Library mcertikos.proc.ThreadSchedGen
This file provide the contextual refinement proof between PQueueIntro layer and PQueueInit layer
Require Import Coqlib.
Require Import Errors.
Require Import AST.
Require Import Integers.
Require Import Floats.
Require Import Op.
Require Import Asm.
Require Import Events.
Require Import Globalenvs.
Require Import Smallstep.
Require Import Values.
Require Import Memory.
Require Import Maps.
Require Import CommonTactic.
Require Import AuxLemma.
Require Import FlatMemory.
Require Import AuxStateDataType.
Require Import Constant.
Require Import GlobIdent.
Require Import RealParams.
Require Import LoadStoreSem2.
Require Import AsmImplLemma.
Require Import GenSem.
Require Import RefinementTactic.
Require Import PrimSemantics.
Require Import XOmega.
Require Import liblayers.logic.PTreeModules.
Require Import liblayers.logic.LayerLogicImpl.
Require Import liblayers.compcertx.Stencil.
Require Import liblayers.compcertx.MakeProgram.
Require Import liblayers.compat.CompatLayers.
Require Import liblayers.compat.CompatGenSem.
Require Import compcert.cfrontend.Ctypes.
Require Import LayerCalculusLemma.
Require Import AbstractDataType.
Require Import PCVOp.
Require Import PThreadSched.
Require Import ThreadSchedGenSpec.
Require Import Errors.
Require Import AST.
Require Import Integers.
Require Import Floats.
Require Import Op.
Require Import Asm.
Require Import Events.
Require Import Globalenvs.
Require Import Smallstep.
Require Import Values.
Require Import Memory.
Require Import Maps.
Require Import CommonTactic.
Require Import AuxLemma.
Require Import FlatMemory.
Require Import AuxStateDataType.
Require Import Constant.
Require Import GlobIdent.
Require Import RealParams.
Require Import LoadStoreSem2.
Require Import AsmImplLemma.
Require Import GenSem.
Require Import RefinementTactic.
Require Import PrimSemantics.
Require Import XOmega.
Require Import liblayers.logic.PTreeModules.
Require Import liblayers.logic.LayerLogicImpl.
Require Import liblayers.compcertx.Stencil.
Require Import liblayers.compcertx.MakeProgram.
Require Import liblayers.compat.CompatLayers.
Require Import liblayers.compat.CompatGenSem.
Require Import compcert.cfrontend.Ctypes.
Require Import LayerCalculusLemma.
Require Import AbstractDataType.
Require Import PCVOp.
Require Import PThreadSched.
Require Import ThreadSchedGenSpec.
Section Refinement.
Local Open Scope string_scope.
Local Open Scope error_monad_scope.
Local Open Scope Z_scope.
Context `{real_params: RealParams}.
Context `{multi_oracle_prop: MultiOracleProp}.
Notation HDATA := RData.
Notation LDATA := RData.
Notation HDATAOps := (cdata (cdata_ops := pthreadsched_data_ops) HDATA).
Notation LDATAOps := (cdata (cdata_ops := pcvintro_data_ops) LDATA).
Section WITHMEM.
Context `{Hstencil: Stencil}.
Context `{Hmem: Mem.MemoryModelX}.
Context `{Hmwd: UseMemWithData mem}.
Local Open Scope string_scope.
Local Open Scope error_monad_scope.
Local Open Scope Z_scope.
Context `{real_params: RealParams}.
Context `{multi_oracle_prop: MultiOracleProp}.
Notation HDATA := RData.
Notation LDATA := RData.
Notation HDATAOps := (cdata (cdata_ops := pthreadsched_data_ops) HDATA).
Notation LDATAOps := (cdata (cdata_ops := pcvintro_data_ops) LDATA).
Section WITHMEM.
Context `{Hstencil: Stencil}.
Context `{Hmem: Mem.MemoryModelX}.
Context `{Hmwd: UseMemWithData mem}.
