Library compcert.lib.Axioms


This file collects some axioms used throughout the CompCert development.

Extensionality axioms

The Require FunctionalExtensionality gives us functional extensionality for dependent function types:

Lemma functional_extensionality_dep:
   {A: Type} {B : A Type} (f g : x : A, B x),
  ( x, f x = g x) f = g.
Proof @FunctionalExtensionality.functional_extensionality_dep.

and, as a corollary, functional extensionality for non-dependent functions:

Lemma functional_extensionality:
   {A B: Type} (f g : A B), ( x, f x = g x) f = g.
Proof @FunctionalExtensionality.functional_extensionality.

For compatibility with earlier developments, extensionality is an alias for functional_extensionality.

Lemma extensionality:
   {A B: Type} (f g : A B), ( x, f x = g x) f = g.
Proof @functional_extensionality.

Proof irrelevance

We also use proof irrelevance.