Library coqrel.KLR

Require Export Monotonicity.

Kripke logical relations generalize logical relations along the lines of the Kripke semantics of modal logic. A Kripke logical relation is indexed by a set of worlds equipped with an accessibility relation.
This is useful when reasoning about stateful systems, because in that context the way we want to relate different components may evolve with the system state. Then, the Kripke world is essentially the relational counterpart to the state of the system, and the accessibility relation specifies how this world may evolve alongside the state (it denotes a notion of "possible future", for instance).

Kripke frames and logical relations

Kripke frames specify the set of worlds over which a KLR is indexed and an associated accessibility relation. For a given Kripke frame, the type klr is a W-indexed version of rel.

Definition klr W A B: Type :=
  W rel A B.

Class KripkeFrame (L: Type) (W: Type) :=
  {
    acc: L rel W W;
  }.

Infix "~>" := (acc tt) (at level 70).

Delimit Scope klr_scope with klr.
Bind Scope klr_scope with klr.

Operations on KLRs


Inductive klr_sum {WA A1 A2 WB B1 B2} RA RB: klr (WA + WB) (A1 + B1) (A2 + B2) :=
  | klr_inl w a1 a2 :
      RA w a1 a2
      klr_sum RA RB (inl w) (inl a1) (inl a2)
  | klr_inr w b1 b2 :
      RB w b1 b2
      klr_sum RA RB (inr w) (inr b1) (inr b2).

Kripke relators

Just like relators allow us to construct complex relations from simpler ones in a structure-preserving way, Kripke relators allow us to build complex Kripke relations from simpler Kripke relations.

Lifted relators

First, we lift usual relators to obtain a Kripke version, basically as the pointwise extension over worlds of the original ones.

Lifiting operators


Section LIFT.
  Context `{kf: KripkeFrame}.
  Context {A1 B1 A2 B2 A B: Type}.

For elementary relations, the corresponding Kripke relation can just ignore the Kripke world.

  Definition k (R: rel A B): klr W A B :=
    fun wR.

  Global Instance k_rel var:
    Monotonic k (var ++> - ==> var).
  Proof.
    unfold k; rauto.
  Qed.

  Lemma k_rintro R (w: W) (x: A) (y: B):
    RIntro (R x y) (k R w) x y.
  Proof.
    firstorder.
  Qed.

  Lemma k_relim (R: rel A B) w x y P Q:
    RElim R x y P Q
    RElim (k R w) x y P Q.
  Proof.
    tauto.
  Qed.

For relators of higher arities, we let the original relator RR operate independently at each world w.

  Definition k1 RR (R1: klr W A1 B1): klr W A B :=
    fun wRR (R1 w).

  Global Instance k1_rel var1 var:
    Monotonic k1 ((var1 ++> var) ++> ((- ==> var1) ++> (- ==> var))).
  Proof.
    unfold k1; rauto.
  Qed.

  Lemma k1_rintro RR (R1: klr W A1 B1) w x y:
    RIntro (RR (R1 w) x y) (k1 RR R1 w) x y.
  Proof.
    firstorder.
  Qed.

  Lemma k1_relim RR (R1: klr W A1 B1) w x y P Q:
    RElim (RR (R1 w)) x y P Q
    RElim (k1 RR R1 w) x y P Q.
  Proof.
    tauto.
  Qed.

  Definition k2 RR (R1: klr W A1 B1) (R2: klr W A2 B2): klr W A B :=
    fun wRR (R1 w) (R2 w).

  Global Instance k2_rel var1 var2 var:
    Monotonic k2
      ((var1 ++> var2 ++> var) ++>
       ((- ==> var1) ++> (- ==> var2) ++> (- ==> var))).
  Proof.
    unfold k2; rauto.
  Qed.

  Lemma k2_rintro RR (R1: klr W A1 B1) (R2: klr W A2 B2) w x y:
    RIntro (RR (R1 w) (R2 w) x y) (k2 RR R1 R2 w) x y.
  Proof.
    firstorder.
  Qed.

