Library mcertikos.proc.EPTInitGen
Require Import Coqlib.
Require Import Errors.
Require Import AST.
Require Import Integers.
Require Import Floats.
Require Import Op.
Require Import Asm.
Require Import Events.
Require Import Globalenvs.
Require Import Smallstep.
Require Import Values.
Require Import Memory.
Require Import Maps.
Require Import CommonTactic.
Require Import AuxLemma.
Require Import FlatMemory.
Require Import AuxStateDataType.
Require Import Constant.
Require Import GlobIdent.
Require Import RealParams.
Require Import AsmImplLemma.
Require Import GenSem.
Require Import RefinementTactic.
Require Import PrimSemantics.
Require Import XOmega.
Require Import liblayers.logic.PTreeModules.
Require Import liblayers.logic.LayerLogicImpl.
Require Import liblayers.compcertx.Stencil.
Require Import liblayers.compcertx.MakeProgram.
Require Import liblayers.compat.CompatLayers.
Require Import liblayers.compat.CompatGenSem.
Require Import compcert.cfrontend.Ctypes.
Require Import LayerCalculusLemma.
Require Import AbstractDataType.
Require Import VEPTInit.
Require Import EPTInitGenSpec.
Require Import LoadStoreSem3.
Section Refinement.
Local Open Scope string_scope.
Local Open Scope error_monad_scope.
Local Open Scope Z_scope.
Context `{real_params: RealParams}.
Context `{multi_oracle_prop: MultiOracleProp}.
Notation HDATA := RData.
Notation LDATA := RData.
Notation HDATAOps := (cdata (cdata_ops := pproc_data_ops) HDATA).
Notation LDATAOps := (cdata (cdata_ops := pproc_data_ops) LDATA).
Section WITHMEM.
Context `{Hstencil: Stencil}.
Context `{Hmem: Mem.MemoryModelX}.
Context `{Hmwd: UseMemWithData mem}.
Local Open Scope string_scope.
Local Open Scope error_monad_scope.
Local Open Scope Z_scope.
Context `{real_params: RealParams}.
Context `{multi_oracle_prop: MultiOracleProp}.
Notation HDATA := RData.
Notation LDATA := RData.
Notation HDATAOps := (cdata (cdata_ops := pproc_data_ops) HDATA).
Notation LDATAOps := (cdata (cdata_ops := pproc_data_ops) LDATA).
Section WITHMEM.
Context `{Hstencil: Stencil}.
Context `{Hmem: Mem.MemoryModelX}.
Context `{Hmwd: UseMemWithData mem}.
Relation between raw data at two layers
Record relate_RData (f: meminj) (hadt: HDATA) (ladt: LDATA) :=
mkrelate_RData {
flatmem_re: FlatMem.flatmem_inj (HP hadt) (HP ladt);
vmxinfo_re: vmxinfo hadt = vmxinfo ladt;
CR3_re: CR3 hadt = CR3 ladt;
ikern_re: ikern hadt = ikern ladt;
pg_re: pg hadt = pg ladt;
ihost_re: ihost hadt = ihost ladt;
AC_re: AC hadt = AC ladt;
ti_fst_re: (fst (ti hadt)) = (fst (ti ladt));
ti_snd_re: val_inject f (snd (ti hadt)) (snd (ti ladt));
LAT_re: LAT hadt = LAT ladt;
nps_re: nps hadt = nps ladt;
init_re: init hadt = init ladt;
pperm_re: pperm hadt = pperm ladt;
PT_re: PT hadt = PT ladt;
ptp_re: ptpool hadt = ptpool ladt;
idpde_re: idpde hadt = idpde ladt;
ipt_re: ipt hadt = ipt ladt;
smspool_re: smspool hadt = smspool ladt;
CPU_ID_re: CPU_ID hadt = CPU_ID ladt;
cid_re: cid hadt = cid ladt;
multi_oracle_re: (multi_oracle hadt) = (multi_oracle ladt);
multi_log_re: (multi_log hadt) = (multi_log ladt);
lock_re: lock hadt = lock ladt;
com1_re: com1 hadt = com1 ladt;
console_re: console hadt = console ladt;
console_concrete_re: console_concrete hadt = console_concrete ladt;
ioapic_re: ioapic ladt = ioapic hadt;
lapic_re: lapic ladt = lapic hadt;
intr_flag_re: intr_flag ladt = intr_flag hadt;
curr_intr_num_re: curr_intr_num ladt = curr_intr_num hadt;
in_intr_re: in_intr ladt = in_intr hadt;
drv_serial_re: drv_serial hadt = drv_serial ladt;
kctxt_re: kctxt_inj f num_proc (kctxt hadt) (kctxt ladt);
uctxt_re: uctxt_inj f (uctxt hadt) (uctxt ladt);
syncchpool_re: syncchpool hadt = syncchpool ladt;
ept_re: ept hadt = ept ladt
}.
