Abstract syntax and semantics for IA32 assembly language
Require Import String Coqlib Maps.
Require Import AST Integers Floats Values Memory Events Globalenvs Smallstep.
Require Import Locations Stacklayout Conventions.
Abstract syntax
Registers.
Integer registers.
Inductive ireg:
Type :=
|
RAX |
RBX |
RCX |
RDX |
RSI |
RDI |
RBP |
RSP
|
R8 |
R9 |
R10 |
R11 |
R12 |
R13 |
R14 |
R15.
Floating-point registers, i.e. SSE2 registers
Inductive freg:
Type :=
|
XMM0 |
XMM1 |
XMM2 |
XMM3 |
XMM4 |
XMM5 |
XMM6 |
XMM7
|
XMM8 |
XMM9 |
XMM10 |
XMM11 |
XMM12 |
XMM13 |
XMM14 |
XMM15.
Lemma ireg_eq:
forall (
x y:
ireg), {
x=
y} + {
x<>
y}.
Proof.
decide equality. Defined.
Lemma freg_eq:
forall (
x y:
freg), {
x=
y} + {
x<>
y}.
Proof.
decide equality. Defined.
Bits of the flags register.
Inductive crbit:
Type :=
|
ZF |
CF |
PF |
SF |
OF.
All registers modeled here.
Inductive preg:
Type :=
|
PC:
preg (* program counter *)
|
IR:
ireg ->
preg (* integer register *)
|
FR:
freg ->
preg (* XMM register *)
|
ST0:
preg (* top of FP stack *)
|
CR:
crbit ->
preg (* bit of the flags register *)
|
RA:
preg.
(* pseudo-reg representing return address *)
Coercion IR:
ireg >->
preg.
Coercion FR:
freg >->
preg.
Coercion CR:
crbit >->
preg.
Conventional names for stack pointer (SP) and return address (RA)
Notation SP :=
RSP (
only parsing).
Instruction set.
Definition label :=
positive.
General form of an addressing mode.
Inductive addrmode:
Type :=
|
Addrmode (
base:
option ireg)
(
ofs:
option (
ireg *
Z))
(
const:
Z +
ident *
ptrofs).
Testable conditions (for conditional jumps and more).
Inductive testcond:
Type :=
|
Cond_e |
Cond_ne
|
Cond_b |
Cond_be |
Cond_ae |
Cond_a
|
Cond_l |
Cond_le |
Cond_ge |
Cond_g
|
Cond_p |
Cond_np.
Instructions. IA32 instructions accept many combinations of
registers, memory references and immediate constants as arguments.
Here, we list only the combinations that we actually use.
Naming conventions for types:
-
b: 8 bits
-
w: 16 bits ("word")
-
l: 32 bits ("longword")
-
q: 64 bits ("quadword")
-
d or sd: FP double precision (64 bits)
-
s or ss: FP single precision (32 bits)
Naming conventions for operands:
-
r: integer register operand
-
f: XMM register operand
-
m: memory operand
-
i: immediate integer operand
-
s: immediate symbol operand
-
l: immediate label operand
-
cl: the CL register
For two-operand instructions, the first suffix describes the result
(and first argument), the second suffix describes the second argument.
Inductive instruction:
Type :=
Moves
|
Pmov_rr (
rd:
ireg) (
r1:
ireg)
(* mov (integer) *)
|
Pmovl_ri (
rd:
ireg) (
n:
int)
|
Pmovq_ri (
rd:
ireg) (
n:
int64)
|
Pmov_rs (
rd:
ireg) (
id:
ident)
|
Pmovl_rm (
rd:
ireg) (
a:
addrmode)
|
Pmovq_rm (
rd:
ireg) (
a:
addrmode)
|
Pmovl_mr (
a:
addrmode) (
rs:
ireg)
|
Pmovq_mr (
a:
addrmode) (
rs:
ireg)
|
Pmovsd_ff (
rd:
freg) (
r1:
freg)
(* movsd (single 64-bit float) *)
|
Pmovsd_fi (
rd:
freg) (
n:
float)
(* (pseudo-instruction) *)
|
Pmovsd_fm (
rd:
freg) (
a:
addrmode)
|
Pmovsd_mf (
a:
addrmode) (
r1:
freg)
|
Pmovss_fi (
rd:
freg) (
n:
float32)
(* movss (single 32-bit float) *)
|
Pmovss_fm (
rd:
freg) (
a:
addrmode)
|
Pmovss_mf (
a:
addrmode) (
r1:
freg)
|
Pfldl_m (
a:
addrmode)
(* fld double precision *)
|
Pfstpl_m (
a:
addrmode)
(* fstp double precision *)
|
Pflds_m (
a:
addrmode)
(* fld simple precision *)
|
Pfstps_m (
a:
addrmode)
(* fstp simple precision *)
|
Pxchg_rr (
r1:
ireg) (
r2:
ireg)
(* register-register exchange *)
Moves with conversion
|
Pmovb_mr (
a:
addrmode) (
rs:
ireg)
(* mov (8-bit int) *)
|
Pmovw_mr (
a:
addrmode) (
rs:
ireg)
(* mov (16-bit int) *)
|
Pmovzb_rr (
rd:
ireg) (
rs:
ireg)
(* movzb (8-bit zero-extension) *)
|
Pmovzb_rm (
rd:
ireg) (
a:
addrmode)
|
Pmovsb_rr (
rd:
ireg) (
rs:
ireg)
(* movsb (8-bit sign-extension) *)
|
Pmovsb_rm (
rd:
ireg) (
a:
addrmode)
|
Pmovzw_rr (
rd:
ireg) (
rs:
ireg)
(* movzw (16-bit zero-extension) *)
|
Pmovzw_rm (
rd:
ireg) (
a:
addrmode)
|
Pmovsw_rr (
rd:
ireg) (
rs:
ireg)
(* movsw (16-bit sign-extension) *)
|
Pmovsw_rm (
rd:
ireg) (
a:
addrmode)
|
Pmovzl_rr (
rd:
ireg) (
rs:
ireg)
(* movzl (32-bit zero-extension) *)
|
Pmovsl_rr (
rd:
ireg) (
rs:
ireg)
(* movsl (32-bit sign-extension) *)
|
Pmovls_rr (
rd:
ireg)
|
Pcvtsd2ss_ff (
rd:
freg) (
r1:
freg)
(* conversion to single float *)
|
Pcvtss2sd_ff (
rd:
freg) (
r1:
freg)
(* conversion to double float *)
|
Pcvttsd2si_rf (
rd:
ireg) (
r1:
freg)
(* double to signed int *)
|
Pcvtsi2sd_fr (
rd:
freg) (
r1:
ireg)
(* signed int to double *)
|
Pcvttss2si_rf (
rd:
ireg) (
r1:
freg)
(* single to signed int *)
|
Pcvtsi2ss_fr (
rd:
freg) (
r1:
ireg)
(* signed int to single *)
|
Pcvttsd2sl_rf (
rd:
ireg) (
r1:
freg)
(* double to signed long *)
|
Pcvtsl2sd_fr (
rd:
freg) (
r1:
ireg)
(* signed long to double *)
|
Pcvttss2sl_rf (
rd:
ireg) (
r1:
freg)
(* single to signed long *)