  Lemma k2_relim RR (R1: klr W A1 B1) (R2: klr W A2 B2) w x y P Q:
    RElim (RR (R1 w) (R2 w)) x y P Q
    RElim (k2 RR R1 R2 w) x y P Q.
  Proof.
    tauto.
  Qed.

  Global Instance k2_unfold RR (R1: klr W A1 B1) (R2: klr W A2 B2) w:
    Related (RR (R1 w) (R2 w)) (k2 RR R1 R2 w) subrel.
  Proof.
    red. reflexivity.
  Qed.
End LIFT.

Global Instance k_rel_params: Params (@k) 4.
Global Instance k1_rel_params: Params (@k1) 5.
Global Instance k2_rel_params: Params (@k2) 6.

Hint Extern 0 (RIntro _ (k _ _) _ _) ⇒
  eapply k_rintro : typeclass_instances.
Hint Extern 1 (RElim (k _ _) _ _ _ _) ⇒
  eapply k_relim : typeclass_instances.

Hint Extern 0 (RIntro _ (k1 _ _ _) _ _) ⇒
  eapply k1_rintro : typeclass_instances.
Hint Extern 1 (RElim (k1 _ _ _) _ _ _ _) ⇒
  eapply k1_relim : typeclass_instances.

Hint Extern 0 (RIntro _ (k2 _ _ _ _) _ _) ⇒
  eapply k2_rintro : typeclass_instances.
Hint Extern 1 (RElim (k2 _ _ _ _) _ _ _ _) ⇒
  eapply k2_relim : typeclass_instances.

Usual relators

Using the lifting operators defined above, we can provide a set of usual Kripke relators for various types.

Section USUAL.
  Context `{kf: KripkeFrame}.

  Definition arrow_klr {A1 A2 B1 B2} :=
    k2 (W:=W) (@arrow_rel A1 A2 B1 B2).

  Definition arrow_pointwise_klr A {B1 B2} :=
    k1 (W:=W) (@arrow_pointwise_rel A B1 B2).

  Definition prod_klr {A1 A2 B1 B2} :=
    k2 (W:=W) (@prod_rel A1 A2 B1 B2).

  Definition sum_klr {A1 A2 B1 B2} :=
    k2 (W:=W) (@sum_rel A1 A2 B1 B2).

  Definition list_klr {A1 A2} :=
    k1 (W:=W) (@list_rel A1 A2).

  Definition set_kle {A B} (R: klr W A B): klr W (A Prop) (B Prop) :=
    fun w sA sB a, sA a b, sB b R w a b.

  Definition set_kge {A B} (R: klr W A B): klr W (A Prop) (B Prop) :=
    fun w sA sB b, sB b a, sA a R w a b.

  Definition klr_union {W A B} :=
    k2 (W:=W) (@rel_union A B).

  Definition klr_inter {W A B} :=
    k2 (W:=W) (@rel_inter A B).

  Definition klr_curry {W A1 B1 C1 A2 B2 C2} :=
    k1 (W:=W) (@rel_curry A1 B1 C1 A2 B2 C2).
End USUAL.

Notation "RA ==> RB" := (arrow_klr RA RB)
  (at level 55, right associativity) : klr_scope.

Notation "RA ++> RB" := (arrow_klr RA RB)
  (at level 55, right associativity) : klr_scope.

Notation "RA --> RB" := (arrow_klr (k1 flip RA) RB)
  (at level 55, right associativity) : klr_scope.

Notation "- ==> R" := (arrow_pointwise_klr _ R) : klr_scope.
Infix "×" := prod_klr : klr_scope.
Infix "+" := sum_klr : klr_scope.
Infix "∨" := klr_union : klr_scope.
Infix "∧" := klr_inter : klr_scope.
Notation "% R" := (klr_curry R) : klr_scope.

Hint Extern 0 (RIntro _ (arrow_klr _ _ _) _ _) ⇒
  eapply k2_rintro : typeclass_instances.
Hint Extern 1 (RElim (arrow_klr _ _ _) _ _ _ _) ⇒
  eapply k2_relim : typeclass_instances.

Hint Extern 0 (RIntro _ (arrow_pointwise_klr _ _ _) _ _) ⇒
  eapply k1_rintro : typeclass_instances.
Hint Extern 1 (RElim (arrow_pointwise_klr _ _ _) _ _ _ _) ⇒
  eapply k1_relim : typeclass_instances.