Inductive match_RData: stencil → HDATA → mem → meminj → Prop :=
| MATCH_RDATA: ∀ habd m f s, match_RData s habd m f.
Local Hint Resolve MATCH_RDATA.
Global Instance rel_ops: CompatRelOps HDATAOps LDATAOps :=
{
relate_AbData s f d1 d2 := relate_RData f d1 d2;
match_AbData s d1 m f := match_RData s d1 m f;
new_glbl := nil
}.
mkrelate_RData {
flatmem_re: FlatMem.flatmem_inj (HP hadt) (HP ladt);
vmxinfo_re: vmxinfo hadt = vmxinfo ladt;
CR3_re: CR3 hadt = CR3 ladt;
ikern_re: ikern hadt = ikern ladt;
pg_re: pg hadt = pg ladt;
ihost_re: ihost hadt = ihost ladt;
AC_re: AC hadt = AC ladt;
ti_fst_re: (fst (ti hadt)) = (fst (ti ladt));
ti_snd_re: val_inject f (snd (ti hadt)) (snd (ti ladt));
LAT_re: LAT hadt = LAT ladt;
nps_re: nps hadt = nps ladt;
init_re: init hadt = init ladt;
pperm_re: pperm hadt = pperm ladt;
PT_re: PT hadt = PT ladt;
ptp_re: ptpool hadt = ptpool ladt;
idpde_re: idpde hadt = idpde ladt;
ipt_re: ipt hadt = ipt ladt;
smspool_re: smspool hadt = smspool ladt;
CPU_ID_re: CPU_ID hadt = CPU_ID ladt;
cid_re: cid hadt = cid ladt;
multi_oracle_re: (multi_oracle hadt) = (multi_oracle ladt);
multi_log_re: (multi_log hadt) = (multi_log ladt);
lock_re: lock hadt = lock ladt;
com1_re: com1 hadt = com1 ladt;
console_re: console hadt = console ladt;
console_concrete_re: console_concrete hadt = console_concrete ladt;
ioapic_re: ioapic ladt = ioapic hadt;
lapic_re: lapic ladt = lapic hadt;
intr_flag_re: intr_flag ladt = intr_flag hadt;
curr_intr_num_re: curr_intr_num ladt = curr_intr_num hadt;
in_intr_re: in_intr ladt = in_intr hadt;
drv_serial_re: drv_serial hadt = drv_serial ladt;
kctxt_re: kctxt_inj f num_proc (kctxt hadt) (kctxt ladt);
uctxt_re: uctxt_inj f (uctxt hadt) (uctxt ladt);
syncchpool_re: syncchpool hadt = syncchpool ladt;
ept_re: ept hadt = ept ladt
}.
Inductive match_RData: stencil → HDATA → mem → meminj → Prop :=
| MATCH_RDATA: ∀ habd m f s, match_RData s habd m f.
Local Hint Resolve MATCH_RDATA.