|
Pcvtsl2ss_fr (
rd:
freg) (
r1:
ireg)
(* signed long to single *)
Integer arithmetic
|
Pleal (
rd:
ireg) (
a:
addrmode)
|
Pleaq (
rd:
ireg) (
a:
addrmode)
|
Pnegl (
rd:
ireg)
|
Pnegq (
rd:
ireg)
|
Paddl_ri (
rd:
ireg) (
n:
int)
|
Paddq_ri (
rd:
ireg) (
n:
int64)
|
Psubl_rr (
rd:
ireg) (
r1:
ireg)
|
Psubq_rr (
rd:
ireg) (
r1:
ireg)
|
Pimull_rr (
rd:
ireg) (
r1:
ireg)
|
Pimulq_rr (
rd:
ireg) (
r1:
ireg)
|
Pimull_ri (
rd:
ireg) (
n:
int)
|
Pimulq_ri (
rd:
ireg) (
n:
int64)
|
Pimull_r (
r1:
ireg)
|
Pimulq_r (
r1:
ireg)
|
Pmull_r (
r1:
ireg)
|
Pmulq_r (
r1:
ireg)
|
Pcltd
|
Pcqto
|
Pdivl (
r1:
ireg)
|
Pdivq (
r1:
ireg)
|
Pidivl (
r1:
ireg)
|
Pidivq (
r1:
ireg)
|
Pandl_rr (
rd:
ireg) (
r1:
ireg)
|
Pandq_rr (
rd:
ireg) (
r1:
ireg)
|
Pandl_ri (
rd:
ireg) (
n:
int)
|
Pandq_ri (
rd:
ireg) (
n:
int64)
|
Porl_rr (
rd:
ireg) (
r1:
ireg)
|
Porq_rr (
rd:
ireg) (
r1:
ireg)
|
Porl_ri (
rd:
ireg) (
n:
int)
|
Porq_ri (
rd:
ireg) (
n:
int64)
|
Pxorl_r (
rd:
ireg)
(* xor with self = set to zero *)
|
Pxorq_r (
rd:
ireg)
|
Pxorl_rr (
rd:
ireg) (
r1:
ireg)
|
Pxorq_rr (
rd:
ireg) (
r1:
ireg)
|
Pxorl_ri (
rd:
ireg) (
n:
int)
|
Pxorq_ri (
rd:
ireg) (
n:
int64)
|
Pnotl (
rd:
ireg)
|
Pnotq (
rd:
ireg)
|
Psall_rcl (
rd:
ireg)
|
Psalq_rcl (
rd:
ireg)
|
Psall_ri (
rd:
ireg) (
n:
int)
|
Psalq_ri (
rd:
ireg) (
n:
int)
|
Pshrl_rcl (
rd:
ireg)
|
Pshrq_rcl (
rd:
ireg)
|
Pshrl_ri (
rd:
ireg) (
n:
int)
|
Pshrq_ri (
rd:
ireg) (
n:
int)
|
Psarl_rcl (
rd:
ireg)
|
Psarq_rcl (
rd:
ireg)
|
Psarl_ri (
rd:
ireg) (
n:
int)
|
Psarq_ri (
rd:
ireg) (
n:
int)
|
Pshld_ri (
rd:
ireg) (
r1:
ireg) (
n:
int)
|
Prorl_ri (
rd:
ireg) (
n:
int)
|
Prorq_ri (
rd:
ireg) (
n:
int)
|
Pcmpl_rr (
r1 r2:
ireg)
|
Pcmpq_rr (
r1 r2:
ireg)
|
Pcmpl_ri (
r1:
ireg) (
n:
int)
|
Pcmpq_ri (
r1:
ireg) (
n:
int64)
|
Ptestl_rr (
r1 r2:
ireg)
|
Ptestq_rr (
r1 r2:
ireg)
|
Ptestl_ri (
r1:
ireg) (
n:
int)
|
Ptestq_ri (
r1:
ireg) (
n:
int64)
|
Pcmov (
c:
testcond) (
rd:
ireg) (
r1:
ireg)
|
Psetcc (
c:
testcond) (
rd:
ireg)
Floating-point arithmetic
|
Paddd_ff (
rd:
freg) (
r1:
freg)
|
Psubd_ff (
rd:
freg) (
r1:
freg)
|
Pmuld_ff (
rd:
freg) (
r1:
freg)
|
Pdivd_ff (
rd:
freg) (
r1:
freg)
|
Pnegd (
rd:
freg)
|
Pabsd (
rd:
freg)
|
Pcomisd_ff (
r1 r2:
freg)
|
Pxorpd_f (
rd:
freg)
(* xor with self = set to zero *)
|
Padds_ff (
rd:
freg) (
r1:
freg)
|
Psubs_ff (
rd:
freg) (
r1:
freg)
|
Pmuls_ff (
rd:
freg) (
r1:
freg)
|
Pdivs_ff (
rd:
freg) (
r1:
freg)
|
Pnegs (
rd:
freg)
|
Pabss (
rd:
freg)
|
Pcomiss_ff (
r1 r2:
freg)
|
Pxorps_f (
rd:
freg)
(* xor with self = set to zero *)
Branches and calls
|
Pjmp_l (
l:
label)
|
Pjmp (
ros:
ireg +
ident) (
sg:
signature)
|
Pjcc (
c:
testcond)(
l:
label)
|
Pjcc2 (
c1 c2:
testcond)(
l:
label)
(* pseudo *)
|
Pjmptbl (
r:
ireg) (
tbl:
list label)
(* pseudo *)
|
Pcall (
ros:
ireg +
ident) (
sg:
signature)
|
Pret
Saving and restoring registers
|
Pmov_rm_a (
rd:
ireg) (
a:
addrmode)
(* like Pmov_rm, using Many64 chunk *)
|
Pmov_mr_a (
a:
addrmode) (
rs:
ireg)
(* like Pmov_mr, using Many64 chunk *)
|
Pmovsd_fm_a (
rd:
freg) (
a:
addrmode)
(* like Pmovsd_fm, using Many64 chunk *)
|
Pmovsd_mf_a (
a:
addrmode) (
r1:
freg)
(* like Pmovsd_mf, using Many64 chunk *)
Pseudo-instructions
|
Plabel(
l:
label)
|
Pallocframe (
sz:
Z) (
pubrange:
Z *
Z) (
ofs_ra:
ptrofs)
|
Pfreeframe (
sz:
Z) (
ofs_ra :
ptrofs)
|
Pload_parent_pointer (
rd:
ireg) (
sz:
Z)
|
Pbuiltin(
ef:
external_function)(
args:
list (
builtin_arg preg))(
res:
builtin_res preg)
Instructions not generated by Asmgen -- TO CHECK
|
Padcl_ri (
rd:
ireg) (
n:
int)
|
Padcl_rr (
rd:
ireg) (
r2:
ireg)
|
Paddl_mi (
a:
addrmode) (
n:
int)
|
Paddl_rr (
rd:
ireg) (
r2:
ireg)
|
Pbsfl (
rd:
ireg) (
r1:
ireg)
|
Pbsfq (
rd:
ireg) (
r1:
ireg)
|
Pbsrl (
rd:
ireg) (
r1:
ireg)
|
Pbsrq (
rd:
ireg) (
r1:
ireg)
|
Pbswap64 (
rd:
ireg)
|
Pbswap32 (
rd:
ireg)
|
Pbswap16 (
rd:
ireg)
|
Pcfi_adjust (
n:
int)
|
Pfmadd132 (
rd:
freg) (
r2:
freg) (
r3:
freg)
|
Pfmadd213 (
rd:
freg) (
r2:
freg) (
r3:
freg)
|
Pfmadd231 (
rd:
freg) (
r2:
freg) (
r3:
freg)
|
Pfmsub132 (
rd:
freg) (
r2:
freg) (
r3:
freg)
|
Pfmsub213 (
rd:
freg) (
r2:
freg) (
r3:
freg)
|
Pfmsub231 (
rd:
freg) (
r2:
freg) (
r3:
freg)
|
Pfnmadd132 (
rd:
freg) (
r2:
freg) (
r3:
freg)
|
Pfnmadd213 (
rd:
freg) (
r2:
freg) (
r3:
freg)
|
Pfnmadd231 (
rd:
freg) (
r2:
freg) (
r3:
freg)
|
Pfnmsub132 (
rd:
freg) (
r2:
freg) (
r3:
freg)
|
Pfnmsub213 (
rd:
freg) (
r2:
freg) (
r3:
freg)
|
Pfnmsub231 (
rd:
freg) (
r2:
freg) (
r3:
freg)
|
Pmaxsd (
rd:
freg) (
r2:
freg)
|
Pminsd (
rd:
freg) (
r2:
freg)
|
Pmovb_rm (
rd:
ireg) (
a:
addrmode)
|
Pmovsq_mr (
a:
addrmode) (
rs:
freg)
|
Pmovsq_rm (
rd:
freg) (
a:
addrmode)
|
Pmovsb
|
Pmovsw
|
Pmovw_rm (
rd:
ireg) (
ad:
addrmode)
|
Prep_movsl
|
Psbbl_rr (
rd:
ireg) (
r2:
ireg)
|
Psqrtsd (
rd:
freg) (
r1:
freg)
|
Psubl_ri (
rd:
ireg) (
n:
int)
|
Psubq_ri (
rd:
ireg) (
n:
int64).
