1' t vres' m2'
    /\ Val.inject f' vres vres'
    /\ Mem.inject f' g m2 m2'
    /\ Mem.unchanged_on (loc_unmapped f) m1 m2
    /\ Mem.unchanged_on (loc_out_of_reach f m1) m1' m2'
    /\ inject_incr f f'
    /\ inject_separated f f' m1 m1'.
Proof.
  intros. eapply external_call_mem_inject_gen; eauto.
  apply globals_symbols_inject; auto.
Qed.

Lemma eval_builtin_arg_inject:
  forall rs sp m j g rs' sp' m' a v,
  eval_builtin_arg ge (fun r => rs#r) (Vptr sp Ptrofs.zero) m a v ->
  j sp = Some(sp', 0) ->
  meminj_preserves_globals j ->
  regset_inject j rs rs' ->
  Mem.inject j g m m' ->
  (forall id, In id (globals_of_builtin_arg a) -> kept id) ->
  exists v',
     eval_builtin_arg tge (fun r => rs'#r) (Vptr sp' Ptrofs.zero) m' a v'
  /\ Val.inject j v v'.
Proof.
  induction 1; intros SP GL RS MI K; simpl in K.
- exists rs'#x; split; auto. constructor.
- econstructor; eauto with barg.
- econstructor; eauto with barg.
- econstructor; eauto with barg.
- econstructor; eauto with barg.
- simpl in H. exploit Mem.load_inject; eauto. rewrite Zplus_0_r.
  intros (v' & A & B). exists v'; auto with barg.
- econstructor; split; eauto with barg. simpl. econstructor; eauto. rewrite Ptrofs.add_zero; auto.
- assert (Val.inject j (Senv.symbol_address ge id ofs) (Senv.symbol_address tge id ofs)).
  { unfold Senv.symbol_address; simpl; unfold Genv.symbol_address.
    destruct (Genv.find_symbol ge id) as [b|] eqn:FS; auto.
    exploit symbols_inject_2; eauto. intros (b' & A & B). rewrite A.
    econstructor; eauto. rewrite Ptrofs.add_zero; auto. }
  exploit Mem.loadv_inject; eauto. intros (v' & A & B). exists v'; auto with barg.
- econstructor; split; eauto with barg.
  unfold Senv.symbol_address; simpl; unfold Genv.symbol_address.
  destruct (Genv.find_symbol ge id) as [b|] eqn:FS; auto.
  exploit symbols_inject_2; eauto. intros (b' & A & B). rewrite A.
  econstructor; eauto. rewrite Ptrofs.add_zero; auto.
- destruct IHeval_builtin_arg1 as (v1' & A1 & B1); eauto using in_or_app.
  destruct IHeval_builtin_arg2 as (v2' & A2 & B2); eauto using in_or_app.
  exists (Val.longofwords v1' v2'); split; auto with barg.
  apply Val.longofwords_inject; auto.
Qed.

Lemma eval_builtin_args_inject:
  forall rs sp m j g rs' sp' m' al vl,
  eval_builtin_args ge (fun r => rs#r) (Vptr sp Ptrofs.zero) m al vl ->
  j sp = Some(sp', 0) ->
  meminj_preserves_globals j ->
  regset_inject j rs rs' ->
  Mem.inject j g m m' ->
  (forall id, In id (globals_of_builtin_args al) -> kept id) ->
  exists vl',
     eval_builtin_args tge (fun r => rs'#r) (Vptr sp' Ptrofs.zero) m' al vl'
  /\ Val.inject_list j vl vl'.
Proof.
  induction 1; intros.
- exists (@nil val); split; constructor.
- simpl in H5.
  exploit eval_builtin_arg_inject; eauto using in_or_app. intros (v1' & A & B).
  destruct IHlist_forall2 as (vl' & C & D); eauto using in_or_app.
  exists (v1' :: vl'); split; constructor; auto.
Qed.

Lemma ros_is_function_translated:
  forall j ros rs trs i s cs b1 b2,
    ros_is_function ge ros rs i ->
    match_stacks j s cs b1 b2 ->
    regset_inject j rs trs ->
    ros_is_function tge ros trs i.
Proof.
  destruct ros; simpl; intros; auto.
  destruct H as (b & o & PTR & FS).
  exploit H1. rewrite PTR. intro A; inv A. eexists; eexists; split; eauto.
  exploit symbols_inject_1.
  eapply match_stacks_preserves_globals; eauto. eauto. eauto. intuition.
Qed.

Theorem step_simulation:
  forall S1 t S2, step fn_stack_requirements ge S1 t S2 ->
             forall S1' (MS: match_states S1 S1')
               (SI2: stack_inv S1')
               (STRUCT: stack_equiv_inv S1 S1')
             ,
  exists S2', step fn_stack_requirements tge S1' t S2' /\ match_states S2 S2'.
Proof.
  induction 1; intros; inv MS; (* inv SI1; *) inv SI2; red in STRUCT; simpl in STRUCT.

- (* nop *)
  econstructor; split.
  eapply exec_Inop; eauto.
  econstructor; eauto.

- (* op *)
  assert (A: exists tv,
               eval_operation tge (Vptr tsp Ptrofs.zero) op trs##args tm = Some tv
            /\ Val.inject j v tv).
  { apply eval_operation_inj with (ge1 := ge) (m1 := m) (sp1 := Vptr sp0 Ptrofs.zero) (vl1 := rs##args).
    intros; eapply Mem.valid_pointer_inject_val; eauto.
    intros; eapply Mem.weak_valid_pointer_inject_val; eauto.
    intros; eapply Mem.weak_valid_pointer_inject_no_overflow; eauto.
    intros; eapply Mem.different_pointers_inject; eauto.
    intros. apply symbol_address_inject. eapply match_stacks_preserves_globals; eauto.
    apply KEPT. red. exists pc, (Iop op args res pc'); auto.
    econstructor; eauto.
    apply regs_inject; auto.
    assumption. }
  destruct A as (tv & B & C).
  econstructor; split. eapply exec_Iop; eauto.
  econstructor; eauto. apply set_reg_inject; auto.