Relation between raw data at two layers
Record relate_RData (f: meminj) (hadt: HDATA) (ladt: LDATA) :=
mkrelate_RData {
flatmem_re: FlatMem.flatmem_inj (HP hadt) (HP ladt);
vmxinfo_re: vmxinfo hadt = vmxinfo ladt;
CR3_re: CR3 hadt = CR3 ladt;
ikern_re: ikern hadt = ikern ladt;
pg_re: pg hadt = pg ladt;
ihost_re: ihost hadt = ihost ladt;
AC_re: AC hadt = AC ladt;
ti_fst_re: (fst (ti hadt)) = (fst (ti ladt));
ti_snd_re: val_inject f (snd (ti hadt)) (snd (ti ladt));
LAT_re: LAT hadt = LAT ladt;
nps_re: nps hadt = nps ladt;
init_re: init hadt = init ladt;
pperm_re: pperm hadt = pperm ladt;
PT_re: PT hadt = PT ladt;
ptp_re: ptpool hadt = ptpool ladt;
idpde_re: idpde hadt = idpde ladt;
ipt_re: ipt hadt = ipt ladt;
smspool_re: smspool hadt = smspool ladt;
CPU_ID_re: CPU_ID hadt = CPU_ID ladt;
cid_re: cid hadt = cid ladt;
multi_oracle_re: multi_oracle hadt = multi_oracle ladt;
multi_log_re: multi_log hadt = multi_log ladt;
lock_re: lock hadt = lock ladt;
com1_re: com1 hadt = com1 ladt;
console_re: console hadt = console ladt;
console_concrete_re: console_concrete hadt = console_concrete ladt;
ioapic_re: ioapic ladt = ioapic hadt;
lapic_re: lapic ladt = lapic hadt;
intr_flag_re: intr_flag ladt = intr_flag hadt;
curr_intr_num_re: curr_intr_num ladt = curr_intr_num hadt;
in_intr_re: in_intr ladt = in_intr hadt;
drv_serial_re: drv_serial hadt = drv_serial ladt;
kctxt_re: kctxt_inj f num_proc (kctxt hadt) (kctxt ladt);
abtcb_re: abtcb hadt = abtcb ladt;
abq_re: abq hadt = abq ladt;
syncchpool_re: syncchpool hadt = syncchpool ladt;
sleeper_re: sleeper hadt = sleeper ladt
}.
Inductive match_RData: stencil → HDATA → mem → meminj → Prop :=
| MATCH_RDATA: ∀ habd m f s, match_RData s habd m f.
Local Hint Resolve MATCH_RDATA.
Global Instance rel_ops: CompatRelOps HDATAOps LDATAOps :=
{
relate_AbData s f d1 d2 := relate_RData f d1 d2;
match_AbData s d1 m f := match_RData s d1 m f;
new_glbl := nil
}.
mkrelate_RData {
flatmem_re: FlatMem.flatmem_inj (HP hadt) (HP ladt);
vmxinfo_re: vmxinfo hadt = vmxinfo ladt;
CR3_re: CR3 hadt = CR3 ladt;
ikern_re: ikern hadt = ikern ladt;
pg_re: pg hadt = pg ladt;
ihost_re: ihost hadt = ihost ladt;
AC_re: AC hadt = AC ladt;
ti_fst_re: (fst (ti hadt)) = (fst (ti ladt));
ti_snd_re: val_inject f (snd (ti hadt)) (snd (ti ladt));
LAT_re: LAT hadt = LAT ladt;
nps_re: nps hadt = nps ladt;
init_re: init hadt = init ladt;
pperm_re: pperm hadt = pperm ladt;
PT_re: PT hadt = PT ladt;
ptp_re: ptpool hadt = ptpool ladt;
idpde_re: idpde hadt = idpde ladt;
ipt_re: ipt hadt = ipt ladt;
smspool_re: smspool hadt = smspool ladt;
CPU_ID_re: CPU_ID hadt = CPU_ID ladt;
cid_re: cid hadt = cid ladt;
multi_oracle_re: multi_oracle hadt = multi_oracle ladt;
multi_log_re: multi_log hadt = multi_log ladt;
lock_re: lock hadt = lock ladt;
com1_re: com1 hadt = com1 ladt;
console_re: console hadt = console ladt;
console_concrete_re: console_concrete hadt = console_concrete ladt;
ioapic_re: ioapic ladt = ioapic hadt;
lapic_re: lapic ladt = lapic hadt;
intr_flag_re: intr_flag ladt = intr_flag hadt;
curr_intr_num_re: curr_intr_num ladt = curr_intr_num hadt;
in_intr_re: in_intr ladt = in_intr hadt;
drv_serial_re: drv_serial hadt = drv_serial ladt;
kctxt_re: kctxt_inj f num_proc (kctxt hadt) (kctxt ladt);
abtcb_re: abtcb hadt = abtcb ladt;
abq_re: abq hadt = abq ladt;
syncchpool_re: syncchpool hadt = syncchpool ladt;
sleeper_re: sleeper hadt = sleeper ladt
}.
