Library coqrel.KLR
Kripke logical relations generalize logical relations along the
lines of the Kripke semantics of modal logic. A Kripke logical
relation is indexed by a set of worlds equipped with an
accessibility relation.
This is useful when reasoning about stateful systems, because in
that context the way we want to relate different components may
evolve with the system state. Then, the Kripke world is essentially
the relational counterpart to the state of the system, and the
accessibility relation specifies how this world may evolve alongside
the state (it denotes a notion of "possible future", for instance).
Kripke frames specify the set of worlds over which a KLR is
indexed and an associated accessibility relation. For a given Kripke
frame, the type klr is a W-indexed version of rel.
Kripke frames and logical relations
Definition klr W A B: Type :=
W → rel A B.
Class KripkeFrame (L: Type) (W: Type) :=
{
acc: L → rel W W;
}.
Infix "~>" := (acc tt) (at level 70).
Delimit Scope klr_scope with klr.
Bind Scope klr_scope with klr.
Inductive klr_sum {WA A1 A2 WB B1 B2} RA RB: klr (WA + WB) (A1 + B1) (A2 + B2) :=
| klr_inl w a1 a2 :
RA w a1 a2 →
klr_sum RA RB (inl w) (inl a1) (inl a2)
| klr_inr w b1 b2 :
RB w b1 b2 →
klr_sum RA RB (inr w) (inr b1) (inr b2).
Kripke relators
Lifted relators
Lifiting operators
For elementary relations, the corresponding Kripke relation can
just ignore the Kripke world.
Definition k (R: rel A B): klr W A B :=
fun w ⇒ R.
Global Instance k_rel var:
Monotonic k (var ++> - ==> var).
Proof.
unfold k; rauto.
Qed.
Lemma k_rintro R (w: W) (x: A) (y: B):
RIntro (R x y) (k R w) x y.
Proof.
firstorder.
Qed.
Lemma k_relim (R: rel A B) w x y P Q:
RElim R x y P Q →
RElim (k R w) x y P Q.
Proof.
tauto.
Qed.
For relators of higher arities, we let the original relator RR
operate independently at each world w.
Definition k1 RR (R1: klr W A1 B1): klr W A B :=
fun w ⇒ RR (R1 w).
Global Instance k1_rel var1 var:
Monotonic k1 ((var1 ++> var) ++> ((- ==> var1) ++> (- ==> var))).
Proof.
unfold k1; rauto.
Qed.
Lemma k1_rintro RR (R1: klr W A1 B1) w x y:
RIntro (RR (R1 w) x y) (k1 RR R1 w) x y.
Proof.
firstorder.
Qed.
Lemma k1_relim RR (R1: klr W A1 B1) w x y P Q:
RElim (RR (R1 w)) x y P Q →
RElim (k1 RR R1 w) x y P Q.
Proof.
tauto.
Qed.
Definition k2 RR (R1: klr W A1 B1) (R2: klr W A2 B2): klr W A B :=
fun w ⇒ RR (R1 w) (R2 w).
Global Instance k2_rel var1 var2 var:
Monotonic k2
((var1 ++> var2 ++> var) ++>
((- ==> var1) ++> (- ==> var2) ++> (- ==> var))).
Proof.
unfold k2; rauto.
Qed.
Lemma k2_rintro RR (R1: klr W A1 B1) (R2: klr W A2 B2) w x y:
RIntro (RR (R1 w) (R2 w) x y) (k2 RR R1 R2 w) x y.
Proof.
firstorder.
Qed.
Lemma k2_relim RR (R1: klr W A1 B1) (R2: klr W A2 B2) w x y P Q:
RElim (RR (R1 w) (R2 w)) x y P Q →
RElim (k2 RR R1 R2 w) x y P Q.
Proof.
tauto.
Qed.
Global Instance k2_unfold RR (R1: klr W A1 B1) (R2: klr W A2 B2) w:
Related (RR (R1 w) (R2 w)) (k2 RR R1 R2 w) subrel.