- (* load *)
  assert (A: exists ta,
               eval_addressing tge (Vptr tsp Ptrofs.zero) addr trs##args = Some ta
            /\ Val.inject j a ta).
  { apply eval_addressing_inj with (ge1 := ge) (sp1 := Vptr sp0 Ptrofs.zero) (vl1 := rs##args).
    intros. apply symbol_address_inject. eapply match_stacks_preserves_globals; eauto.
    apply KEPT. red. exists pc, (Iload chunk addr args dst pc'); auto.
    econstructor; eauto.
    apply regs_inject; auto.
    assumption. }
  destruct A as (ta & B & C).
  exploit Mem.loadv_inject; eauto. intros (tv & D & E).
  econstructor; split. eapply exec_Iload; eauto.
  econstructor; eauto. apply set_reg_inject; auto.

- (* store *)
  assert (A: exists ta,
               eval_addressing tge (Vptr tsp Ptrofs.zero) addr trs##args = Some ta
            /\ Val.inject j a ta).
  { apply eval_addressing_inj with (ge1 := ge) (sp1 := Vptr sp0 Ptrofs.zero) (vl1 := rs##args).
    intros. apply symbol_address_inject. eapply match_stacks_preserves_globals; eauto.
    apply KEPT. red. exists pc, (Istore chunk addr args src pc'); auto.
    econstructor; eauto.
    apply regs_inject; auto.
    assumption. }
  destruct A as (ta & B & C).
  exploit Mem.storev_mapped_inject; eauto. intros (tm' & D & E).
  econstructor; split. eapply exec_Istore; eauto.
  econstructor; eauto.
  erewrite Mem.storev_stack; eauto.
    
- (* call *)
  exploit find_function_inject.
  eapply match_stacks_preserves_globals; eauto. eauto.
  destruct ros as [r|id0]. eauto. apply KEPT. red. econstructor; econstructor; split; eauto. simpl; auto.
  intros (A & B).
  econstructor; split. eapply exec_Icall; eauto.
  eapply ros_is_function_translated; eauto.
  econstructor; eauto.
  rewrite ! Mem.push_new_stage_nextblock.
  econstructor; eauto.
  change (Mem.valid_block m sp0); eapply Mem.valid_block_inject_1; eauto.
  change (Mem.valid_block tm tsp). eapply Mem.valid_block_inject_2; eauto.
  apply regs_inject; auto.
  apply Mem.push_new_stage_inject_flat. eauto.
  
- (* tailcall *)
  exploit find_function_inject.
  eapply match_stacks_preserves_globals; eauto. eauto.
  destruct ros as [r|id0]. eauto. apply KEPT. red. econstructor; econstructor; split; eauto. simpl; auto.
  intros (A & B).
  exploit Mem.free_parallel_inject; eauto. constructor. rewrite ! Zplus_0_r. intros (tm' & C & D).
  erewrite <- Mem.free_stack_blocks in D by eauto.
  destruct (Mem.tailcall_stage_inject_flat _ _ _ _ D H3) as (tm'' & E & F).
  {
    red. rewrite_stack_blocks. inv MSA1. constructor.
    unfold in_frames; simpl. unfold get_frame_blocks; rewrite BLOCKS. simpl.
    intros b [[]|[]].
    eapply Mem.free_no_perm_stack'; eauto.
  }
  econstructor; split.
  eapply exec_Itailcall; eauto.
  eapply ros_is_function_translated; eauto.
  econstructor; eauto.
  + apply match_stacks_bound with stk tsp; eauto.
    * erewrite Mem.tailcall_stage_nextblock; eauto.
      apply Plt_Ple. change (Mem.valid_block m' stk). eapply Mem.valid_block_inject_1; eauto.
    * erewrite Mem.tailcall_stage_nextblock; eauto.
      apply Plt_Ple. change (Mem.valid_block tm' tsp). eapply Mem.valid_block_inject_2; eauto.
  + apply regs_inject; auto.
  
- (* builtin *)
  exploit eval_builtin_args_inject; eauto.
  eapply match_stacks_preserves_globals; eauto.
  intros. apply KEPT. red. econstructor; econstructor; eauto.
  intros (vargs' & P & Q).
  exploit external_call_inject; eauto.
  eapply match_stacks_preserves_globals; eauto.
  apply Mem.push_new_stage_inject_flat. eauto.
  intros (j' & tv & tm' & A & B & C & D & E & F & G).
  erewrite external_call_stack_blocks in C. 2: eauto.
  edestruct Mem.unrecord_stack_block_inject_parallel_flat as (m2' & USB & INJ').
  apply C. eauto.
  econstructor; split.
  eapply exec_Ibuiltin; eauto.
  eapply match_states_regular with (j := j'); eauto.
  apply match_stacks_incr with j; auto.
  intros. exploit G; eauto. intros [U V].
  assert (Mem.valid_block m sp0) by (eapply Mem.valid_block_inject_1; eauto).
  assert (Mem.valid_block tm tsp) by (eapply Mem.valid_block_inject_2; eauto).
  unfold Mem.valid_block in *. rewrite Mem.push_new_stage_nextblock in U, V. xomega.
  apply set_res_inject; auto. apply regset_inject_incr with j; auto.
    