Inductive match_RData: stencil → HDATA → mem → meminj → Prop :=
| MATCH_RDATA: ∀ habd m f s, match_RData s habd m f.
Local Hint Resolve MATCH_RDATA.
Global Instance rel_ops: CompatRelOps HDATAOps LDATAOps :=
{
relate_AbData s f d1 d2 := relate_RData f d1 d2;
match_AbData s d1 m f := match_RData s d1 m f;
new_glbl := nil
}.
Prove that after taking one step, the refinement relation still holds
Lemma relate_incr:
∀ abd abd´ f f´,
relate_RData f abd abd´
→ inject_incr f f´
→ relate_RData f´ abd abd´.
Proof.
inversion 1; subst; intros; inv H; constructor; eauto.
- eapply kctxt_inj_incr; eauto.
Qed.
End Rel_Property.
Global Instance rel_prf: CompatRel HDATAOps LDATAOps.
Proof.
constructor; intros; simpl; trivial.
eapply relate_incr; eauto.
Qed.
∀ abd abd´ f f´,
relate_RData f abd abd´
→ inject_incr f f´
→ relate_RData f´ abd abd´.
Proof.
inversion 1; subst; intros; inv H; constructor; eauto.
- eapply kctxt_inj_incr; eauto.
Qed.
End Rel_Property.
Global Instance rel_prf: CompatRel HDATAOps LDATAOps.
Proof.
constructor; intros; simpl; trivial.
eapply relate_incr; eauto.
Qed.
Section Exists.
Lemma set_state_exist:
∀ habd habd´ labd n i f,
set_state1_spec n i habd = Some habd´
→ relate_RData f habd labd
→ ∃ labd´, set_state0_spec n i labd = Some labd´ ∧ relate_RData f habd´ labd´.
Proof.
unfold set_state1_spec, set_state0_spec. intros until f. exist_simpl.
Qed.
Lemma thread_sched_exist:
∀ habd habd´ labd rs r´ rs0 f,
thread_sched_spec
habd (Pregmap.init Vundef)#ESP <- (rs#ESP)#EDI <- (rs#EDI)#ESI <- (rs#ESI)
#EBX <- (rs#EBX)#EBP <- (rs#EBP)#RA <- (rs#RA) = Some (habd´, rs0)
→ relate_RData f habd labd
→ high_level_invariant habd
→ (∀ reg : PregEq.t,
val_inject f (Pregmap.get reg rs) (Pregmap.get reg r´))
→ ∃ labd´ r´0, thread_sched_spec
labd (Pregmap.init Vundef)#ESP <- (r´#ESP)#EDI <- (r´#EDI)#ESI <- (r´#ESI)
#EBX <- (r´#EBX)#EBP <- (r´#EBP)#RA <- (r´#RA) = Some (labd´, r´0)
∧ relate_RData f habd´ labd´
∧ (∀ i r,
ZtoPreg i = Some r → val_inject f (rs0#r) (r´0#r)).
Proof.
unfold thread_sched_spec; intros until f.
intros HP HR HINV HVL; pose proof HR as HR´; inv HR; revert HP.
specialize (valid_TDQ _ HINV); unfold AbQCorrect_range, AbQCorrect.
simpl; subrewrite´; intros Hlast HQ.
subdestruct.
inv HQ. refine_split´; eauto 1.
