Library mcertikos.mm.ShareOpGen


This file provide the contextual refinement proof between MPTOp layer and MPTComm layer
Require Import Coqlib.
Require Import Errors.
Require Import AST.
Require Import Integers.
Require Import Floats.
Require Import Op.
Require Import Asm.
Require Import Events.
Require Import Globalenvs.
Require Import Smallstep.
Require Import Values.
Require Import Memory.
Require Import Maps.
Require Import CommonTactic.
Require Import AuxLemma.
Require Import FlatMemory.
Require Import AuxStateDataType.
Require Import Constant.
Require Import GlobIdent.
Require Import RealParams.
Require Import LoadStoreSem2.
Require Import AsmImplLemma.
Require Import LAsm.
Require Import RefinementTactic.
Require Import PrimSemantics.
Require Import XOmega.

Require Import liblayers.logic.PTreeModules.
Require Import liblayers.logic.LayerLogicImpl.
Require Import liblayers.compcertx.Stencil.
Require Import liblayers.compcertx.MakeProgram.
Require Import liblayers.compat.CompatLayers.
Require Import liblayers.compat.CompatGenSem.
Require Import compcert.cfrontend.Ctypes.
Require Import LayerCalculusLemma.

Require Import MShareOp.
Require Import AbstractDataType.
Require Import ShareOpGenSpec.

Notation of the refinement relation

Section Refinement.

  Local Open Scope string_scope.
  Local Open Scope error_monad_scope.
  Local Open Scope Z_scope.

  Context `{real_params: RealParams}.
  Context `{multi_oracle_prop: MultiOracleProp}.

  Notation HDATA := RData.
  Notation LDATA := RData.

  Notation HDATAOps := (cdata HDATA).
  Notation LDATAOps := (cdata LDATA).

  Section WITHMEM.

    Context `{Hstencil: Stencil}.
    Context `{Hmem: Mem.MemoryModelX}.
    Context `{Hmwd: UseMemWithData mem}.

Definition the refinement relation: relate_RData + match_RData

    Record relate_RData (f:meminj) (hadt: HDATA) (ladt: LDATA) :=
      mkrelate_RData {
          flatmem_re: FlatMem.flatmem_inj (HP hadt) (HP ladt);
          vmxinfo_re: vmxinfo hadt = vmxinfo ladt;
          CR3_re: CR3 hadt = CR3 ladt;
          ikern_re: ikern hadt = ikern ladt;
          pg_re: pg hadt = pg ladt;
          ihost_re: ihost hadt = ihost ladt;
          AC_re: AC hadt = AC ladt;
          ti_fst_re: (fst (ti hadt)) = (fst (ti ladt));
          ti_snd_re: val_inject f (snd (ti hadt)) (snd (ti ladt));
          LAT_re: LAT hadt = LAT ladt;
          nps_re: nps hadt = nps ladt;
          init_re: init hadt = init ladt;

          pperm_re: pperm ladt = pperm hadt;
          PT_re: PT ladt = PT hadt;
          ptp_re: ptpool ladt = ptpool hadt;
          idpde_re: idpde ladt = idpde hadt;
          ipt_re: ipt ladt = ipt hadt;
          smspool_re: smspool ladt = smspool hadt;

          CPU_ID_re: CPU_ID hadt = CPU_ID ladt;
          cid_re: cid hadt = cid ladt;
          multi_oracle_re: multi_oracle hadt = multi_oracle ladt;
          multi_log_re: multi_log hadt = multi_log ladt;
          lock_re: lock hadt = lock ladt;

          com1_re: com1 hadt = com1 ladt;
          console_re: console hadt = console ladt;
          console_concrete_re: console_concrete hadt = console_concrete ladt;
          ioapic_re: ioapic ladt = ioapic hadt;
          lapic_re: lapic ladt = lapic hadt;
          intr_flag_re: intr_flag ladt = intr_flag hadt;
          curr_intr_num_re: curr_intr_num ladt = curr_intr_num hadt;
          in_intr_re: in_intr ladt = in_intr hadt;
          drv_serial_re: drv_serial hadt = drv_serial ladt

        }.

    Inductive match_RData: stencilHDATAmemmeminjProp :=
    | MATCH_RDATA: habd m f s, match_RData s habd m f.

    Local Hint Resolve MATCH_RDATA.

    Global Instance rel_ops: CompatRelOps HDATAOps LDATAOps :=
      {
        relate_AbData s f d1 d2 := relate_RData f d1 d2;
        match_AbData s d1 m f := match_RData s d1 m f;
        new_glbl := nil
      }.

Properties of relations

    Section Rel_Property.

Prove that after taking one step, the refinement relation still holds
      Lemma relate_incr:
         abd abd´ f ,
          relate_RData f abd abd´
          → inject_incr f
          → relate_RData abd abd´.
      Proof.
        inversion 1; subst; intros; inv H; constructor; eauto.
      Qed.

      Global Instance rel_prf: CompatRel HDATAOps LDATAOps.
      Proof.
        constructor; intros; simpl; trivial.
        eapply relate_incr; eauto.
      Qed.

    End Rel_Property.

Proofs the one-step forward simulations for the low level specifications

    Section OneStep_Forward_Relation.

      Section FRESH_PRIM.

        Lemma shared_mem_init_kernel_mode:
           d2 d2´ mbi_adr,
            sharedmem_init_spec mbi_adr d2 = Some d2´
            → kernel_mode d2.
        Proof.
          intros. functional inversion H; subst;
          simpl; auto.
        Qed.