- (* cond *)
  assert (C: eval_condition cond trs##args tm = Some b).
  { eapply eval_condition_inject; eauto. apply regs_inject; auto. }
  econstructor; split.
  eapply exec_Icond with (pc' := if b then ifso else ifnot); eauto.
  econstructor; eauto.

- (* jumptbl *)
  generalize (REGINJ arg); rewrite H0; intros INJ; inv INJ.
  econstructor; split.
  eapply exec_Ijumptable; eauto.
  econstructor; eauto.

- (* return *)
  exploit Mem.free_parallel_inject; eauto. constructor. rewrite ! Zplus_0_r. intros (tm' & C & D).
  econstructor; split.
  eapply exec_Ireturn; eauto.
  econstructor; eauto.
  apply match_stacks_bound with stk tsp; eauto.
  apply Plt_Ple.
  change (Mem.valid_block m' stk). eapply Mem.valid_block_inject_1; eauto.
  apply Plt_Ple.
  change (Mem.valid_block tm' tsp). eapply Mem.valid_block_inject_2; eauto.
  destruct or; simpl; auto.
  rewrite_stack_blocks; auto.

- (* internal function *)
  exploit Mem.alloc_parallel_inject. eauto. eauto. apply Zle_refl. apply Zle_refl.
  intros (j' & tm' & tstk & C & D & E & F & G).
  assert (STK: stk = Mem.nextblock m) by (eapply Mem.alloc_result; eauto).
  assert (TSTK: tstk = Mem.nextblock tm) by (eapply Mem.alloc_result; eauto).
  assert (STACKS': match_stacks j' s ts stk tstk).
  { rewrite STK, TSTK.
    apply match_stacks_incr with j; auto.
    intros. destruct (eq_block b1 stk).
    subst b1. rewrite F in H2; inv H2. split; apply Ple_refl.
    rewrite G in H2 by auto. congruence. }
  
  edestruct (Mem.record_push_inject_flat_alloc m tm m' tm') as (m2' & RSB & INJ'); eauto.
  simpl. repeat rewrite_stack_blocks. apply Z.eq_le_incl. eauto using stack_equiv_fsize, stack_equiv_tail.
  econstructor; split.
  eapply exec_function_internal; eauto.
  eapply match_states_regular with (j := j'); eauto.
  apply init_regs_inject; auto. apply val_inject_list_incr with j; auto.
    
- (* external function *)
  exploit external_call_inject; eauto.
  eapply match_stacks_preserves_globals; eauto.
  intros (j' & tres & tm' & A & B & C & D & E & F & G).
  econstructor; split.
  eapply exec_function_external; eauto.
  eapply match_states_return with (j := j'); eauto.
  apply match_stacks_bound with (Mem.nextblock m) (Mem.nextblock tm).
  apply match_stacks_incr with j; auto.
  intros. exploit G; eauto. intros [P Q].
  unfold Mem.valid_block in *; xomega.
  eapply Ple_trans. eapply external_call_nextblock; eauto. xomega.
  eapply Ple_trans. eapply external_call_nextblock; eauto. xomega.
  rewrite_stack_blocks; auto.

- (* return *)
  inv STACKS.
  exploit Mem.unrecord_stack_block_inject_parallel_flat. 2: eauto. eauto.
  intros (m2' & USB & INJ).
  econstructor; split.
  eapply exec_return. eauto.
  econstructor; eauto. apply set_reg_inject; auto.
Qed.

Relating initial memory states


Lemma init_meminj_invert_strong:
  forall b b' delta,
  init_meminj b = Some(b', delta) ->
  delta = 0 /\
  exists id,
     Genv.find_symbol ge id = Some b
  /\ Genv.find_symbol tge id = Some b'
  /\ forall gd,
       Genv.find_def ge b = Some gd ->
       Genv.find_def tge b' = Some gd /\
       forall i, ref_def gd i -> kept i.
Proof.
  intros. exploit init_meminj_invert; eauto. intros (A & id & B & C).
  split; auto.
  esplit.
  split; eauto.
  split; eauto.
  intros gd Hgd.
  exploit defs_inject. apply init_meminj_preserves_globals.
  eauto. eauto. intros (X & _ & Y).
  eauto.
Qed.

Section INIT_MEM.

Variables m tm: mem.
Hypothesis IM: Genv.init_mem p = Some m.
Hypothesis TIM: Genv.init_mem tp = Some tm.

Lemma bytes_of_init_inject:
  forall il,
  (forall id, ref_init il id -> kept id) ->
  list_forall2 (memval_inject init_meminj) (Genv.bytes_of_init_data_list ge il) (Genv.bytes_of_init_data_list tge il).
Proof.
  induction il as [ | i1 il]; simpl; intros.
- constructor.
- apply list_forall2_app.
+ destruct i1; simpl; try (apply inj_bytes_inject).
  induction (Z.to_nat z); simpl; constructor. constructor. auto.
  destruct (Genv.find_symbol ge i) as [b|] eqn:FS.
  assert (kept i). { apply H. red. exists i0; auto with coqlib. }
  exploit symbols_inject_2. apply init_meminj_preserves_globals. eauto. eauto.
  intros (b' & A & B). rewrite A. apply inj_value_inject.
  econstructor; eauto. symmetry; apply Ptrofs.add_zero.
  destruct (Genv.find_symbol tge i) as [b'|] eqn:FS'.
  exploit symbols_inject_3. apply init_meminj_preserves_globals. eauto.
  intros (b & A & B). congruence.
  apply repeat_Undef_inject_self.
+ apply IHil. intros id [ofs IN]. apply H. exists ofs; auto with coqlib.
Qed.