- inv HR´. constructor; simpl; try reflexivity; trivial.
kctxt_inj_simpl.
- unfold kctxt_inj, Pregmap.get in ×.
intros. eapply kctxt_re0; eauto.
inv HINV.
rewrite CPU_ID_re0 in CPU_ID_range.
unfold rdy_q_id in Hdestruct3.
simpl in Hdestruct3.
assert (HOS: 0≤ rdy_q_id (CPU_ID labd) < num_chan).
{
unfold rdy_q_id. omega.
}
specialize (Hlast eq_refl (rdy_q_id (CPU_ID labd)) HOS).
destruct Hlast as [l1[HT Hlast]]. inv HT.
apply Hlast.
rewrite Hdestruct4 in H1; inv H1.
left; trivial.
Qed.
End Exists.
Section FRESH_PRIM.
Lemma thread_poll_pending_kernel_mode:
∀ d d´,
thread_poll_pending_spec d = Some d´ →
kernel_mode d.
Proof.
intros.
simpl; functional inversion H; functional inversion H1; unfold acquire_lock_ABTCB_spec in H7; subdestruct; eauto.
unfold acquire_lock_ABTCB_spec in H8; subdestruct; eauto.
subst.
unfold acquire_lock_ABTCB_spec in H5; subdestruct; eauto.
Qed.
Lemma thread_poll_pending_spec_ref:
compatsim (crel HDATA LDATA) (gensem thread_poll_pending_spec)
thread_poll_pending_spec_low.
Proof.
compatsim_simpl (@match_AbData).
exploit thread_poll_pending_exist; eauto 1.
intros (labd´ & HP & HM).
exploit thread_poll_pending_kernel_mode; eauto. intros.
refine_split; try econstructor; eauto. constructor.
Qed.
Lemma sched_init_kernel_mode:
∀ i d d´,
sched_init_spec i d = Some d´ →
kernel_mode d.
Proof.
intros. simpl; functional inversion H; eauto.
Qed.
Lemma sched_init_spec_ref:
compatsim (crel HDATA LDATA) (gensem sched_init_spec)
sched_init_spec_low.
Proof.
compatsim_simpl (@match_AbData).
exploit sched_init_exist; eauto 1.
intros (labd´ & HP & HM).
exploit sched_init_kernel_mode; eauto. intros.
refine_split; try econstructor; eauto. constructor.
Qed.
Lemma thread_wakeup_kernel_mode:
∀ i d d´,
thread_wakeup_spec i d = Some d´ →
kernel_mode d.
Proof.
intros. simpl; functional inversion H; eauto.
Qed.
Lemma thread_wakeup_spec_ref:
compatsim (crel HDATA LDATA) (gensem thread_wakeup_spec)
thread_wakeup_spec_low.
Proof.
compatsim_simpl (@match_AbData).
exploit thread_wakeup_exist; eauto 1.
intros (labd´ & HP & HM).
exploit thread_wakeup_kernel_mode; eauto. intros.
refine_split; try econstructor; eauto. constructor.
Qed.
Lemma thread_spawn_kernel_mode:
∀ d d´ b b´ ofs id q z,
thread_spawn_spec d b b´ ofs id q = Some (d´, z) →
kernel_mode d.
Proof.
unfold thread_spawn_spec. intros. simpl.
subdestruct; eauto.
Qed.
Lemma thread_spawn_spec_ref:
compatsim (crel HDATA LDATA)
(dnew_compatsem thread_spawn_spec)
thread_spawn_spec_low.
Proof.
compatsim_simpl (@match_AbData).
exploit thread_spawn_exist; eauto 1.
intros (labd´ & HP & HM).
exploit thread_spawn_kernel_mode; eauto. intros.
destruct H8 as [fun_id Hsymbol].
exploit (stencil_find_symbol_inject´ s ι fun_id b´); eauto.
intros HFB.
refine_split; try econstructor; eauto. constructor.