Proof.
red. reflexivity.
Qed.
End LIFT.
Global Instance k_rel_params: Params (@k) 4.
Global Instance k1_rel_params: Params (@k1) 5.
Global Instance k2_rel_params: Params (@k2) 6.
Hint Extern 0 (RIntro _ (k _ _) _ _) ⇒
eapply k_rintro : typeclass_instances.
Hint Extern 1 (RElim (k _ _) _ _ _ _) ⇒
eapply k_relim : typeclass_instances.
Hint Extern 0 (RIntro _ (k1 _ _ _) _ _) ⇒
eapply k1_rintro : typeclass_instances.
Hint Extern 1 (RElim (k1 _ _ _) _ _ _ _) ⇒
eapply k1_relim : typeclass_instances.
Hint Extern 0 (RIntro _ (k2 _ _ _ _) _ _) ⇒
eapply k2_rintro : typeclass_instances.
Hint Extern 1 (RElim (k2 _ _ _ _) _ _ _ _) ⇒
eapply k2_relim : typeclass_instances.
Usual relators
Section USUAL.
Context `{kf: KripkeFrame}.
Definition arrow_klr {A1 A2 B1 B2} :=
k2 (W:=W) (@arrow_rel A1 A2 B1 B2).
Definition arrow_pointwise_klr A {B1 B2} :=
k1 (W:=W) (@arrow_pointwise_rel A B1 B2).
Definition prod_klr {A1 A2 B1 B2} :=
k2 (W:=W) (@prod_rel A1 A2 B1 B2).
Definition sum_klr {A1 A2 B1 B2} :=
k2 (W:=W) (@sum_rel A1 A2 B1 B2).
Definition list_klr {A1 A2} :=
k1 (W:=W) (@list_rel A1 A2).
Definition set_kle {A B} (R: klr W A B): klr W (A → Prop) (B → Prop) :=
fun w sA sB ⇒ ∀ a, sA a → ∃ b, sB b ∧ R w a b.
Definition set_kge {A B} (R: klr W A B): klr W (A → Prop) (B → Prop) :=
fun w sA sB ⇒ ∀ b, sB b → ∃ a, sA a ∧ R w a b.
Definition klr_union {W A B} :=
k2 (W:=W) (@rel_union A B).
Definition klr_inter {W A B} :=
k2 (W:=W) (@rel_inter A B).
Definition klr_curry {W A1 B1 C1 A2 B2 C2} :=
k1 (W:=W) (@rel_curry A1 B1 C1 A2 B2 C2).
End USUAL.
Notation "RA ==> RB" := (arrow_klr RA RB)
(at level 55, right associativity) : klr_scope.
Notation "RA ++> RB" := (arrow_klr RA RB)
(at level 55, right associativity) : klr_scope.
Notation "RA --> RB" := (arrow_klr (k1 flip RA) RB)
(at level 55, right associativity) : klr_scope.
Notation "- ==> R" := (arrow_pointwise_klr _ R) : klr_scope.
Infix "×" := prod_klr : klr_scope.
Infix "+" := sum_klr : klr_scope.
Infix "∨" := klr_union : klr_scope.
Infix "∧" := klr_inter : klr_scope.
Notation "% R" := (klr_curry R) : klr_scope.
Hint Extern 0 (RIntro _ (arrow_klr _ _ _) _ _) ⇒
eapply k2_rintro : typeclass_instances.
Hint Extern 1 (RElim (arrow_klr _ _ _) _ _ _ _) ⇒
eapply k2_relim : typeclass_instances.
Hint Extern 0 (RIntro _ (arrow_pointwise_klr _ _ _) _ _) ⇒
eapply k1_rintro : typeclass_instances.
Hint Extern 1 (RElim (arrow_pointwise_klr _ _ _) _ _ _ _) ⇒
eapply k1_relim : typeclass_instances.