Lemma list_forall2_same_prefix_length {A B: Type} (P: A -> B -> Prop) l1:
  forall l2 r1 r2,
    list_forall2 P (l1 ++ r1) (l2 ++ r2) ->
    length l1 = length l2 ->
    list_forall2 P l1 l2 /\ list_forall2 P r1 r2.
Proof.
  induction l1; destruct l2; simpl; try congruence.
  + split; auto.
    constructor.
  + inversion 1; subst.
    inversion 1; subst.
    exploit IHl1; eauto.
    destruct 1.
    split; auto.
    constructor; auto.
Qed.

Lemma init_mem_inj_2:
  Mem.inject init_meminj (flat_frameinj (length (Mem.stack m))) m tm.
Proof.
  apply Mem.zero_delta_inject.
- intros b1 b2 delta H.
  apply init_meminj_invert in H.
  destruct H; auto.
- intros b1 b2 H.
  apply init_meminj_invert in H.
  destruct H as (_ & id & Hsymb & Htsymb).
  split; eapply Genv.find_symbol_not_fresh; eauto.
- intros b1 [] H.
  apply init_meminj_invert in H.
  destruct H as (_ & id1 & Hid1 & Htid1).
  intros b2 H.
  apply init_meminj_invert in H.
  destruct H as (_ & id2 & Hid2 & Htid2).
  cut (id1 = id2); [ congruence | ].
  eapply Senv.find_symbol_injective with (t := Genv.to_senv tge); eauto.
- intros b1 b2 H o k p0 H0.
  apply init_meminj_invert_strong in H.
  destruct H as (_ & id & Hid & Htid & Htdef).
  destruct (Genv.find_def ge b1) as [ def | ] eqn:DEF.
  *
  specialize (Htdef _ (eq_refl _)).
  destruct Htdef as (Htdef & _).
  exploit (Genv.init_mem_characterization_gen p); eauto.
  exploit (Genv.init_mem_characterization_gen tp); eauto.
  destruct def as [f|v].
  + destruct 1 as (Htperm & Htperm_impl) .
    destruct 1 as (Hperm & Hperm_impl).
    apply Hperm_impl in H0.
    destruct H0; subst.
    apply Mem.perm_cur; auto.
  + destruct 1 as (Htperm & Htperm_impl & _).
    destruct 1 as (Hperm & Hperm_impl & _).
    apply Hperm_impl in H0.
    destruct H0 as (LE & ORD).
    eapply Htperm in LE.
    apply Mem.perm_cur; auto.
    eapply Mem.perm_implies; eauto.
  *
  exploit (Genv.init_mem_characterization_gen_strong p); eauto.
  intros [GINIT _].
  edestruct GINIT; eauto.
- intros b1 b2 H o k p0 H0.
  apply init_meminj_invert_strong in H.
  destruct H as (_ & id & Hid & Htid & Htdef).
  destruct (Genv.find_def ge b1) as [ def | ] eqn:DEF.
  *
  specialize (Htdef _ (eq_refl _)).
  destruct Htdef as (Htdef & _).
  exploit (Genv.init_mem_characterization_gen p); eauto.
  exploit (Genv.init_mem_characterization_gen tp); eauto.
  destruct def as [f|v].
  + destruct 1 as (Htperm & Htperm_impl).
    destruct 1 as (Hperm & Hperm_impl).
    apply Htperm_impl in H0.
    destruct H0; subst.
    left.
    apply Mem.perm_cur; auto.
  + destruct 1 as (Htperm & Htperm_impl & _).
    destruct 1 as (Hperm & Hperm_impl & _).
    apply Htperm_impl in H0.
    destruct H0 as (LE & ORD).
    eapply Hperm in LE.
    left.
    apply Mem.perm_cur; auto.
    eapply Mem.perm_implies; eauto.
  *
  exploit (Genv.init_mem_characterization_gen_strong p); eauto.
  intros [GINIT _].
  right; eauto.
- intros b1 b2 H o v1 H0.
  apply init_meminj_invert_strong in H.
  destruct H as (_ & id & Hid & Htid & Htdef).
  destruct (Genv.find_def ge b1) as [ def | ] eqn:DEF.
  *
  specialize (Htdef _ (eq_refl _)).
  destruct Htdef as (Htdef & Hkept).
  exploit (Genv.init_mem_characterization_gen p); eauto.
  exploit (Genv.init_mem_characterization_gen tp); eauto.
  destruct def as [f|v].
  + intros _.
    destruct 1 as (_ & Hperm).
    exfalso.
    apply Mem.loadbytes_range_perm in H0.
    assert (o <= o < o + 1) as Hrange by omega.
    apply H0 in Hrange.
    apply Hperm in Hrange.
    destruct Hrange; discriminate.
  + destruct 1 as (_ & _& _ & TREAD).
    destruct 1 as (_ & Hperm & _ & READ).
    generalize H0. intro H0_.
    apply Mem.loadbytes_range_perm in H0.
    assert (o <= o < o + 1) as Hrange by omega.
    apply H0 in Hrange.
    apply Hperm in Hrange.
    destruct Hrange as (LE & Hrange).
    assert (NO: gvar_volatile v = false).
    { unfold Genv.perm_globvar in Hrange. destruct (gvar_volatile v); auto. inv Hrange. }
    specialize (READ NO).
    specialize (TREAD NO).
    apply bytes_of_init_inject in Hkept.
    replace (init_data_list_size (gvar_init v))
    with
    (o + (init_data_list_size (gvar_init v) - o))
      in READ, TREAD
      by omega.
    apply Mem.loadbytes_split in READ; try omega.
    destruct READ as (b1l & b1r & Hb1l & Hb1r & EQ1).
    apply Mem.loadbytes_split in TREAD; try omega.
    destruct TREAD as (b2l & b2r & Hb2l & Hb2r & EQ2).
    apply Mem.loadbytes_length in Hb1l.
    apply Mem.loadbytes_length in Hb2l.
    fold ge in EQ1.
    rewrite EQ1 in Hkept.
    fold tge in EQ2.
    rewrite EQ2 in Hkept.
    apply list_forall2_same_prefix_length in Hkept; try congruence.
    destruct Hkept as (_ & Hkept).
    rewrite Z.add_0_l in Hb1r, Hb2r.
    replace (init_data_list_size (gvar_init v) - o)
    with (1 + (init_data_list_size (gvar_init v) - 1 - o))
      in Hb1r, Hb2r
      by omega.
    apply Mem.loadbytes_split in Hb1r; try omega.
    destruct Hb1r as (h1 & t1 & LOAD1 & _ & ?); subst.
    apply Mem.loadbytes_split in Hb2r; try omega.
    destruct Hb2r as (h2 & t2 & LOAD2 & _ & ?); subst.
    rewrite H0_ in LOAD1.
    inversion LOAD1; clear LOAD1; subst.
    generalize LOAD2. intro LOAD2_.
    apply Mem.loadbytes_length in LOAD2_.
    destruct h2 as [ | ? [ | ] ] ; try discriminate.
    inversion Hkept; subst.
    eauto.
  *
  apply Mem.loadbytes_range_perm in H0.
  exploit (Genv.init_mem_characterization_gen_strong p); eauto.
  intros [GINIT _].
  edestruct GINIT; eauto.
  eapply H0.
  instantiate (1 := o); omega.
- repeat rewrite_stack_blocks.
  unfold flat_frameinj; simpl.
  apply stack_inject_nil.