Axiom instr_size :
instruction ->
Z.
Axiom instr_size_positive :
forall i, 0 <
instr_size i.
Axiom instr_size_repr:
forall i, 0 <=
instr_size i <=
Ptrofs.max_unsigned.
Definition code :=
list instruction.
Record function :
Type :=
mkfunction {
fn_sig:
signature;
fn_code:
code;
fn_stacksize:
Z;
fn_pubrange:
Z *
Z }.
Definition fundef :=
AST.fundef function.
Definition program :=
AST.program fundef unit.
Operational semantics
Lemma preg_eq:
forall (
x y:
preg), {
x=
y} + {
x<>
y}.
Proof.
decide equality.
apply ireg_eq.
apply freg_eq.
decide equality. Defined.
Module PregEq.
Definition t :=
preg.
Definition eq :=
preg_eq.
End PregEq.
Module Pregmap :=
EMap(
PregEq).
Definition regset :=
Pregmap.t val.
Definition genv :=
Genv.t fundef unit.
Notation "
a #
b" := (
a b) (
at level 1,
only parsing) :
asm.
Notation "
a #
b <-
c" := (
Pregmap.set b c a) (
at level 1,
b at next level) :
asm.
Open Scope asm.
Undefining some registers
Fixpoint undef_regs (
l:
list preg) (
rs:
regset) :
regset :=
match l with
|
nil =>
rs
|
r ::
l' =>
undef_regs l'
rs#
r <-
Vundef
end.
Assigning a register pair
Definition set_pair (
p:
rpair preg) (
v:
val) (
rs:
regset) :
regset :=
match p with
|
One r =>
rs#
r <-
v
|
Twolong rhi rlo =>
rs#
rhi <- (
Val.hiword v) #
rlo <- (
Val.loword v)
end.
Fixpoint no_rsp_pair (
b:
rpair preg) :=
match b with
One r =>
r <>
RSP
|
Twolong hi lo =>
hi <>
RSP /\
lo <>
RSP
end.
Assigning the result of a builtin
Fixpoint set_res (
res:
builtin_res preg) (
v:
val) (
rs:
regset) :
regset :=
match res with
|
BR r =>
rs#
r <-
v
|
BR_none =>
rs
|
BR_splitlong hi lo =>
set_res lo (
Val.loword v) (
set_res hi (
Val.hiword v)
rs)
end.
Fixpoint no_rsp_builtin_preg (
b:
builtin_res preg) :=
match b with
BR r =>
r <>
RSP
|
BR_none =>
True
|
BR_splitlong hi lo =>
no_rsp_builtin_preg lo /\
no_rsp_builtin_preg hi
end.
Section WITHEXTERNALCALLS.
Context `{
external_calls_prf:
ExternalCalls}.
Section RELSEM.
Class FindLabels {
function instructionx}
(
instr_size_fl :
instructionx ->
Z)
(
is_label :
label ->
instructionx ->
bool)
(
fn_code :
function ->
list instructionx).
Looking up instructions in a code sequence by position.
Fixpoint find_instr `{
Hfl:
FindLabels} (
pos:
Z) (
c:
list instructionx) {
struct c} :
option instructionx :=
match c with
|
nil =>
None
|
i ::
il =>
if zeq pos 0
then Some i else find_instr (
pos -
instr_size_fl i)
il
end.
Position corresponding to a label
Definition is_label (
lbl:
label) (
instr:
instruction) :
bool :=
match instr with
|
Plabel lbl' =>
if peq lbl lbl'
then true else false
|
_ =>
false
end.
Fixpoint code_size (
c:
code) :
Z :=
match c with
|
nil => 0
|
i::
c' =>
instr_size i + (
code_size c')
end.
Lemma code_size_non_neg :
forall c,
code_size c >= 0.
Proof.
Global Instance:
FindLabels instr_size is_label fn_code.
Lemma find_instr_pos_positive:
forall l o i,
find_instr o l =
Some i -> 0 <=
o.
Proof.
induction l;
simpl;
intros;
eauto.
congruence.
destr_in H.
omega.
apply IHl in H.
generalize (
instr_size_positive a).
omega.
Qed.
Lemma find_instr_no_overlap:
forall l o1 o2 i1 i2,
find_instr o1 l =
Some i1 ->
find_instr o2 l =
Some i2 ->
o1 <>
o2 ->
o1 +
instr_size i1 <=
o2 \/
o2 +
instr_size i2 <=
o1.
Proof.
induction l;
simpl;
intros;
eauto.
congruence.
repeat destr_in H;
repeat destr_in H0.
-
apply find_instr_pos_positive in H2.
omega.
-
apply find_instr_pos_positive in H3.
omega.
-
specialize (
IHl _ _ _ _ H3 H2).
trim IHl.
omega.
omega.
Qed.
Lemma find_instr_no_overlap':
forall l o1 o2 i1 i2,
find_instr o1 l =
Some i1 ->
find_instr o2 l =
Some i2 ->
i1 =
i2 \/
o1 +
instr_size i1 <=
o2 \/
o2 +
instr_size i2 <=
o1.
Proof.
intros l o1 o2 i1 i2 FI1 FI2.
destruct (
zeq o1 o2).
subst.
rewrite FI1 in FI2;
inv FI2;
auto.
right.
eapply find_instr_no_overlap;
eauto.
Qed.
Section WITH_FIND_LABELS.
Context {
function instructionx instr_size_fl is_label fn_code}
`{
Hfl:
FindLabels function instructionx instr_size_fl is_label fn_code}.
Fixpoint label_pos `{
Hfl:
FindLabels function instructionx instr_size_fl is_label fn_code}
(
lbl:
label) (
pos:
Z) (
c:
list instructionx) {
struct c} :
option Z :=
match c with
|
nil =>
None
|
instr ::
c' =>
let nextpos :=
pos +
instr_size_fl instr in
if is_label lbl instr then Some nextpos else label_pos lbl nextpos c'
end.
End WITH_FIND_LABELS.
Lemma label_pos_rng:
forall lbl c pos z,
label_pos lbl pos c =
Some z ->
0 <=
pos ->
0 <=
z -
pos <=
code_size c.
Proof.
Lemma label_pos_repr:
forall lbl c pos z,
code_size c +
pos <=
Ptrofs.max_unsigned ->
0 <=
pos ->
label_pos lbl pos c =
Some z ->
Ptrofs.unsigned (
Ptrofs.repr (
z -
pos)) =
z -
pos.
Proof.
Lemma find_instr_ofs_pos:
forall c o i,
find_instr o c =
Some i ->
0 <=
o.
Proof.
induction c;
simpl;
intros;
repeat destr_in H.
omega.
apply IHc in H1.
generalize (
instr_size_positive a);
omega.
Qed.