        Lemma shared_mem_init_spec_ref:
          compatsim (crel HDATA LDATA) (gensem sharedmem_init_spec) shared_mem_init_spec_low.
        Proof.
          compatsim_simpl (@match_AbData).
          exploit sharedmem_init_exist; eauto 1.
          intros (labd´ & HP & HM).
          refine_split; try econstructor; eauto.
          - eapply shared_mem_init_kernel_mode; eauto.
          - constructor.
        Qed.

        Lemma shared_mem_to_ready_kernel_mode:
           d2 d2´ pid1 pid2 vadr rest,
            shared_mem_to_ready_spec pid1 pid2 vadr d2 = Some (d2´, rest)
            → kernel_mode d2.
        Proof.
          intros. functional inversion H; subst;
          simpl; auto.
        Qed.

        Lemma shared_mem_to_ready_spec_ref:
          compatsim (crel HDATA LDATA) (gensem shared_mem_to_ready_spec) shared_mem_to_ready_spec_low.
        Proof.
          compatsim_simpl (@match_AbData).
          exploit shared_mem_to_ready_exist; eauto 1.
          intros (labd´ & HP & HM).
          refine_split; try econstructor; eauto.
          - eapply shared_mem_to_ready_kernel_mode; eauto.
          - constructor.
        Qed.

        Lemma shared_mem_to_pending_kernel_mode:
           d2 d2´ pid1 pid2 vadr,
            shared_mem_to_pending_spec pid1 pid2 vadr d2 = Some d2´
            → kernel_mode d2.
        Proof.
          intros. functional inversion H; subst;
          simpl; auto.
        Qed.

        Lemma shared_mem_to_pending_spec_ref:
          compatsim (crel HDATA LDATA) (gensem shared_mem_to_pending_spec) shared_mem_to_pending_spec_low.
        Proof.
          compatsim_simpl (@match_AbData).
          exploit shared_mem_to_pending_exist; eauto 1.
          intros (labd´ & HP & HM).
          refine_split; try econstructor; eauto.
          - eapply shared_mem_to_pending_kernel_mode; eauto.
          - constructor.
        Qed.

        Lemma shared_mem_to_dead_kernel_mode:
           d2 d2´ pid1 pid2 vadr,
            shared_mem_to_dead_spec pid1 pid2 vadr d2 = Some d2´
            → kernel_mode d2.
        Proof.
          intros. functional inversion H; subst;
          simpl; auto.
        Qed.

        Lemma shared_mem_to_dead_spec_ref:
          compatsim (crel HDATA LDATA) (gensem shared_mem_to_dead_spec) shared_mem_to_dead_spec_low.
        Proof.
          compatsim_simpl (@match_AbData).
          exploit shared_mem_to_dead_exist; eauto 1.
          intros (labd´ & HP & HM).
          refine_split; try econstructor; eauto.
          - eapply shared_mem_to_dead_kernel_mode; eauto.
          - constructor.
        Qed.

        Lemma get_shared_mem_status_seen_spec_ref:
          compatsim (crel HDATA LDATA) (gensem get_shared_mem_status_seen_spec) get_shared_mem_status_seen_spec_low.
        Proof.
          compatsim_simpl (@match_AbData).
          refine_split; try econstructor; eauto.
          - revert H2. unfold get_shared_mem_status_seen_spec.
            inv match_related.
            subrewrite.
          - simpl. inv match_related.
            functional inversion H2; split; congruence.
        Qed.

      End FRESH_PRIM.

      Global Instance: (LoadStoreProp (hflatmem_store:= flatmem_store) (lflatmem_store:= flatmem_store)).
      Proof.
        accessor_prop_tac.
        - eapply flatmem_store_exists; eauto.
      Qed.

      Lemma passthrough_correct:
        sim (crel HDATA LDATA) mshareop_passthrough mshareintro.
      Proof.
        sim_oplus.
        - apply fload_sim.
        - apply fstore_sim.
        - apply page_copy_sim.
        - apply page_copy_back_sim.
        - apply vmxinfo_get_sim.
        - apply palloc_sim.
        - apply setPT_sim.
        - apply ptRead_sim.
        - apply ptResv_sim.
        - apply ptResv2_sim.
        - apply pt_new_sim.
        - apply get_shared_mem_state_sim.
        - apply get_shared_mem_seen_sim.
        - apply set_shared_mem_seen_sim.
        - apply ptin_sim.
        - apply ptout_sim.
        - apply container_get_nchildren_sim.
        - apply container_get_quota_sim.
        - apply container_get_usage_sim.
        - apply container_can_consume_sim.
        - apply get_CPU_ID_sim.
        - apply get_curid_sim.
        - apply set_curid_sim.
        - apply set_curid_init_sim.
        - apply (release_lock_sim (valid_arg_imply:= Shared2ID1_imply)).
        -
          eapply acquire_lock_sim1; eauto.
          intros. inv H; trivial.
        - apply cli_sim.
        - apply sti_sim.
        - apply serial_intr_disable_sim.
        - apply serial_intr_enable_sim.
        - apply serial_putc_sim.
        - apply cons_buf_read_sim.
        - apply trapin_sim.
        - apply trapout_sim.
        - apply hostin_sim.
        - apply hostout_sim.
        - apply proc_create_postinit_sim.
        - apply trap_info_get_sim.
        - apply trap_info_ret_sim.
        - layer_sim_simpl.
          + eapply load_correct2.
          + eapply store_correct2.
      Qed.

    End OneStep_Forward_Relation.

  End WITHMEM.

End Refinement.