  destruct gd as [f|v].
+ intros (P2 & Q2) (P1 & Q1).
  apply Q1 in H0. destruct H0; discriminate.
+ intros (P2 & Q2 & R2 & S2) (P1 & Q1 & R1 & S1).
  apply Q1 in H0. destruct H0.
  assert (NO: gvar_volatile v = false).
  { unfold Genv.perm_globvar in H1. destruct (gvar_volatile v); auto. inv H1. }
Local Transparent Mem.loadbytes.
  generalize (S1 NO). unfold Mem.loadbytes. destruct Mem.range_perm_dec; intros E1; inv E1.
  generalize (S2 NO). unfold Mem.loadbytes. destruct Mem.range_perm_dec; intros E2; inv E2.
  rewrite Zplus_0_r.
  apply Mem_getN_forall2 with (p := 0) (n := nat_of_Z (init_data_list_size (gvar_init v))).
  rewrite H3, H4. apply bytes_of_init_inject. auto. 
  omega. 
  rewrite nat_of_Z_eq by (apply init_data_list_size_pos). omega. 
Qed.

Lemma init_mem_inj_2:
  Mem.inject init_meminj m tm.
Proof.
  constructor; intros.
- apply init_mem_inj_1.
- destruct (init_meminj b) as [[b' delta]|] eqn:INJ; auto.
  elim H. exploit init_meminj_invert; eauto. intros (A & id & B & C). 
  eapply Genv.find_symbol_not_fresh; eauto.
- exploit init_meminj_invert; eauto. intros (A & id & B & C). 
  eapply Genv.find_symbol_not_fresh; eauto.
- red; intros.
  exploit init_meminj_invert. eexact H0. intros (A1 & id1 & B1 & C1).
  exploit init_meminj_invert. eexact H1. intros (A2 & id2 & B2 & C2).
  destruct (ident_eq id1 id2). congruence. left; eapply Genv.global_addresses_distinct; eauto.
- exploit init_meminj_invert; eauto. intros (A & id & B & C). subst delta.
  split. omega. generalize (Ptrofs.unsigned_range_2 ofs). omega.
- exploit init_meminj_invert_strong; eauto. intros (A & id & gd & B & C & D & E & F).
  exploit (Genv.init_mem_characterization_gen p); eauto.
  exploit (Genv.init_mem_characterization_gen tp); eauto.
  destruct gd as [f|v].
+ intros (P2 & Q2) (P1 & Q1).
  apply Q2 in H0. destruct H0. subst. replace ofs with 0 by omega.
  left; apply Mem.perm_cur; auto.
+ intros (P2 & Q2 & R2 & S2) (P1 & Q1 & R1 & S1).
  apply Q2 in H0. destruct H0. subst.
  left. apply Mem.perm_cur. eapply Mem.perm_implies; eauto. 
  apply P1. omega.
*)Qed.

End INIT_MEM.

Lemma init_mem_exists:
  forall m, Genv.init_mem p = Some m ->
  exists tm, Genv.init_mem tp = Some tm.
Proof.
  intros. apply Genv.init_mem_exists.
  intros.
  assert (P: (prog_defmap tp)!id = Some (Gvar v)).
  { eapply prog_defmap_norepet; eauto. eapply match_prog_unique; eauto. }
  rewrite (match_prog_def _ _ _ TRANSF) in P. destruct (IS.mem id used) eqn:U; try discriminate.
  exploit Genv.init_mem_inversion; eauto. apply in_prog_defmap; eauto. intros [AL FV].
  split. auto.
  intros. exploit FV; eauto. intros (b & FS).
  apply transform_find_symbol_1 with b; auto.
  apply kept_closed with id (Gvar v).
  apply IS.mem_2; auto. auto. red. red. exists o; auto.
Qed.