Lemma label_pos_spec:
forall lbl c pos z,
code_size c +
pos <=
Ptrofs.max_unsigned ->
0 <=
pos ->
label_pos lbl pos c =
Some z ->
find_instr ((
z -
pos) -
instr_size (
Plabel lbl))
c =
Some (
Plabel lbl).
Proof.
Section WITHGE.
Context {
F V :
Type}.
Variable ge:
Genv.t F V.
Evaluating an addressing mode
Definition eval_addrmode32 (
a:
addrmode) (
rs:
regset) :
val :=
let '(
Addrmode base ofs const) :=
a in
Val.add (
match base with
|
None =>
Vint Int.zero
|
Some r =>
rs r
end)
(
Val.add (
match ofs with
|
None =>
Vint Int.zero
|
Some(
r,
sc) =>
if zeq sc 1
then rs r
else Val.mul (
rs r) (
Vint (
Int.repr sc))
end)
(
match const with
|
inl ofs =>
Vint (
Int.repr ofs)
|
inr(
id,
ofs) =>
Genv.symbol_address ge id ofs
end)).
Definition eval_addrmode64 (
a:
addrmode) (
rs:
regset) :
val :=
let '(
Addrmode base ofs const) :=
a in
Val.addl (
match base with
|
None =>
Vlong Int64.zero
|
Some r =>
rs r
end)
(
Val.addl (
match ofs with
|
None =>
Vlong Int64.zero
|
Some(
r,
sc) =>
if zeq sc 1
then rs r
else Val.mull (
rs r) (
Vlong (
Int64.repr sc))
end)
(
match const with
|
inl ofs =>
Vlong (
Int64.repr ofs)
|
inr(
id,
ofs) =>
Genv.symbol_address ge id ofs
end)).
Definition eval_addrmode (
a:
addrmode) (
rs:
regset) :
val :=
if Archi.ptr64 then eval_addrmode64 a rs else eval_addrmode32 a rs.
End WITHGE.
Performing a comparison
Integer comparison between x and y:
-
ZF = 1 if x = y, 0 if x != y
-
CF = 1 if x <u y, 0 if x >=u y
-
SF = 1 if x - y is negative, 0 if x - y is positive
-
OF = 1 if x - y overflows (signed), 0 if not
-
PF is undefined
Definition compare_ints (
x y:
val) (
rs:
regset) (
m:
mem):
regset :=
rs #
ZF <- (
Val.cmpu (
Mem.valid_pointer m)
Ceq x y)
#
CF <- (
Val.cmpu (
Mem.valid_pointer m)
Clt x y)
#
SF <- (
Val.negative (
Val.sub x y))
#
OF <- (
Val.sub_overflow x y)
#
PF <-
Vundef.
Definition compare_longs (
x y:
val) (
rs:
regset) (
m:
mem):
regset :=
rs #
ZF <- (
Val.maketotal (
Val.cmplu (
Mem.valid_pointer m)
Ceq x y))
#
CF <- (
Val.maketotal (
Val.cmplu (
Mem.valid_pointer m)
Clt x y))
#
SF <- (
Val.negativel (
Val.subl x y))
#
OF <- (
Val.subl_overflow x y)
#
PF <-
Vundef.
Floating-point comparison between x and y:
-
ZF = 1 if x=y or unordered, 0 if x<>y
-
CF = 1 if x<y or unordered, 0 if x>=y
-
PF = 1 if unordered, 0 if ordered.
-
SF and 0F are undefined
Definition compare_floats (
vx vy:
val) (
rs:
regset) :
regset :=
match vx,
vy with
|
Vfloat x,
Vfloat y =>
rs #
ZF <- (
Val.of_bool (
negb (
Float.cmp Cne x y)))
#
CF <- (
Val.of_bool (
negb (
Float.cmp Cge x y)))
#
PF <- (
Val.of_bool (
negb (
Float.cmp Ceq x y ||
Float.cmp Clt x y ||
Float.cmp Cgt x y)))
#
SF <-
Vundef
#
OF <-
Vundef
|
_,
_ =>
undef_regs (
CR ZF ::
CR CF ::
CR PF ::
CR SF ::
CR OF ::
nil)
rs
end.
Definition compare_floats32 (
vx vy:
val) (
rs:
regset) :
regset :=
match vx,
vy with
|
Vsingle x,
Vsingle y =>
rs #
ZF <- (
Val.of_bool (
negb (
Float32.cmp Cne x y)))
#
CF <- (
Val.of_bool (
negb (
Float32.cmp Cge x y)))
#
PF <- (
Val.of_bool (
negb (
Float32.cmp Ceq x y ||
Float32.cmp Clt x y ||
Float32.cmp Cgt x y)))
#
SF <-
Vundef
#
OF <-
Vundef
|
_,
_ =>
undef_regs (
CR ZF ::
CR CF ::
CR PF ::
CR SF ::
CR OF ::
nil)
rs
end.
Testing a condition
Definition eval_testcond (
c:
testcond) (
rs:
regset) :
option bool :=
match c with
|
Cond_e =>
match rs ZF with
|
Vint n =>
Some (
Int.eq n Int.one)
|
_ =>
None
end
|
Cond_ne =>
match rs ZF with
|
Vint n =>
Some (
Int.eq n Int.zero)
|
_ =>
None
end
|
Cond_b =>
match rs CF with
|
Vint n =>
Some (
Int.eq n Int.one)
|
_ =>
None
end
|
Cond_be =>
match rs CF,
rs ZF with
|
Vint c,
Vint z =>
Some (
Int.eq c Int.one ||
Int.eq z Int.one)
|
_,
_ =>
None
end
|
Cond_ae =>
match rs CF with
|
Vint n =>
Some (
Int.eq n Int.zero)
|
_ =>
None
end
|
Cond_a =>
match rs CF,
rs ZF with
|
Vint c,
Vint z =>
Some (
Int.eq c Int.zero &&
Int.eq z Int.zero)
|
_,
_ =>
None
end
|
Cond_l =>
match rs OF,
rs SF with
|
Vint o,
Vint s =>
Some (
Int.eq (
Int.xor o s)
Int.one)
|
_,
_ =>
None
end
|
Cond_le =>
match rs OF,
rs SF,
rs ZF with
|
Vint o,
Vint s,
Vint z =>
Some (
Int.eq (
Int.xor o s)
Int.one ||
Int.eq z Int.one)
|
_,
_,
_ =>
None
end
|
Cond_ge =>
match rs OF,
rs SF with
|
Vint o,
Vint s =>
Some (
Int.eq (
Int.xor o s)
Int.zero)
|
_,
_ =>
None
end
|
Cond_g =>
match rs OF,
rs SF,
rs ZF with
|
Vint o,
Vint s,
Vint z =>
Some (
Int.eq (
Int.xor o s)
Int.zero &&
Int.eq z Int.zero)
|
_,
_,
_ =>
None
end
|
Cond_p =>
match rs PF with
|
Vint n =>
Some (
Int.eq n Int.one)
|
_ =>
None
end
|
Cond_np =>
match rs PF with
|
Vint n =>
Some (
Int.eq n Int.zero)
|
_ =>
None
end
end.
The semantics is purely small-step and defined as a function
from the current state (a register set + a memory state)
to either Next rs' m' where rs' and m' are the updated register
set and memory state after execution of the instruction at rs#PC,
or Stuck if the processor is stuck.
Inductive outcome {
memory_model_ops:
Mem.MemoryModelOps mem}:
Type :=
|
Next:
regset ->
mem ->
outcome
|
Stuck:
outcome.
Manipulations over the PC register: continuing with the next
instruction (nextinstr) or branching to a label (goto_label).
nextinstr_nf is a variant of nextinstr that sets condition flags
to Vundef in addition to incrementing the PC.
The manipulation of PC is parameterized by a mapping from
instructions to their actual sizes when compiled to machine-level bytes.