Global Instance rel_ops: CompatRelOps HDATAOps LDATAOps :=
{
relate_AbData s f d1 d2 := relate_RData f d1 d2;
match_AbData s d1 m f := match_RData s d1 m f;
new_glbl := nil
}.
Prove that after taking one step, the refinement relation still holds
Lemma relate_incr:
∀ abd abd´ f f´,
relate_RData f abd abd´
→ inject_incr f f´
→ relate_RData f´ abd abd´.
Proof.
inversion 1; subst; intros; inv H; constructor; eauto.
- eapply kctxt_inj_incr; eauto.
- eapply uctxt_inj_incr; eauto.
Qed.
End Rel_Property.
Global Instance rel_prf: CompatRel HDATAOps LDATAOps.
Proof.
constructor; intros; simpl; trivial.
eapply relate_incr; eauto.
Qed.
∀ abd abd´ f f´,
relate_RData f abd abd´
→ inject_incr f f´
→ relate_RData f´ abd abd´.
Proof.
inversion 1; subst; intros; inv H; constructor; eauto.
- eapply kctxt_inj_incr; eauto.
- eapply uctxt_inj_incr; eauto.
Qed.
End Rel_Property.
Global Instance rel_prf: CompatRel HDATAOps LDATAOps.
Proof.
constructor; intros; simpl; trivial.
eapply relate_incr; eauto.
Qed.
Section OneStep_Forward_Relation.
Section FRESH_PRIM.
Lemma ept_get_page_entry_kernel_mode:
∀ d2 v1 v2,
ept_get_page_entry_spec v1 d2 = Some v2
→ kernel_mode d2.
Proof.
intros. functional inversion H; subst; simpl; auto.
Qed.
Lemma ept_gpa_to_hpa_kernel_mode:
∀ d2 d2´ v1,
ept_gpa_to_hpa_spec v1 d2 = Some d2´
→ kernel_mode d2.
Proof.
intros. functional inversion H;
eapply ept_get_page_entry_kernel_mode; eassumption.
Qed.
Lemma ept_gpa_to_hpa_spec_ref:
compatsim (crel HDATA LDATA) (gensem ept_gpa_to_hpa_spec) ept_gpa_to_hpa_spec_low.
Proof.
compatsim_simpl (@match_AbData).
exploit ept_gpa_to_hpa_exist; eauto 1. intros.
refine_split; try econstructor; eauto.
eapply ept_gpa_to_hpa_kernel_mode; eauto.
Qed.
Lemma ept_mmap_kernel_mode:
∀ d2 d2´ v1 v2 v3 v4,
ept_mmap_spec v1 v2 v3 d2 = Some (d2´, v4)
→ kernel_mode d2.
Proof.
intros. functional inversion H;
eapply ept_get_page_entry_kernel_mode; eassumption.
Qed.
Lemma ept_mmap_spec_ref:
compatsim (crel HDATA LDATA) (gensem ept_mmap_spec) ept_mmap_spec_low.
Proof.
compatsim_simpl (@match_AbData).
exploit ept_mmap_exist; eauto 1.
intros (labd´ & HP & HM).
refine_split; try econstructor; eauto.
- eapply ept_mmap_kernel_mode; eauto.
- constructor.
Qed.
Lemma ept_set_permission_kernel_mode:
∀ d2 d2´ v1 v2,
ept_set_permission_spec v1 v2 d2 = Some d2´
→ kernel_mode d2.
Proof.
intros. functional inversion H;
eapply ept_get_page_entry_kernel_mode; eassumption.
Qed.
Lemma ept_set_permission_spec_ref:
compatsim (crel HDATA LDATA) (gensem ept_set_permission_spec) ept_set_permission_spec_low.
Proof.
compatsim_simpl (@match_AbData).
exploit ept_set_permission_exist; eauto 1.
intros (labd´ & HP & HM).
refine_split; try econstructor; eauto.