Qed.
Lemma thread_sched_spec_ref:
compatsim (crel HDATA LDATA)
(primcall_thread_schedule_compatsem thread_sched_spec (prim_ident:= thread_sched))
thread_sched_spec_low.
Proof.
compatsim_simpl (@match_AbData).
intros.
inv H4. inv match_extcall_states.
exploit thread_sched_exist; eauto 1.
intros [labd´ [r´0[HP [HM HReg]]]].
refine_split; try econstructor; eauto.
eapply reg_symbol_inject; eassumption.
econstructor; eauto. constructor.
subst rs3.
val_inject_simpl; eapply HReg;
apply PregToZ_correct; reflexivity.
Qed.
End FRESH_PRIM.
Section PASSTHROUGH_PRIM.
Global Instance: (LoadStoreProp (hflatmem_store:= flatmem_store) (lflatmem_store:= flatmem_store)).
Proof.
accessor_prop_tac.
- eapply flatmem_store_exists; eauto.
Qed.
Lemma passthrough_correct:
sim (crel HDATA LDATA) pthreadsched_passthrough pcvop.
Proof.
sim_oplus.
- apply fload_sim.
- apply fstore_sim.
- apply vmxinfo_get_sim.
- apply palloc_sim.
- apply setPT_sim.
- apply ptRead_sim.
- apply ptResv_sim.
- apply shared_mem_status_sim.
- apply offer_shared_mem_sim.
- apply get_state0_sim.
-
layer_sim_simpl; compatsim_simpl (@match_AbData); intros.
exploit set_state_exist; eauto 1; intros (labd´ & HP & HM & CID).
match_external_states_simpl.
- intros. layer_sim_simpl. compatsim_simpl (@match_AbData).
match_external_states_simpl.
erewrite get_abtcb_CPU_ID_exist; eauto. reflexivity. - apply enqueue0_sim.
- apply enqueue_atomic_sim.
- apply ptin_sim.
- apply ptout_sim.
- apply container_get_nchildren_sim.
- apply container_get_quota_sim.
- apply container_get_usage_sim.
- apply container_can_consume_sim.
- apply get_CPU_ID_sim.
- apply get_curid_sim.
- apply set_curid_sim.
- apply sleeper_inc_sim.
- apply sleeper_dec_sim.
- apply sleeper_zzz_sim.
- apply acquire_lock_SC_sim.
- apply release_lock_SC_sim.
- apply get_sync_chan_busy_sim.
- apply set_sync_chan_busy_sim.
- apply ipc_send_body_sim.
- apply ipc_receive_body_sim.
- apply cli_sim.
- apply sti_sim.
- apply serial_intr_disable_sim.
- apply serial_intr_enable_sim.
- apply serial_putc_sim.
- apply cons_buf_read_sim.
- apply trapin_sim.
- apply trapout_sim.
- apply hostin_sim.
- apply hostout_sim.
- apply proc_create_postinit_sim.
- apply trap_info_get_sim.
- apply trap_info_ret_sim.
- layer_sim_simpl.
+ eapply load_correct2.
+ eapply store_correct2.
Qed.
End PASSTHROUGH_PRIM.
End OneStep_Forward_Relation.
End WITHMEM.
End Refinement.
Lemma set_state_exist:
∀ habd habd´ labd n i f,
set_state1_spec n i habd = Some habd´
→ relate_RData f habd labd
→ ∃ labd´, set_state0_spec n i labd = Some labd´ ∧ relate_RData f habd´ labd´.
Proof.
unfold set_state1_spec, set_state0_spec. intros until f. exist_simpl.
Qed.