It is used to calculated the changes of PC as in the machine code.
It will be instantiated by the later phases of the transformation.
Definition nextinstr (
rs:
regset) (
sz:
ptrofs):=
rs#
PC <- (
Val.offset_ptr rs#
PC sz).
Definition nextinstr_nf (
rs:
regset) (
sz:
ptrofs) :
regset :=
nextinstr (
undef_regs (
CR ZF ::
CR CF ::
CR PF ::
CR SF ::
CR OF ::
nil)
rs)
sz.
Definition goto_label {
F V} (
ge:
Genv.t F V) (
f:
function) (
lbl:
label) (
rs:
regset) (
m:
mem) :=
match label_pos lbl 0 (
fn_code f)
with
|
None =>
Stuck
|
Some pos =>
match rs#
PC with
|
Vptr b ofs =>
match Genv.find_funct_ptr ge b with
|
Some _ =>
Next (
rs#
PC <- (
Vptr b (
Ptrofs.repr pos)))
m
|
None =>
Stuck
end
|
_ =>
Stuck
end
end.
CompCertiKOS:test-compcert-param-mem-accessors For CertiKOS, we
need to parameterize over exec_load and exec_store, which will be
defined differently depending on whether we are in kernel or user
mode.
Class MemAccessors
`{!
Mem.MemoryModelOps mem}
(
exec_load:
forall F V:
Type,
Genv.t F V ->
memory_chunk ->
mem ->
addrmode ->
regset ->
preg ->
ptrofs ->
outcome)
(
exec_store:
forall F V:
Type,
Genv.t F V ->
memory_chunk ->
mem ->
addrmode ->
regset ->
preg ->
list preg ->
ptrofs ->
outcome)
:
Prop := {}.
Section MEM_ACCESSORS_DEFAULT.
CompCertiKOS:test-compcert-param-mem-accessors Compcert does not
care about kernel vs. user mode, and uses its memory model to define
its memory accessors.
Definition exec_load {
F V} (
ge:
Genv.t F V) (
chunk:
memory_chunk) (
m:
mem)
(
a:
addrmode) (
rs:
regset) (
rd:
preg) (
sz:
ptrofs):=
match Mem.loadv chunk m (
eval_addrmode ge a rs)
with
|
Some v =>
Next (
nextinstr_nf (
rs#
rd <-
v)
sz)
m
|
None =>
Stuck
end.
Definition exec_store {
F V} (
ge:
Genv.t F V) (
chunk:
memory_chunk) (
m:
mem)
(
a:
addrmode) (
rs:
regset) (
r1:
preg)
(
destroyed:
list preg) (
sz:
ptrofs) :=
match Mem.storev chunk m (
eval_addrmode ge a rs) (
rs r1)
with
|
Some m' =>
Next (
nextinstr_nf (
undef_regs destroyed rs)
sz)
m'
|
None =>
Stuck
end.
Local Instance mem_accessors_default:
MemAccessors (@
exec_load) (@
exec_store).
End MEM_ACCESSORS_DEFAULT.
Execution of a single instruction i in initial state
rs and m. Return updated state. For instructions
that correspond to actual IA32 instructions, the cases are
straightforward transliterations of the informal descriptions
given in the IA32 reference manuals. For pseudo-instructions,
refer to the informal descriptions given above.
Note that we set to Vundef the registers used as temporaries by
the expansions of the pseudo-instructions, so that the IA32 code
we generate cannot use those registers to hold values that must
survive the execution of the pseudo-instruction.
Concerning condition flags, the comparison instructions set them
accurately; other instructions (moves, lea) preserve them;
and all other instruction set those flags to Vundef, to reflect
the fact that the processor updates some or all of those flags,
but we do not need to model this precisely.
Definition check_alloc_frame (
f:
frame_info) :=
zlt 0 (
frame_size f).
Definition match_frame (
bfi:
block *
frame_info) (
stk:
option block) (
sz:
Z) :
Prop :=
match stk with Some stk =>
stk =
fst bfi |
_ =>
True end
/\
sz = (
frame_size (
snd bfi)).
Lemma match_frame_dec :
forall bfi stk sz,
{
match_frame bfi stk sz } + { ~
match_frame bfi stk sz }.
Proof.
unfold match_frame.
intros.
destruct (
zeq sz (
frame_size (
snd bfi))). 2:
right;
intros (
A &
B);
omega.
destruct stk;
auto.
destruct (
peq b (
fst bfi));
auto.
right;
intros (
A &
B).
congruence.
Qed.
Definition check_top_frame (
m:
mem) (
stk:
option block) (
sz:
Z) :=
match Mem.stack m with
(
Some fr,
_)::
r =>
Forall_dec _ (
fun bfi =>
match_frame_dec bfi stk sz) (
frame_adt_blocks fr) &&
zeq sz (
frame_adt_size fr)
|
_ =>
false
end.
Local Open Scope list_scope.
Error monad with options or lists (stolen from cfronted/Cexec.v
Notation "'
do'
X <-
A ;
B" := (
match A with Some X =>
B |
None =>
Stuck end)
(
at level 200,
X ident,
A at level 100,
B at level 200).
Notation "'
do'
X ,
Y <-
A ;
B" := (
match A with Some (
X,
Y) =>
B |
None =>
Stuck end)
(
at level 200,
X ident,
Y ident,
A at level 100,
B at level 200).
Notation "'
do'
X ,
Y ,
Z <-
A ;
B" := (
match A with Some (
X,
Y,
Z) =>
B |
None =>
Stuck end)
(
at level 200,
X ident,
Y ident,
Z ident,
A at level 100,
B at level 200).
Notation " '
check'
A ;
B" := (
if A then B else Stuck)
(
at level 200,
A at level 100,
B at level 200).
Variable init_stk:
stack.
Definition init_sp :
val :=
current_sp init_stk.
Definition check_init_sp_in_stack (
m:
mem) :=
match init_sp with
Vptr b o =>
in_stack (
Mem.stack m)
b
|
_ =>
True
end.
Definition check_init_sp_in_stack_dec m : {
check_init_sp_in_stack m } + { ~
check_init_sp_in_stack m }.
Proof.
Inductive is_call:
instruction ->
Prop :=
|
is_call_into:
forall ros sg,
is_call (
Pcall ros sg).
Lemma is_call_dec:
forall i,
{
is_call i} + {~
is_call i}.
Proof.
destruct i; try now (right; intro A; inv A).
left; econstructor; eauto.
Qed.
Fixpoint offsets_after_call (
c:
code) (
p:
Z) :
list Z :=
match c with
nil =>
nil
|
i::
c =>
let r :=
offsets_after_call c (
p +
instr_size i)
in
if is_call_dec i then (
p+
instr_size i)::
r
else r
end.
Definition is_after_call (
f:
fundef) (
o:
Z) :
Prop :=
match f with
Internal f =>
In o (
offsets_after_call (
fn_code f) 0)
|
External ef =>
False
end.
Definition check_is_after_call f o : {
is_after_call f o} + {~
is_after_call f o}.
Proof.
Definition ra_after_call (
ge:
Genv.t fundef unit)
v:=
v <>
Vundef /\
forall b o,
v =
Vptr b o ->
forall f,
Genv.find_funct_ptr ge b =
Some f ->
is_after_call f (
Ptrofs.unsigned o).
Definition check_ra_after_call (
ge:
Genv.t fundef unit)
v:
{
ra_after_call ge v} + { ~
ra_after_call ge v}.
Proof.
unfold ra_after_call.
destruct v;
try now (
left;
split;
intros;
congruence).
right;
intuition congruence.
destruct (
Genv.find_funct_ptr ge b)
eqn:
FFP.