Hint Extern 0 (RIntro _ (prod_klr _ _ _) _ _) ⇒
  eapply k2_rintro : typeclass_instances.
Hint Extern 1 (RElim (prod_klr _ _ _) _ _ _ _) ⇒
  eapply k2_relim : typeclass_instances.

Hint Extern 0 (RIntro _ (sum_klr _ _ _) _ _) ⇒
  eapply k2_rintro : typeclass_instances.
Hint Extern 1 (RElim (sum_klr _ _ _) _ _ _ _) ⇒
  eapply k2_relim : typeclass_instances.

Hint Extern 0 (RIntro _ (list_klr _ _) _ _) ⇒
  eapply k1_rintro : typeclass_instances.
Hint Extern 1 (RElim (list_klr _ _) _ _ _ _) ⇒
  eapply k1_relim : typeclass_instances.

Hint Extern 0 (RIntro _ (klr_curry _ _) _ _) ⇒
  eapply k1_rintro : typeclass_instances.
Hint Extern 1 (RElim (klr_curry _ _) _ _ _ _) ⇒
  eapply k1_relim : typeclass_instances.

Modal relators

In addition to the usual relators defined above, we can define Kripke-specific relators corresponding to the box and diamond modalities.

Section MODALITIES.
  Context `{kf: KripkeFrame}.

The box modality asserts that the relation holds at all possible future worlds.

  Definition klr_box {A B} (l: L) (R: klr W A B): klr W A B :=
    fun w x y w', acc l w w' R w' x y.

  Global Instance klr_box_subrel {A B}:
    Monotonic (@klr_box A B) (- ==> (- ==> subrel) ++> (- ==> subrel)).
  Proof.
    firstorder.
  Qed.

  Lemma klr_box_rintro {A B} l (R: klr W A B) w x y:
    RIntro ( w' (Hw': acc l w w'), R w' x y) (klr_box l R w) x y.
  Proof.
    firstorder.
  Qed.

  Lemma klr_box_relim {A B} l (R: klr W A B) w w' x y P Q:
    RElim (R w') x y P Q
    RElim (klr_box l R w) x y (acc l w w' P) Q.
  Proof.
    intros H Hxy [Hw' HP].
    apply H; auto.
  Qed.

Dually, the diamond modality asserts that the relation holds at some possible future world. Note the order of the premises in our intro rule: we want to first determine what w' should be, then attempt to prove w ~> w'.

  Definition klr_diam {A B} (l: L) (R: klr W A B): klr W A B :=
    fun w x y w', acc l w w' R w' x y.

  Global Instance klr_diam_subrel {A B}:
    Monotonic (@klr_diam A B) (- ==> (- ==> subrel) ++> (- ==> subrel)).
  Proof.
    firstorder.
  Qed.

  Lemma klr_diam_rintro {A B} l (R: klr W A B) w w' x y:
    RExists (R w' x y acc l w w') (klr_diam l R w) x y.
  Proof.
    firstorder.
  Qed.

  Lemma klr_diam_relim {A B} l (R: klr W A B) w x y P Q:
    ( w', acc l w w' RElim (R w') x y P Q)
    RElim (klr_diam l R w) x y P Q.
  Proof.
    intros H (w' & Hw' & Hxy) HP.
    eapply H; eauto.
  Qed.
End MODALITIES.

Global Instance klr_box_subrel_params: Params (@klr_box) 4.
Global Instance klr_diam_subrel_params: Params (@klr_diam) 4.

Hint Extern 0 (RIntro _ (klr_box _ _ _) _ _) ⇒
  eapply klr_box_rintro : typeclass_instances.
Hint Extern 1 (RElim (klr_box _ _ _) _ _ _ _) ⇒
  eapply klr_box_relim : typeclass_instances.

Hint Extern 0 (RExists _ (klr_diam _ _ _) _ _) ⇒
  eapply klr_diam_rintro : typeclass_instances.
Hint Extern 1 (RElim (klr_diam _ _ _) _ _ _ _) ⇒
  eapply klr_diam_relim : typeclass_instances.