Theorem init_mem_inject:
  forall m,
  Genv.init_mem p = Some m ->
  exists f tm, Genv.init_mem tp = Some tm /\ Mem.inject f (flat_frameinj (length (Mem.stack m))) m tm /\ meminj_preserves_globals f.
Proof.
  intros.
  exploit init_mem_exists; eauto. intros [tm INIT].
  exists init_meminj, tm.
  split. auto.
  split. eapply init_mem_inj_2; eauto.
  apply init_meminj_preserves_globals.
Qed.

Lemma transf_initial_states:
  forall S1, initial_state fn_stack_requirements p S1 -> exists S2, initial_state fn_stack_requirements tp S2 /\ match_states S1 S2.
Proof.
  intros. inv H. exploit init_mem_inject; eauto. intros (j & tm & A & B & C).
  exploit symbols_inject_2. eauto. eapply kept_main. eexact H1. intros (tb & P & Q).
  rewrite Genv.find_funct_ptr_iff in H2.
  exploit defs_inject. eauto. eexact Q. exact H2.
  intros (R & S & T).
  rewrite <- Genv.find_funct_ptr_iff in R.
  edestruct Mem.record_init_sp_inject as (m1' & RIS & INJ'); eauto.
  repeat rewrite_stack_blocks. omega.
  - exists (Callstate nil f nil (Mem.push_new_stage m1') (fn_stack_requirements (prog_main tp))); split.
    econstructor; eauto.
    + fold tge. erewrite match_prog_main by eauto. auto.
    + destruct TRANSF. rewrite match_prog_main0.
      econstructor; eauto.
      2: apply Mem.push_new_stage_inject_flat.
      2: rewrite_stack_blocks; simpl.
      2: rewrite frameinj_push_flat; eauto.
      constructor.
      * inv C; constructor; simpl.
        ++ intros id b0 b' delta JB FS.
           repeat destr_in JB; eauto.
           eapply Genv.find_symbol_not_fresh in FS; eauto.
           contradict FS; unfold Mem.valid_block. rewnb; xomega.
        ++ intros id b0 KEPT FS.
           destr; eauto. subst.
           eapply Genv.find_symbol_not_fresh in FS; eauto.
           contradict FS; unfold Mem.valid_block. rewnb; xomega.
        ++ intros id b' FS. edestruct symbols_inject_6 as (b0 & FS' & FF); eauto.
           eexists; split; eauto. destr. subst.
           eapply Genv.find_symbol_not_fresh in FS'; eauto.
           contradict FS'; unfold Mem.valid_block. rewnb; xomega.
        ++ intros b0 b' delta gd JB FD.
           repeat destr_in JB; eauto.
           eapply Genv.find_def_not_fresh in FD; eauto.
           contradict FD; unfold Mem.valid_block. rewnb; xomega.
        ++ intros b0 b' delta gd JB FD.
           repeat destr_in JB; eauto.
           eapply Genv.find_def_not_fresh in FD; eauto.
           contradict FD; unfold Mem.valid_block. rewnb; xomega.
      * unfold ge.
        unfold Mem.record_init_sp in H4; destr_in H4.
        rewnb. xomega.
      * unfold tge.
        unfold Mem.record_init_sp in RIS; destr_in RIS.
        rewnb. xomega.
Qed.

Lemma stack_equiv_inv_initial:
  forall S1 S2,
    initial_state fn_stack_requirements p S1 ->
    initial_state fn_stack_requirements tp S2 ->
    match_states S1 S2 ->
    stack_equiv_inv S1 S2.
Proof.
  intros S1 S2 IS1 IS2 MS.
  inv IS1; inv IS2; inv MS.
  red. simpl.
  repeat rewrite_stack_blocks.
  repeat constructor.
Qed.

Lemma transf_final_states:
  forall S1 S2 r,
  match_states S1 S2 -> final_state S1 r -> final_state S2 r.
Proof.
  intros. inv H0. inv H. inv STACKS. inv RESINJ. constructor.
Qed.

Lemma transf_program_correct_1:
  forward_simulation (semantics fn_stack_requirements p) (semantics fn_stack_requirements tp).
Proof.
  intros.
  eapply forward_simulation_step with (match_states := fun s1 s2 => match_states s1 s2 /\ stack_equiv_inv s1 s2 /\ stack_inv s2).
  - exploit globals_symbols_inject. apply init_meminj_preserves_globals. intros [A B]. exact A.
  - simpl; intros s1 IS. edestruct transf_initial_states as (s2 & IS2 & MS); eauto.
    exploit stack_equiv_inv_initial; eauto. intro SEI.
    eexists; split; eauto. split; auto. split; auto.
    eapply stack_inv_initial; eauto.
  - intros s1 s2 r (MS & _) FS.
    eapply transf_final_states; eauto.
  - simpl. intros s1 t s1' STEP s2 (MS & SEI & SI2).
    edestruct step_simulation as (s2' & STEP' & MS'); eauto.
    eexists; split; eauto.
    split. auto.
    split. eapply stack_equiv_inv_step; eauto.
    eapply stack_inv_inv; eauto.
Qed.

End SOUNDNESS.

Theorem transf_program_correct:
  forall p tp, match_prog p tp -> forward_simulation (semantics fn_stack_requirements p) (semantics fn_stack_requirements tp).
Proof.
  intros p tp (used & A & B). apply transf_program_correct_1 with used; auto.
Qed.

End WITHEXTERNALCALLS.