2:
left;
split; [
congruence|];
intros b0 o A;
inv A;
rewrite FFP;
congruence.
destruct (
check_is_after_call f (
Ptrofs.unsigned i)).
left.
split.
congruence.
intros b0 o A;
inv A;
rewrite FFP;
congruence.
right;
intros (
B &
A);
specialize (
A _ _ eq_refl _ FFP).
congruence.
Qed.
Definition eval_ros (
ge:
genv) (
ros:
ireg +
ident) (
rs:
regset) :
val :=
match ros with
|
inl r =>
rs r
|
inr symb =>
Genv.symbol_address ge symb Ptrofs.zero
end.
Definition exec_instr
{
exec_load exec_store} `{!
MemAccessors exec_load exec_store}
(
ge:
Genv.t fundef unit) (
f:
function) (
i:
instruction) (
rs:
regset) (
m:
mem):
outcome :=
let sz :=
Ptrofs.repr (
instr_size i)
in
match i with
Moves
|
Pmov_rr rd r1 =>
Next (
nextinstr (
rs#
rd <- (
rs r1))
sz)
m
|
Pmovl_ri rd n =>
Next (
nextinstr_nf (
rs#
rd <- (
Vint n))
sz)
m
|
Pmovq_ri rd n =>
Next (
nextinstr_nf (
rs#
rd <- (
Vlong n))
sz)
m
|
Pmov_rs rd id =>
Next (
nextinstr_nf (
rs#
rd <- (
Genv.symbol_address ge id Ptrofs.zero))
sz)
m
|
Pmovl_rm rd a =>
exec_load _ _ ge Mint32 m a rs rd sz
|
Pmovq_rm rd a =>
exec_load _ _ ge Mint64 m a rs rd sz
|
Pmovl_mr a r1 =>
exec_store _ _ ge Mint32 m a rs r1 nil sz
|
Pmovq_mr a r1 =>
exec_store _ _ ge Mint64 m a rs r1 nil sz
|
Pmovsd_ff rd r1 =>
Next (
nextinstr (
rs#
rd <- (
rs r1))
sz)
m
|
Pmovsd_fi rd n =>
Next (
nextinstr (
rs#
rd <- (
Vfloat n))
sz)
m
|
Pmovsd_fm rd a =>
exec_load _ _ ge Mfloat64 m a rs rd sz
|
Pmovsd_mf a r1 =>
exec_store _ _ ge Mfloat64 m a rs r1 nil sz
|
Pmovss_fi rd n =>
Next (
nextinstr (
rs#
rd <- (
Vsingle n))
sz)
m
|
Pmovss_fm rd a =>
exec_load _ _ ge Mfloat32 m a rs rd sz
|
Pmovss_mf a r1 =>
exec_store _ _ ge Mfloat32 m a rs r1 nil sz
|
Pfldl_m a =>
exec_load _ _ ge Mfloat64 m a rs ST0 sz
|
Pfstpl_m a =>
exec_store _ _ ge Mfloat64 m a rs ST0 (
ST0 ::
nil)
sz
|
Pflds_m a =>
exec_load _ _ ge Mfloat32 m a rs ST0 sz
|
Pfstps_m a =>
exec_store _ _ ge Mfloat32 m a rs ST0 (
ST0 ::
nil)
sz
|
Pxchg_rr r1 r2 =>
Next (
nextinstr (
rs#
r1 <- (
rs r2) #
r2 <- (
rs r1))
sz)
m
Moves with conversion
|
Pmovb_mr a r1 =>
exec_store _ _ ge Mint8unsigned m a rs r1 nil sz
|
Pmovw_mr a r1 =>
exec_store _ _ ge Mint16unsigned m a rs r1 nil sz
|
Pmovzb_rr rd r1 =>
Next (
nextinstr (
rs#
rd <- (
Val.zero_ext 8
rs#
r1))
sz)
m
|
Pmovzb_rm rd a =>
exec_load _ _ ge Mint8unsigned m a rs rd sz
|
Pmovsb_rr rd r1 =>
Next (
nextinstr (
rs#
rd <- (
Val.sign_ext 8
rs#
r1))
sz)
m
|
Pmovsb_rm rd a =>
exec_load _ _ ge Mint8signed m a rs rd sz
|
Pmovzw_rr rd r1 =>
Next (
nextinstr (
rs#
rd <- (
Val.zero_ext 16
rs#
r1))
sz)
m
|
Pmovzw_rm rd a =>
exec_load _ _ ge Mint16unsigned m a rs rd sz
|
Pmovsw_rr rd r1 =>
Next (
nextinstr (
rs#
rd <- (
Val.sign_ext 16
rs#
r1))
sz)
m
|
Pmovsw_rm rd a =>
exec_load _ _ ge Mint16signed m a rs rd sz
|
Pmovzl_rr rd r1 =>
Next (
nextinstr (
rs#
rd <- (
Val.longofintu rs#
r1))
sz)
m
|
Pmovsl_rr rd r1 =>
Next (
nextinstr (
rs#
rd <- (
Val.longofint rs#
r1))
sz)
m
|
Pmovls_rr rd =>
Next (
nextinstr (
rs#
rd <- (
Val.loword rs#
rd))
sz)
m
|
Pcvtsd2ss_ff rd r1 =>
Next (
nextinstr (
rs#
rd <- (
Val.singleoffloat rs#
r1))
sz)
m
|
Pcvtss2sd_ff rd r1 =>
Next (
nextinstr (
rs#
rd <- (
Val.floatofsingle rs#
r1))
sz)
m
|
Pcvttsd2si_rf rd r1 =>
Next (
nextinstr (
rs#
rd <- (
Val.maketotal (
Val.intoffloat rs#
r1)))
sz)
m
|
Pcvtsi2sd_fr rd r1 =>
Next (
nextinstr (
rs#
rd <- (
Val.maketotal (
Val.floatofint rs#
r1)))
sz)
m
|
Pcvttss2si_rf rd r1 =>
Next (
nextinstr (
rs#
rd <- (
Val.maketotal (
Val.intofsingle rs#
r1)))
sz)
m
|
Pcvtsi2ss_fr rd r1 =>
Next (
nextinstr (
rs#
rd <- (
Val.maketotal (
Val.singleofint rs#
r1)))
sz)
m
|
Pcvttsd2sl_rf rd r1 =>
Next (
nextinstr (
rs#
rd <- (
Val.maketotal (
Val.longoffloat rs#
r1)))
sz)
m
|
Pcvtsl2sd_fr rd r1 =>
Next (
nextinstr (
rs#
rd <- (
Val.maketotal (
Val.floatoflong rs#
r1)))
sz)
m
|
Pcvttss2sl_rf rd r1 =>
Next (
nextinstr (
rs#
rd <- (
Val.maketotal (
Val.longofsingle rs#
r1)))
sz)
m
|
Pcvtsl2ss_fr rd r1 =>
Next (
nextinstr (
rs#
rd <- (
Val.maketotal (
Val.singleoflong rs#
r1)))
sz)
m
Integer arithmetic
|
Pleal rd a =>
Next (
nextinstr (
rs#
rd <- (
eval_addrmode32 ge a rs))
sz)
m
|
Pleaq rd a =>
Next (
nextinstr (
rs#
rd <- (
eval_addrmode64 ge a rs))
sz)
m
|
Pnegl rd =>
Next (
nextinstr_nf (
rs#
rd <- (
Val.neg rs#
rd))
sz)
m
|
Pnegq rd =>
Next (
nextinstr_nf (
rs#
rd <- (
Val.negl rs#
rd))
sz)
m
|
Paddl_ri rd n =>
Next (
nextinstr_nf (
rs#
rd <- (
Val.add rs#
rd (