Notation "[ l ] R" := (klr_box l R) (at level 65) : klr_scope.
Notation "< l > R" := (klr_diam l R) (at level 65) : klr_scope.
Notation "[] R" := (klr_box tt R) (at level 65) : klr_scope.
Notation "<> R" := (klr_diam tt R) (at level 65) : klr_scope.

For Kripke frames indexed by pairs, the following variants allow the components being related to access the labels used for transitions.

Section ARROW_MOD.
  Context {W L1 L2} `{kf: KripkeFrame (L1 × L2) W}.

  Definition klr_boxto {A B} (R : klr W A B) : klr W (L1 A) (L2 B) :=
    fun w f g
       l1 l2 w', acc (l1, l2) w w' R w' (f l1) (g l2).

  Definition klr_diamat {A B} (R : klr W A B) : klr W (L1 × A) (L2 × B) :=
    fun w '(l1, a) '(l2, b)
       w', acc (l1, l2) w w' R w' a b.
End ARROW_MOD.

Notation "[] -> R" := (klr_boxto R) (at level 65) : klr_scope.
Notation "<> * R" := (klr_diamat R) (at level 65) : klr_scope.

Flattening KLRs

When converting back to a standard rel, we can quantify over all worlds.

Section UNKRIPKIFY.
  Context `{kf: KripkeFrame}.

  Definition rel_kvd {A B} (R: klr W A B): rel A B :=
    fun x y w, R w x y.

  Global Instance rel_kvd_subrel A B:
    Monotonic (@rel_kvd A B) ((- ==> subrel) ++> subrel).
  Proof.
    firstorder.
  Qed.

  Lemma rel_kvd_rintro {A B} (R: klr W A B) x y:
    RIntro ( w, R w x y) (rel_kvd R) x y.
  Proof.
    firstorder.
  Qed.

  Lemma rel_kvd_relim {A B} (R: klr W A B) w x y P Q:
    RElim (R w) x y P Q
    RElim (rel_kvd R) x y P Q.
  Proof.
    firstorder.
  Qed.
End UNKRIPKIFY.

Global Instance rel_kvd_subrel_params: Params (@rel_kvd) 3.

Hint Extern 0 (RIntro _ (rel_kvd _) _ _) ⇒
  eapply rel_kvd_rintro : typeclass_instances.

Hint Extern 1 (RElim (rel_kvd _) _ _ _ _) ⇒
  eapply rel_kvd_relim : typeclass_instances.

Notation "|= R" := (rel_kvd R) (at level 65) : rel_scope.

Pulling along a Kripke frame morphism


Definition klr_pullw {W1 W2 A B} (f: W1 W2) (R: klr W2 A B): klr W1 A B :=
  fun wR (f w).

Notation "R @@ [ f ]" := (klr_pullw f R)
  (at level 30, right associativity) : klr_scope.

Global Instance klr_pullw_subrel {W1 W2 A B} RW1 RW2:
  Monotonic
    (@klr_pullw W1 W2 A B)
    ((RW1 ++> RW2) ++> (RW2 ++> subrel) ++> (RW1 ++> subrel)).
Proof.
  unfold klr_pullw. rauto.
Qed.

Global Instance klr_pullw_subrel_params:
  Params (@klr_pullw) 5.

Lemma klr_pullw_rintro {W1 W2 A B} (f: W1 W2) R w (x:A) (y:B):
  RIntro (R (f w) x y) (klr_pullw f R w) x y.
Proof.
  firstorder.
Qed.

Hint Extern 0 (RIntro _ (klr_pullw _ _ _) _ _) ⇒
  eapply klr_pullw_rintro : typeclass_instances.

Lemma klr_pullw_relim {W1 W2 A B} (f: W1 W2) R w (x:A) (y:B) P Q:
  RElim (R (f w)) x y P Q
  RElim (klr_pullw f R w) x y P Q.
Proof.
  firstorder.
Qed.

Hint Extern 1 (RElim (klr_pullw _ _ _) _ _ _ _) ⇒
  eapply klr_pullw_relim : typeclass_instances.