Commutation with linking


Remark link_def_either:
  forall (gd1 gd2 gd: globdef fundef unit),
  link_def gd1 gd2 = Some gd -> gd = gd1 \/ gd = gd2.
Proof with
(try discriminate).
  intros until gd.
Local Transparent Linker_def Linker_fundef Linker_varinit Linker_vardef Linker_unit.
  destruct gd1 as [f1|v1], gd2 as [f2|v2]...
 Two fundefs *)  destruct f1 as [f1|ef1], f2 as [f2|ef2]; simpl...
  destruct ef2; intuition congruence.
  destruct ef1; intuition congruence.
  destruct (external_function_eq ef1 ef2); intuition congruence.
 Two vardefs *)  simpl. unfold link_vardef. destruct v1 as [info1 init1 ro1 vo1], v2 as [info2 init2 ro2 vo2]; simpl.
  destruct (link_varinit init1 init2) as [init|] eqn:LI...
  destruct (eqb ro1 ro2) eqn:RO...
  destruct (eqb vo1 vo2) eqn:VO...
  simpl.
  destruct info1, info2.
  assert (EITHER: init = init1 \/ init = init2).
  { revert LI. unfold link_varinit.
    destruct (classify_init init1), (classify_init init2); intro EQ; inv EQ; auto.
    destruct (zeq sz (Z.max sz0 0 + 0)); inv H0; auto.
    destruct (zeq sz (init_data_list_size il)); inv H0; auto.
    destruct (zeq sz (init_data_list_size il)); inv H0; auto. }
  apply eqb_prop in RO. apply eqb_prop in VO.
  intro EQ; inv EQ. destruct EITHER; subst init; auto.
Qed.

Remark used_not_defined:
  forall p used id,
  valid_used_set p used ->
  (prog_option_defmap p)!id = None ->
  IS.mem id used = false \/ id = prog_main p.
Proof.
  intros. destruct (IS.mem id used) eqn:M; auto.
  exploit used_defined; eauto using IS.mem_2. intros [A|A]; auto.
  apply prog_option_defmap_dom in A. destruct A as [g E]; congruence.
Qed.

Remark used_not_defined_2:
  forall p used id,
  valid_used_set p used ->
  id <> prog_main p ->
  (prog_option_defmap p)!id = None ->
  ~IS.In id used.
Proof.
  intros. exploit used_not_defined; eauto. intros [A|A].
  red; intros; apply IS.mem_1 in H2; congruence.
  congruence.
Qed.

Lemma link_valid_used_set:
  forall p1 p2 p used1 used2,
  link p1 p2 = Some p ->
  valid_used_set p1 used1 ->
  valid_used_set p2 used2 ->
  valid_used_set p (IS.union used1 used2).
Proof.
  intros until used2; intros L V1 V2.
  destruct (link_prog_inv_strong _ _ _ L) as (X & Y & Z).
  rewrite Z; clear Z; constructor.
- intros. rewrite ISF.union_iff in H. rewrite ISF.union_iff.
  apply prog_defmap_option_defmap in H0.
  rewrite prog_option_defmap_elements, PTree.gcombine in H0.
  destruct (prog_option_defmap p1)!id as [[gd1|]|] eqn:GD1;
  destruct (prog_option_defmap p2)!id as [[gd2|]|] eqn:GD2;
  simpl in H0; try discriminate.
+ (* common definition *)
  apply prog_defmap_option_defmap in GD1.
  apply prog_defmap_option_defmap in GD2.
  exploit Y; eauto. intros (PUB1 & PUB2 & _).
  destruct (link_def gd1 gd2) eqn:LINK; try discriminate.
  inv H0.
  exploit link_def_either; eauto. intros [EQ|EQ]; subst gd.
* left. eapply used_closed. eexact V1. eapply used_public. eexact V1. eauto. eauto. auto.
* right. eapply used_closed. eexact V2. eapply used_public. eexact V2. eauto. eauto. auto.
+ (* left definition *)
  apply prog_defmap_option_defmap in GD1.
  inv H0. destruct (ISP.In_dec id used1).
* left; eapply used_closed; eauto.
* assert (IS.In id used2) by tauto.
  exploit used_defined_strong. eexact V2. eauto. intros [A|A].
  destruct ((prog_defmap p2) ! id) eqn:DEF2 ; try congruence.
  apply prog_defmap_option_defmap in DEF2. congruence.
  elim n. rewrite A, <- X. eapply used_main; eauto.
+ (* left definition, reloaded *)
  apply prog_defmap_option_defmap in GD1.
  inv H0. destruct (ISP.In_dec id used1).
* left; eapply used_closed; eauto.
* assert (IS.In id used2) by tauto.
  exploit used_defined_strong. eexact V2. eauto. intros [A|A].
  destruct ((prog_defmap p2) ! id) eqn:DEF2 ; try congruence.
  apply prog_defmap_option_defmap in DEF2. congruence.
  elim n. rewrite A, <- X. eapply used_main; eauto.
+ (* right definition *)
  apply prog_defmap_option_defmap in GD2.
  inv H0. destruct (ISP.In_dec id used2).
* right; eapply used_closed; eauto.
* assert (IS.In id used1) by tauto.
  exploit used_defined_strong. eexact V1. eauto. intros [A|A].
  destruct ((prog_defmap p1) ! id) eqn:DEF1 ; try congruence.
  apply prog_defmap_option_defmap in DEF1. congruence.
  elim n. rewrite A, X. eapply used_main; eauto.
+ (* right definition, reloaded *)
  apply prog_defmap_option_defmap in GD2.
  inv H0. destruct (ISP.In_dec id used2).
* right; eapply used_closed; eauto.
* assert (IS.In id used1) by tauto.
  exploit used_defined_strong. eexact V1. eauto. intros [A|A].
  destruct ((prog_defmap p1) ! id) eqn:DEF1 ; try congruence.
  apply prog_defmap_option_defmap in DEF1. congruence.
  elim n. rewrite A, X. eapply used_main; eauto.
+ (* no definition *)
  auto.
- simpl. rewrite ISF.union_iff; left; eapply used_main; eauto.
- simpl. intros id. rewrite in_app_iff, ISF.union_iff.
  intros [A|A]; [left|right]; eapply used_public; eauto.
- intros. rewrite ISF.union_iff in H.
  destruct (ident_eq id (prog_main p1)).
+ right; assumption.
+ assert (E: exists g, link_prog_merge (prog_option_defmap p1)!id (prog_option_defmap p2)!id = Some g).
  { destruct (prog_option_defmap p1)!id as [[gd1|]|] eqn:GD1;
    destruct (prog_option_defmap p2)!id as [[gd2|]|] eqn:GD2; simpl; eauto.
  * apply prog_defmap_option_defmap in GD1.
    apply prog_defmap_option_defmap in GD2.
    exploit Y; eauto.
    destruct 1 as (_ & _ & gd & Hgd).
    simpl in Hgd.
    rewrite Hgd.
    eauto.
  * eapply used_not_defined_2 in GD1; eauto. eapply used_not_defined_2 in GD2; eauto.
    tauto.
    congruence.
  }
  destruct E as [g LD].
  simpl.
  left.
  match goal with
    |- (prog_defmap ?q) ! id <> None =>
    cut (exists g, (prog_option_defmap q) ! id = Some (Some g))
  end.
  { destruct 1 as (g_ & Hg_).
    apply prog_defmap_option_defmap in Hg_.
    congruence. }
  rewrite prog_option_defmap_elements.
  rewrite PTree.gcombine; auto.
  destruct g; eauto.
  exfalso.
  destruct H.
  { exploit used_defined_strong; (try eexact H); eauto.
    destruct 1; try contradiction.
    destruct ((prog_defmap p1) ! id) eqn:EQ; try congruence.
    apply prog_defmap_option_defmap in EQ.
    rewrite EQ in LD.
    destruct ((prog_option_defmap p2) ! id) as [ [ | ] | ] ; try discriminate.
    simpl in LD. destruct (link_def _ _); discriminate.
  }
  exploit used_defined_strong; (try eexact H); eauto.
  destruct 1; try congruence.
  destruct ((prog_defmap p2) ! id) eqn:EQ; try congruence.
  apply prog_defmap_option_defmap in EQ.
  rewrite EQ in LD.
  destruct ((prog_option_defmap p1) ! id) as [ [ | ] | ] ; try discriminate.
  simpl in LD. destruct (link_def _ _); discriminate.
Qed.