Hint Extern 0 (RIntro _ (prod_klr _ _ _) _ _) ⇒
eapply k2_rintro : typeclass_instances.
Hint Extern 1 (RElim (prod_klr _ _ _) _ _ _ _) ⇒
eapply k2_relim : typeclass_instances.
Hint Extern 0 (RIntro _ (sum_klr _ _ _) _ _) ⇒
eapply k2_rintro : typeclass_instances.
Hint Extern 1 (RElim (sum_klr _ _ _) _ _ _ _) ⇒
eapply k2_relim : typeclass_instances.
Hint Extern 0 (RIntro _ (list_klr _ _) _ _) ⇒
eapply k1_rintro : typeclass_instances.
Hint Extern 1 (RElim (list_klr _ _) _ _ _ _) ⇒
eapply k1_relim : typeclass_instances.
Hint Extern 0 (RIntro _ (klr_curry _ _) _ _) ⇒
eapply k1_rintro : typeclass_instances.
Hint Extern 1 (RElim (klr_curry _ _) _ _ _ _) ⇒
eapply k1_relim : typeclass_instances.
Modal relators
The box modality asserts that the relation holds at all
possible future worlds.
Definition klr_box {A B} (l: L) (R: klr W A B): klr W A B :=
fun w x y ⇒ ∀ w', acc l w w' → R w' x y.
Global Instance klr_box_subrel {A B}:
Monotonic (@klr_box A B) (- ==> (- ==> subrel) ++> (- ==> subrel)).
Proof.
firstorder.
Qed.
Lemma klr_box_rintro {A B} l (R: klr W A B) w x y:
RIntro (∀ w' (Hw': acc l w w'), R w' x y) (klr_box l R w) x y.
Proof.
firstorder.
Qed.
Lemma klr_box_relim {A B} l (R: klr W A B) w w' x y P Q:
RElim (R w') x y P Q →
RElim (klr_box l R w) x y (acc l w w' ∧ P) Q.
Proof.
intros H Hxy [Hw' HP].
apply H; auto.
Qed.
Dually, the diamond modality asserts that the relation holds at
some possible future world. Note the order of the premises in our
intro rule: we want to first determine what w' should be, then
attempt to prove w ~> w'.
Definition klr_diam {A B} (l: L) (R: klr W A B): klr W A B :=
fun w x y ⇒ ∃ w', acc l w w' ∧ R w' x y.
Global Instance klr_diam_subrel {A B}:
Monotonic (@klr_diam A B) (- ==> (- ==> subrel) ++> (- ==> subrel)).
Proof.
firstorder.
Qed.
Lemma klr_diam_rintro {A B} l (R: klr W A B) w w' x y:
RExists (R w' x y ∧ acc l w w') (klr_diam l R w) x y.
Proof.
firstorder.
Qed.
Lemma klr_diam_relim {A B} l (R: klr W A B) w x y P Q:
(∀ w', acc l w w' → RElim (R w') x y P Q) →
RElim (klr_diam l R w) x y P Q.
Proof.
intros H (w' & Hw' & Hxy) HP.
eapply H; eauto.
Qed.
End MODALITIES.
Global Instance klr_box_subrel_params: Params (@klr_box) 4.
Global Instance klr_diam_subrel_params: Params (@klr_diam) 4.
Hint Extern 0 (RIntro _ (klr_box _ _ _) _ _) ⇒
eapply klr_box_rintro : typeclass_instances.
Hint Extern 1 (RElim (klr_box _ _ _) _ _ _ _) ⇒
eapply klr_box_relim : typeclass_instances.
Hint Extern 0 (RExists _ (klr_diam _ _ _) _ _) ⇒
eapply klr_diam_rintro : typeclass_instances.
Hint Extern 1 (RElim (klr_diam _ _ _) _ _ _ _) ⇒
eapply klr_diam_relim : typeclass_instances.