Lemma thread_sched_exist:
∀ habd habd´ labd rs r´ rs0 f,
thread_sched_spec
habd (Pregmap.init Vundef)#ESP <- (rs#ESP)#EDI <- (rs#EDI)#ESI <- (rs#ESI)
#EBX <- (rs#EBX)#EBP <- (rs#EBP)#RA <- (rs#RA) = Some (habd´, rs0)
→ relate_RData f habd labd
→ high_level_invariant habd
→ (∀ reg : PregEq.t,
val_inject f (Pregmap.get reg rs) (Pregmap.get reg r´))
→ ∃ labd´ r´0, thread_sched_spec
labd (Pregmap.init Vundef)#ESP <- (r´#ESP)#EDI <- (r´#EDI)#ESI <- (r´#ESI)
#EBX <- (r´#EBX)#EBP <- (r´#EBP)#RA <- (r´#RA) = Some (labd´, r´0)
∧ relate_RData f habd´ labd´
∧ (∀ i r,
ZtoPreg i = Some r → val_inject f (rs0#r) (r´0#r)).
Proof.
unfold thread_sched_spec; intros until f.
intros HP HR HINV HVL; pose proof HR as HR´; inv HR; revert HP.
specialize (valid_TDQ _ HINV); unfold AbQCorrect_range, AbQCorrect.
simpl; subrewrite´; intros Hlast HQ.
subdestruct.
inv HQ. refine_split´; eauto 1.
- inv HR´. constructor; simpl; try reflexivity; trivial.
kctxt_inj_simpl.
- unfold kctxt_inj, Pregmap.get in ×.
intros. eapply kctxt_re0; eauto.
inv HINV.
rewrite CPU_ID_re0 in CPU_ID_range.
unfold rdy_q_id in Hdestruct3.
simpl in Hdestruct3.
assert (HOS: 0≤ rdy_q_id (CPU_ID labd) < num_chan).
{
unfold rdy_q_id. omega.
}
specialize (Hlast eq_refl (rdy_q_id (CPU_ID labd)) HOS).
destruct Hlast as [l1[HT Hlast]]. inv HT.
apply Hlast.
rewrite Hdestruct4 in H1; inv H1.
left; trivial.
Qed.
End Exists.
Section FRESH_PRIM.
Lemma thread_poll_pending_kernel_mode:
∀ d d´,
thread_poll_pending_spec d = Some d´ →
kernel_mode d.
Proof.
intros.
simpl; functional inversion H; functional inversion H1; unfold acquire_lock_ABTCB_spec in H7; subdestruct; eauto.
unfold acquire_lock_ABTCB_spec in H8; subdestruct; eauto.
subst.
unfold acquire_lock_ABTCB_spec in H5; subdestruct; eauto.
Qed.
Lemma thread_poll_pending_spec_ref:
compatsim (crel HDATA LDATA) (gensem thread_poll_pending_spec)
thread_poll_pending_spec_low.
Proof.
compatsim_simpl (@match_AbData).
exploit thread_poll_pending_exist; eauto 1.
intros (labd´ & HP & HM).
exploit thread_poll_pending_kernel_mode; eauto. intros.
refine_split; try econstructor; eauto. constructor.
Qed.
Lemma sched_init_kernel_mode:
∀ i d d´,
sched_init_spec i d = Some d´ →
kernel_mode d.
Proof.
intros. simpl; functional inversion H; eauto.
Qed.
Lemma sched_init_spec_ref:
compatsim (crel HDATA LDATA) (gensem sched_init_spec)
sched_init_spec_low.
Proof.
compatsim_simpl (@match_AbData).
exploit sched_init_exist; eauto 1.
intros (labd´ & HP & HM).
exploit sched_init_kernel_mode; eauto. intros.
refine_split; try econstructor; eauto. constructor.
Qed.
Lemma thread_wakeup_kernel_mode:
∀ i d d´,
thread_wakeup_spec i d = Some d´ →
kernel_mode d.
Proof.
intros. simpl; functional inversion H; eauto.
Qed.
Lemma thread_wakeup_spec_ref:
compatsim (crel HDATA LDATA) (gensem thread_wakeup_spec)
thread_wakeup_spec_low.
Proof.
compatsim_simpl (@match_AbData).
exploit thread_wakeup_exist; eauto 1.
intros (labd´ & HP & HM).
exploit thread_wakeup_kernel_mode; eauto. intros.
refine_split; try econstructor; eauto. constructor.
Qed.