Vint n)))
sz )
m
|
Psubl_ri rd n =>
Next (
nextinstr_nf (
rs#
rd <- (
Val.sub rs#
rd (
Vint n)))
sz)
m
|
Paddq_ri rd n =>
Next (
nextinstr_nf (
rs#
rd <- (
Val.addl rs#
rd (
Vlong n)))
sz)
m
|
Psubq_ri rd n =>
Next (
nextinstr_nf (
rs#
rd <- (
Val.subl rs#
rd (
Vlong n)))
sz )
m
|
Psubl_rr rd r1 =>
Next (
nextinstr_nf (
rs#
rd <- (
Val.sub rs#
rd rs#
r1))
sz)
m
|
Psubq_rr rd r1 =>
Next (
nextinstr_nf (
rs#
rd <- (
Val.subl rs#
rd rs#
r1))
sz)
m
|
Pimull_rr rd r1 =>
Next (
nextinstr_nf (
rs#
rd <- (
Val.mul rs#
rd rs#
r1))
sz)
m
|
Pimulq_rr rd r1 =>
Next (
nextinstr_nf (
rs#
rd <- (
Val.mull rs#
rd rs#
r1))
sz)
m
|
Pimull_ri rd n =>
Next (
nextinstr_nf (
rs#
rd <- (
Val.mul rs#
rd (
Vint n)))
sz)
m
|
Pimulq_ri rd n =>
Next (
nextinstr_nf (
rs#
rd <- (
Val.mull rs#
rd (
Vlong n)))
sz)
m
|
Pimull_r r1 =>
Next (
nextinstr_nf (
rs#
RAX <- (
Val.mul rs#
RAX rs#
r1)
#
RDX <- (
Val.mulhs rs#
RAX rs#
r1))
sz)
m
|
Pimulq_r r1 =>
Next (
nextinstr_nf (
rs#
RAX <- (
Val.mull rs#
RAX rs#
r1)
#
RDX <- (
Val.mullhs rs#
RAX rs#
r1))
sz)
m
|
Pmull_r r1 =>
Next (
nextinstr_nf (
rs#
RAX <- (
Val.mul rs#
RAX rs#
r1)
#
RDX <- (
Val.mulhu rs#
RAX rs#
r1))
sz)
m
|
Pmulq_r r1 =>
Next (
nextinstr_nf (
rs#
RAX <- (
Val.mull rs#
RAX rs#
r1)
#
RDX <- (
Val.mullhu rs#
RAX rs#
r1))
sz)
m
|
Pcltd =>
Next (
nextinstr_nf (
rs#
RDX <- (
Val.shr rs#
RAX (
Vint (
Int.repr 31))))
sz)
m
|
Pcqto =>
Next (
nextinstr_nf (
rs#
RDX <- (
Val.shrl rs#
RAX (
Vint (
Int.repr 63))))
sz)
m
|
Pdivl r1 =>
match rs#
RDX,
rs#
RAX,
rs#
r1 with
|
Vint nh,
Vint nl,
Vint d =>
match Int.divmodu2 nh nl d with
|
Some(
q,
r) =>
Next (
nextinstr_nf (
rs#
RAX <- (
Vint q) #
RDX <- (
Vint r))
sz)
m
|
None =>
Stuck
end
|
_,
_,
_ =>
Stuck
end
|
Pdivq r1 =>
match rs#
RDX,
rs#
RAX,
rs#
r1 with
|
Vlong nh,
Vlong nl,
Vlong d =>
match Int64.divmodu2 nh nl d with
|
Some(
q,
r) =>
Next (
nextinstr_nf (
rs#
RAX <- (
Vlong q) #
RDX <- (
Vlong r))
sz)
m
|
None =>
Stuck
end
|
_,
_,
_ =>
Stuck
end
|
Pidivl r1 =>
match rs#
RDX,
rs#
RAX,
rs#
r1 with
|
Vint nh,
Vint nl,
Vint d =>
match Int.divmods2 nh nl d with
|
Some(
q,
r) =>
Next (
nextinstr_nf (
rs#
RAX <- (
Vint q) #
RDX <- (
Vint r))
sz)
m
|
None =>
Stuck
end
|
_,
_,
_ =>
Stuck
end
|
Pidivq r1 =>
match rs#
RDX,
rs#
RAX,
rs#
r1 with
|
Vlong nh,
Vlong nl,
Vlong d =>
match Int64.divmods2 nh nl d with
|
Some(
q,
r) =>
Next (
nextinstr_nf (
rs#
RAX <- (
Vlong q) #
RDX <- (
Vlong r))
sz)
m
|
None =>
Stuck
end
|
_,
_,
_ =>
Stuck
end
|
Pandl_rr rd r1 =>
Next (
nextinstr_nf (
rs#
rd <- (
Val.and rs#
rd rs#
r1))
sz)
m
|
Pandq_rr rd r1 =>
Next (
nextinstr_nf (
rs#
rd <- (
Val.andl rs#
rd rs#
r1))
sz)
m
|
Pandl_ri rd n =>
Next (
nextinstr_nf (
rs#
rd <- (
Val.and rs#
rd (
Vint n)))
sz)
m
|
Pandq_ri rd n =>
Next (
nextinstr_nf (
rs#
rd <- (
Val.andl rs#
rd (
Vlong n)))
sz)
m
|
Porl_rr rd r1 =>
Next (
nextinstr_nf (
rs#
rd <- (
Val.or rs#
rd rs#
r1))
sz)
m
|
Porq_rr rd r1 =>
Next (
nextinstr_nf (
rs#
rd <- (
Val.orl rs#
rd rs#
r1))
sz)
m
|
Porl_ri rd n =>
Next (
nextinstr_nf (
rs#
rd <- (
Val.or rs#
rd (
Vint n)))
sz)
m
|
Porq_ri rd n =>
Next (
nextinstr_nf (
rs#
rd <- (
Val.orl rs#
rd (
Vlong n)))
sz)
m
|
Pxorl_r rd =>
Next (
nextinstr_nf (
rs#
rd <-
Vzero)
sz)
m
|
Pxorq_r rd =>
Next (
nextinstr_nf (
rs#
rd <- (
Vlong Int64.zero))
sz)
m
|
Pxorl_rr rd r1 =>
Next (
nextinstr_nf (
rs#
rd <- (
Val.xor rs#
rd rs#
r1))
sz)
m
|
Pxorq_rr rd r1 =>
Next (
nextinstr_nf (
rs#
rd <- (
Val.xorl rs#
rd rs#
r1))
sz)
m
|
Pxorl_ri rd n =>
Next (
nextinstr_nf (
rs#
rd <- (
Val.xor rs#
rd (
Vint n)))
sz)
m
|
Pxorq_ri rd n =>
Next (
nextinstr_nf (
rs#
rd <- (
Val.xorl rs#
rd (
Vlong n)))
sz)
m
|
Pnotl rd =>
Next (
nextinstr_nf (
rs#
rd <- (
Val.notint rs#
rd))
sz)
m
|
Pnotq rd =>
Next (
nextinstr_nf (
rs#
rd <- (
Val.notl rs#
rd))
sz)
m
|
Psall_rcl rd =>
Next (
nextinstr_nf (
rs#
rd <- (
Val.shl rs#
rd rs#
RCX))
sz)
m
|
Psalq_rcl rd =>
Next (
nextinstr_nf (
rs#
rd <- (
Val.shll rs#
rd rs#
RCX))
sz)
m
|
Psall_ri rd n =>
Next (
nextinstr_nf (
rs#
rd <- (
Val.shl rs#
rd (
Vint n)))
sz)
m
|
Psalq_ri rd n =>
Next (
nextinstr_nf (
rs#
rd <- (
Val.shll rs#
rd (
Vint n)))
sz)
m
|
Pshrl_rcl rd =>
Next (
nextinstr_nf (
rs#
rd <- (
Val.shru rs#
rd rs#
RCX))
sz)
m
|
Pshrq_rcl rd =>
Next (
nextinstr_nf (
rs#
rd <- (
Val.shrlu rs#
rd rs#
RCX))
sz)
m
|
Pshrl_ri rd n =>
Next (
nextinstr_nf (
rs#
rd <- (
Val.shru rs#
rd (
Vint n)))
sz)
m
|
Pshrq_ri rd n =>
Next (
nextinstr_nf (