Notation "[ l ] R" := (klr_box l R) (at level 65) : klr_scope.
Notation "< l > R" := (klr_diam l R) (at level 65) : klr_scope.
Notation "[] R" := (klr_box tt R) (at level 65) : klr_scope.
Notation "<> R" := (klr_diam tt R) (at level 65) : klr_scope.
For Kripke frames indexed by pairs, the following variants allow
the components being related to access the labels used for transitions.
Section ARROW_MOD.
Context {W L1 L2} `{kf: KripkeFrame (L1 × L2) W}.
Definition klr_boxto {A B} (R : klr W A B) : klr W (L1 → A) (L2 → B) :=
fun w f g ⇒
∀ l1 l2 w', acc (l1, l2) w w' → R w' (f l1) (g l2).
Definition klr_diamat {A B} (R : klr W A B) : klr W (L1 × A) (L2 × B) :=
fun w '(l1, a) '(l2, b) ⇒
∃ w', acc (l1, l2) w w' ∧ R w' a b.
End ARROW_MOD.
Notation "[] -> R" := (klr_boxto R) (at level 65) : klr_scope.
Notation "<> * R" := (klr_diamat R) (at level 65) : klr_scope.
Section UNKRIPKIFY.
Context `{kf: KripkeFrame}.
Definition rel_kvd {A B} (R: klr W A B): rel A B :=
fun x y ⇒ ∀ w, R w x y.
Global Instance rel_kvd_subrel A B:
Monotonic (@rel_kvd A B) ((- ==> subrel) ++> subrel).
Proof.
firstorder.
Qed.
Lemma rel_kvd_rintro {A B} (R: klr W A B) x y:
RIntro (∀ w, R w x y) (rel_kvd R) x y.
Proof.
firstorder.
Qed.
Lemma rel_kvd_relim {A B} (R: klr W A B) w x y P Q:
RElim (R w) x y P Q →
RElim (rel_kvd R) x y P Q.
Proof.
firstorder.
Qed.
End UNKRIPKIFY.
Global Instance rel_kvd_subrel_params: Params (@rel_kvd) 3.
Hint Extern 0 (RIntro _ (rel_kvd _) _ _) ⇒
eapply rel_kvd_rintro : typeclass_instances.
Hint Extern 1 (RElim (rel_kvd _) _ _ _ _) ⇒
eapply rel_kvd_relim : typeclass_instances.
Notation "|= R" := (rel_kvd R) (at level 65) : rel_scope.
Definition klr_pullw {W1 W2 A B} (f: W1 → W2) (R: klr W2 A B): klr W1 A B :=
fun w ⇒ R (f w).
Notation "R @@ [ f ]" := (klr_pullw f R)
(at level 30, right associativity) : klr_scope.
Global Instance klr_pullw_subrel {W1 W2 A B} RW1 RW2:
Monotonic
(@klr_pullw W1 W2 A B)
((RW1 ++> RW2) ++> (RW2 ++> subrel) ++> (RW1 ++> subrel)).
Proof.
unfold klr_pullw. rauto.
Qed.
Global Instance klr_pullw_subrel_params:
Params (@klr_pullw) 5.
Lemma klr_pullw_rintro {W1 W2 A B} (f: W1 → W2) R w (x:A) (y:B):
RIntro (R (f w) x y) (klr_pullw f R w) x y.
Proof.
firstorder.
Qed.
Hint Extern 0 (RIntro _ (klr_pullw _ _ _) _ _) ⇒
eapply klr_pullw_rintro : typeclass_instances.
Lemma klr_pullw_relim {W1 W2 A B} (f: W1 → W2) R w (x:A) (y:B) P Q:
RElim (R (f w)) x y P Q →
RElim (klr_pullw f R w) x y P Q.
Proof.
firstorder.
Qed.
Hint Extern 1 (RElim (klr_pullw _ _ _) _ _ _ _) ⇒
eapply klr_pullw_relim : typeclass_instances.