Lemma thread_spawn_kernel_mode:
∀ d d´ b b´ ofs id q z,
thread_spawn_spec d b b´ ofs id q = Some (d´, z) →
kernel_mode d.
Proof.
unfold thread_spawn_spec. intros. simpl.
subdestruct; eauto.
Qed.
Lemma thread_spawn_spec_ref:
compatsim (crel HDATA LDATA)
(dnew_compatsem thread_spawn_spec)
thread_spawn_spec_low.
Proof.
compatsim_simpl (@match_AbData).
exploit thread_spawn_exist; eauto 1.
intros (labd´ & HP & HM).
exploit thread_spawn_kernel_mode; eauto. intros.
destruct H8 as [fun_id Hsymbol].
exploit (stencil_find_symbol_inject´ s ι fun_id b´); eauto.
intros HFB.
refine_split; try econstructor; eauto. constructor.
Qed.
Lemma thread_sched_spec_ref:
compatsim (crel HDATA LDATA)
(primcall_thread_schedule_compatsem thread_sched_spec (prim_ident:= thread_sched))
thread_sched_spec_low.
Proof.
compatsim_simpl (@match_AbData).
intros.
inv H4. inv match_extcall_states.
exploit thread_sched_exist; eauto 1.
intros [labd´ [r´0[HP [HM HReg]]]].
refine_split; try econstructor; eauto.
eapply reg_symbol_inject; eassumption.
econstructor; eauto. constructor.
subst rs3.
val_inject_simpl; eapply HReg;
apply PregToZ_correct; reflexivity.
Qed.
End FRESH_PRIM.
Section PASSTHROUGH_PRIM.
Global Instance: (LoadStoreProp (hflatmem_store:= flatmem_store) (lflatmem_store:= flatmem_store)).
Proof.
accessor_prop_tac.
- eapply flatmem_store_exists; eauto.
Qed.
Lemma passthrough_correct:
sim (crel HDATA LDATA) pthreadsched_passthrough pcvop.
Proof.
sim_oplus.
- apply fload_sim.
- apply fstore_sim.
- apply vmxinfo_get_sim.
- apply palloc_sim.
- apply setPT_sim.
- apply ptRead_sim.
- apply ptResv_sim.
- apply shared_mem_status_sim.
- apply offer_shared_mem_sim.
- apply get_state0_sim.
-
layer_sim_simpl; compatsim_simpl (@match_AbData); intros.
exploit set_state_exist; eauto 1; intros (labd´ & HP & HM & CID).
match_external_states_simpl.
- intros. layer_sim_simpl. compatsim_simpl (@match_AbData).
match_external_states_simpl.
erewrite get_abtcb_CPU_ID_exist; eauto. reflexivity. - apply enqueue0_sim.
- apply enqueue_atomic_sim.
- apply ptin_sim.
- apply ptout_sim.
- apply container_get_nchildren_sim.
- apply container_get_quota_sim.
- apply container_get_usage_sim.
- apply container_can_consume_sim.
- apply get_CPU_ID_sim.
- apply get_curid_sim.
- apply set_curid_sim.
- apply sleeper_inc_sim.
- apply sleeper_dec_sim.
- apply sleeper_zzz_sim.
- apply acquire_lock_SC_sim.
- apply release_lock_SC_sim.
- apply get_sync_chan_busy_sim.
- apply set_sync_chan_busy_sim.
- apply ipc_send_body_sim.
- apply ipc_receive_body_sim.
- apply cli_sim.
- apply sti_sim.
- apply serial_intr_disable_sim.
- apply serial_intr_enable_sim.
- apply serial_putc_sim.
- apply cons_buf_read_sim.
- apply trapin_sim.
- apply trapout_sim.
- apply hostin_sim.
- apply hostout_sim.
- apply proc_create_postinit_sim.
- apply trap_info_get_sim.
- apply trap_info_ret_sim.
- layer_sim_simpl.
+ eapply load_correct2.
+ eapply store_correct2.
Qed.
End PASSTHROUGH_PRIM.
End OneStep_Forward_Relation.
End WITHMEM.
End Refinement.