- eapply ept_set_permission_kernel_mode; eauto.
- constructor.
Qed.
End FRESH_PRIM.
Global Instance cpu_id_range: high_level_invariant_impl_CPU_ID_range.
Proof.
econstructor; eauto.
intros.
inv H.
assumption.
Qed.
Section PASSTHROUGH_PRIM.
Global Instance: (LoadStoreProp (hflatmem_store:= flatmem_store) (lflatmem_store:= flatmem_store)).
Proof.
accessor_prop_tac.
- eapply flatmem_store_exists; eauto.
Qed.
Lemma passthrough_correct:
sim (crel HDATA LDATA) eptinit_passthrough eptop.
Proof.
sim_oplus.
- apply fload_sim.
- apply fstore_sim.
- apply vmxinfo_get_sim.
- apply palloc_sim.
- apply setPT_sim.
- apply ptRead_sim.
- apply ptResv_sim.
- apply shared_mem_status_sim.
- apply offer_shared_mem_sim.
- apply biglow_thread_wakeup_sim.
- apply biglow_thread_yield_sim.
- apply biglow_thread_sleep_sim.
- apply biglow_sched_init_sim.
- apply uctx_get_sim.
- apply uctx_set_sim.
- apply biglow_proc_create_sim.
- apply container_get_nchildren_sim.
- apply container_get_quota_sim.
- apply container_get_usage_sim.
- apply container_can_consume_sim.
- apply get_CPU_ID_sim.
- apply get_curid_sim.
- apply acquire_lock_SC_sim.
- apply release_lock_SC_sim.
- apply get_sync_chan_busy_sim.
- apply set_sync_chan_busy_sim.
- apply ipc_send_body_sim.
- apply ipc_receive_body_sim.
- apply ept_invalidate_mappings_sim.
- apply ept_add_mapping_sim.
- apply ept_init_sim.
- apply cli_sim.
- apply sti_sim.
- apply serial_intr_disable_sim.
- apply serial_intr_enable_sim.
- apply serial_putc_sim.
- apply cons_buf_read_sim.
- apply hostin_sim.
- apply hostout_sim.
- apply proc_create_postinit_sim.
- apply trap_info_get_sim.
- apply trap_info_ret_sim.
- apply proc_start_user_sim.
intros; inv H; auto.
- apply proc_exit_user_sim.
- apply proc_start_user_sim2.
intros; inv H; auto.
- apply proc_exit_user_sim2.
- layer_sim_simpl.
+ eapply load_correct3.
+ eapply store_correct3.
Qed.
End PASSTHROUGH_PRIM.
End OneStep_Forward_Relation.
End WITHMEM.
End Refinement.
Section FRESH_PRIM.
Lemma ept_get_page_entry_kernel_mode:
∀ d2 v1 v2,
ept_get_page_entry_spec v1 d2 = Some v2
→ kernel_mode d2.
Proof.
intros. functional inversion H; subst; simpl; auto.
Qed.
Lemma ept_gpa_to_hpa_kernel_mode:
∀ d2 d2´ v1,
ept_gpa_to_hpa_spec v1 d2 = Some d2´
→ kernel_mode d2.
Proof.
intros. functional inversion H;
eapply ept_get_page_entry_kernel_mode; eassumption.
Qed.
Lemma ept_gpa_to_hpa_spec_ref:
compatsim (crel HDATA LDATA) (gensem ept_gpa_to_hpa_spec) ept_gpa_to_hpa_spec_low.
Proof.
compatsim_simpl (@match_AbData).
exploit ept_gpa_to_hpa_exist; eauto 1. intros.
refine_split; try econstructor; eauto.
eapply ept_gpa_to_hpa_kernel_mode; eauto.
Qed.
Lemma ept_mmap_kernel_mode:
∀ d2 d2´ v1 v2 v3 v4,
ept_mmap_spec v1 v2 v3 d2 = Some (d2´, v4)
→ kernel_mode d2.