Theorem link_match_program:
  forall p1 p2 tp1 tp2 p,
  link p1 p2 = Some p ->
  match_prog p1 tp1 -> match_prog p2 tp2 ->
  exists tp, link tp1 tp2 = Some tp /\ match_prog p tp.
Proof.
  intros. destruct H0 as (used1 & A1 & B1). destruct H1 as (used2 & A2 & B2).
  destruct (link_prog_inv _ _ _ H) as (U & V & W).
  econstructor; split.
- apply link_prog_succeeds.
+ rewrite (match_prog_main _ _ _ B1), (match_prog_main _ _ _ B2). auto.
+ intros.
  rewrite (match_prog_option_def _ _ _ B1) in H0.
  rewrite (match_prog_option_def _ _ _ B2) in H1.
  destruct (IS.mem id used1) eqn:U1; try discriminate.
  destruct (IS.mem id used2) eqn:U2; try discriminate.
  edestruct V as (X & Y & gd & Z); eauto.
  split. rewrite (match_prog_public _ _ _ B1); auto.
  split. rewrite (match_prog_public _ _ _ B2); auto.
  congruence.
- exists (IS.union used1 used2); split.
+ eapply link_valid_used_set; eauto.
+ rewrite W. constructor; simpl; intros.
* eapply match_prog_main; eauto.
* rewrite (match_prog_public _ _ _ B1), (match_prog_public _ _ _ B2). auto.
* rewrite ! prog_option_defmap_elements, !PTree.gcombine by auto.
  rewrite (match_prog_option_def _ _ _ B1 id), (match_prog_option_def _ _ _ B2 id).
  rewrite ISF.union_b.
{
  destruct (prog_option_defmap p1)!id as [gd1|] eqn:GD1;
  destruct (prog_option_defmap p2)!id as [gd2|] eqn:GD2.
- (* both defined *)
  exploit V; eauto. intros (PUB1 & PUB2 & _).
  assert (EQ1: IS.mem id used1 = true) by (apply IS.mem_1; eapply used_public; eauto).
  assert (EQ2: IS.mem id used2 = true) by (apply IS.mem_1; eapply used_public; eauto).
  rewrite EQ1, EQ2; auto.
- (* left defined *)
  exploit used_not_defined; eauto. intros [A|A].
  rewrite A, orb_false_r. destruct (IS.mem id used1); auto.
  replace (IS.mem id used1) with true. destruct (IS.mem id used2); auto.
  symmetry. apply IS.mem_1. rewrite A, <- U. eapply used_main; eauto.
- (* right defined *)
  exploit used_not_defined. eexact A1. eauto. intros [A|A].
  rewrite A, orb_false_l. destruct (IS.mem id used2); auto.
  replace (IS.mem id used2) with true. destruct (IS.mem id used1); auto.
  symmetry. apply IS.mem_1. rewrite A, U. eapply used_main; eauto.
- (* none defined *)
  destruct (IS.mem id used1), (IS.mem id used2); auto.
}
* intros. apply PTree.elements_keys_norepet.
Qed.

Instance TransfSelectionLink : TransfLink match_prog := link_match_program.