Proof.
intros. functional inversion H;
eapply ept_get_page_entry_kernel_mode; eassumption.
Qed.
Lemma ept_mmap_spec_ref:
compatsim (crel HDATA LDATA) (gensem ept_mmap_spec) ept_mmap_spec_low.
Proof.
compatsim_simpl (@match_AbData).
exploit ept_mmap_exist; eauto 1.
intros (labd´ & HP & HM).
refine_split; try econstructor; eauto.
- eapply ept_mmap_kernel_mode; eauto.
- constructor.
Qed.
Lemma ept_set_permission_kernel_mode:
∀ d2 d2´ v1 v2,
ept_set_permission_spec v1 v2 d2 = Some d2´
→ kernel_mode d2.
Proof.
intros. functional inversion H;
eapply ept_get_page_entry_kernel_mode; eassumption.
Qed.
Lemma ept_set_permission_spec_ref:
compatsim (crel HDATA LDATA) (gensem ept_set_permission_spec) ept_set_permission_spec_low.
Proof.
compatsim_simpl (@match_AbData).
exploit ept_set_permission_exist; eauto 1.
intros (labd´ & HP & HM).
refine_split; try econstructor; eauto.
- eapply ept_set_permission_kernel_mode; eauto.
- constructor.
Qed.
End FRESH_PRIM.
Global Instance cpu_id_range: high_level_invariant_impl_CPU_ID_range.
Proof.
econstructor; eauto.
intros.
inv H.
assumption.
Qed.
Section PASSTHROUGH_PRIM.
Global Instance: (LoadStoreProp (hflatmem_store:= flatmem_store) (lflatmem_store:= flatmem_store)).
Proof.
accessor_prop_tac.
- eapply flatmem_store_exists; eauto.
Qed.
Lemma passthrough_correct:
sim (crel HDATA LDATA) eptinit_passthrough eptop.
Proof.
sim_oplus.
- apply fload_sim.
- apply fstore_sim.
- apply vmxinfo_get_sim.
- apply palloc_sim.
- apply setPT_sim.
- apply ptRead_sim.
- apply ptResv_sim.
- apply shared_mem_status_sim.
- apply offer_shared_mem_sim.
- apply biglow_thread_wakeup_sim.
- apply biglow_thread_yield_sim.
- apply biglow_thread_sleep_sim.
- apply biglow_sched_init_sim.
- apply uctx_get_sim.
- apply uctx_set_sim.
- apply biglow_proc_create_sim.
- apply container_get_nchildren_sim.
- apply container_get_quota_sim.
- apply container_get_usage_sim.
- apply container_can_consume_sim.
- apply get_CPU_ID_sim.
- apply get_curid_sim.
- apply acquire_lock_SC_sim.
- apply release_lock_SC_sim.
- apply get_sync_chan_busy_sim.
- apply set_sync_chan_busy_sim.
- apply ipc_send_body_sim.
- apply ipc_receive_body_sim.
- apply ept_invalidate_mappings_sim.
- apply ept_add_mapping_sim.
- apply ept_init_sim.
- apply cli_sim.
- apply sti_sim.
- apply serial_intr_disable_sim.
- apply serial_intr_enable_sim.
- apply serial_putc_sim.
- apply cons_buf_read_sim.
- apply hostin_sim.
- apply hostout_sim.
- apply proc_create_postinit_sim.
- apply trap_info_get_sim.
- apply trap_info_ret_sim.
- apply proc_start_user_sim.
intros; inv H; auto.
- apply proc_exit_user_sim.
- apply proc_start_user_sim2.
intros; inv H; auto.
- apply proc_exit_user_sim2.
- layer_sim_simpl.
+ eapply load_correct3.
+ eapply store_correct3.
Qed.
End PASSTHROUGH_PRIM.
End OneStep_Forward_Relation.
End WITHMEM.
End Refinement.