rs#
rd <- (
Val.shrlu rs#
rd (
Vint n)))
sz)
m
|
Psarl_rcl rd =>
Next (
nextinstr_nf (
rs#
rd <- (
Val.shr rs#
rd rs#
RCX))
sz)
m
|
Psarq_rcl rd =>
Next (
nextinstr_nf (
rs#
rd <- (
Val.shrl rs#
rd rs#
RCX))
sz)
m
|
Psarl_ri rd n =>
Next (
nextinstr_nf (
rs#
rd <- (
Val.shr rs#
rd (
Vint n)))
sz)
m
|
Psarq_ri rd n =>
Next (
nextinstr_nf (
rs#
rd <- (
Val.shrl rs#
rd (
Vint n)))
sz)
m
|
Pshld_ri rd r1 n =>
Next (
nextinstr_nf
(
rs#
rd <- (
Val.or (
Val.shl rs#
rd (
Vint n))
(
Val.shru rs#
r1 (
Vint (
Int.sub Int.iwordsize n)))))
sz)
m
|
Prorl_ri rd n =>
Next (
nextinstr_nf (
rs#
rd <- (
Val.ror rs#
rd (
Vint n)))
sz)
m
|
Prorq_ri rd n =>
Next (
nextinstr_nf (
rs#
rd <- (
Val.rorl rs#
rd (
Vint n)))
sz)
m
|
Pcmpl_rr r1 r2 =>
Next (
nextinstr (
compare_ints (
rs r1) (
rs r2)
rs m)
sz)
m
|
Pcmpq_rr r1 r2 =>
Next (
nextinstr (
compare_longs (
rs r1) (
rs r2)
rs m)
sz)
m
|
Pcmpl_ri r1 n =>
Next (
nextinstr (
compare_ints (
rs r1) (
Vint n)
rs m)
sz)
m
|
Pcmpq_ri r1 n =>
Next (
nextinstr (
compare_longs (
rs r1) (
Vlong n)
rs m)
sz)
m
|
Ptestl_rr r1 r2 =>
Next (
nextinstr (
compare_ints (
Val.and (
rs r1) (
rs r2))
Vzero rs m)
sz)
m
|
Ptestq_rr r1 r2 =>
Next (
nextinstr (
compare_longs (
Val.andl (
rs r1) (
rs r2)) (
Vlong Int64.zero)
rs m)
sz)
m
|
Ptestl_ri r1 n =>
Next (
nextinstr (
compare_ints (
Val.and (
rs r1) (
Vint n))
Vzero rs m)
sz)
m
|
Ptestq_ri r1 n =>
Next (
nextinstr (
compare_longs (
Val.andl (
rs r1) (
Vlong n)) (
Vlong Int64.zero)
rs m)
sz)
m
|
Pcmov c rd r1 =>
match eval_testcond c rs with
|
Some true =>
Next (
nextinstr (
rs#
rd <- (
rs#
r1))
sz)
m
|
Some false =>
Next (
nextinstr rs sz)
m
|
None =>
Next (
nextinstr (
rs#
rd <-
Vundef)
sz)
m
end
|
Psetcc c rd =>
Next (
nextinstr (
rs#
rd <- (
Val.of_optbool (
eval_testcond c rs)))
sz)
m
Arithmetic operations over double-precision floats
|
Paddd_ff rd r1 =>
Next (
nextinstr (
rs#
rd <- (
Val.addf rs#
rd rs#
r1))
sz)
m
|
Psubd_ff rd r1 =>
Next (
nextinstr (
rs#
rd <- (
Val.subf rs#
rd rs#
r1))
sz)
m
|
Pmuld_ff rd r1 =>
Next (
nextinstr (
rs#
rd <- (
Val.mulf rs#
rd rs#
r1))
sz)
m
|
Pdivd_ff rd r1 =>
Next (
nextinstr (
rs#
rd <- (
Val.divf rs#
rd rs#
r1))
sz)
m
|
Pnegd rd =>
Next (
nextinstr (
rs#
rd <- (
Val.negf rs#
rd))
sz)
m
|
Pabsd rd =>
Next (
nextinstr (
rs#
rd <- (
Val.absf rs#
rd))
sz)
m
|
Pcomisd_ff r1 r2 =>
Next (
nextinstr (
compare_floats (
rs r1) (
rs r2)
rs)
sz)
m
|
Pxorpd_f rd =>
Next (
nextinstr_nf (
rs#
rd <- (
Vfloat Float.zero))
sz)
m
Arithmetic operations over single-precision floats
|
Padds_ff rd r1 =>
Next (
nextinstr (
rs#
rd <- (
Val.addfs rs#
rd rs#
r1))
sz)
m
|
Psubs_ff rd r1 =>
Next (
nextinstr (
rs#
rd <- (
Val.subfs rs#
rd rs#
r1))
sz)
m
|
Pmuls_ff rd r1 =>
Next (
nextinstr (
rs#
rd <- (
Val.mulfs rs#
rd rs#
r1))
sz)
m
|
Pdivs_ff rd r1 =>
Next (
nextinstr (
rs#
rd <- (
Val.divfs rs#
rd rs#
r1))
sz)
m
|
Pnegs rd =>
Next (
nextinstr (
rs#
rd <- (
Val.negfs rs#
rd))
sz)
m
|
Pabss rd =>
Next (
nextinstr (
rs#
rd <- (
Val.absfs rs#
rd))
sz)
m
|
Pcomiss_ff r1 r2 =>
Next (
nextinstr (
compare_floats32 (
rs r1) (
rs r2)
rs)
sz)
m
|
Pxorps_f rd =>
Next (
nextinstr_nf (
rs#
rd <- (
Vsingle Float32.zero))
sz)
m
Branches and calls
|
Pjmp_l lbl =>
goto_label ge f lbl rs m
|
Pjmp ros sg =>
let addr :=
eval_ros ge ros rs in
match Genv.find_funct ge addr with
|
Some _ =>
Next (
rs#
PC <-
addr)
m
|
_ =>
Stuck
end
|
Pjcc cond lbl =>
match eval_testcond cond rs with
|
Some true =>
goto_label ge f lbl rs m
|
Some false =>
Next (
nextinstr rs sz)
m
|
None =>
Stuck
end
|
Pjcc2 cond1 cond2 lbl =>
match eval_testcond cond1 rs,
eval_testcond cond2 rs with
|
Some true,
Some true =>
goto_label ge f lbl rs m
|
Some _,
Some _ =>
Next (
nextinstr rs sz)
m
|
_,
_ =>
Stuck
end
|
Pjmptbl r tbl =>
match rs#
r with
|
Vint n =>
match list_nth_z tbl (
Int.unsigned n)
with
|
None =>
Stuck
|
Some lbl =>
goto_label ge f lbl (
rs #
RAX <-
Vundef #
RDX <-
Vundef)
m
end
|
_ =>
Stuck
end
|
Pcall ros sg =>
let addr :=
eval_ros ge ros rs in
match Genv.find_funct ge addr with
|
Some _ =>
Next (
rs#
RA <- (
Val.offset_ptr rs#
PC sz) #
PC <-
addr) (
Mem.push_new_stage m)
|
_ =>
Stuck
end
|
Pret =>
CompCertX:test-compcert-ra-vundef We need to erase the value of RA,
which is actually popped away from the stack in reality.
check (
check_ra_after_call ge (
rs#
RA));
check (
Mem.check_top_tc m);
do m' <-
Mem.unrecord_stack_block m;
Next (
rs#
PC <- (
rs#
RA) #
RA <-
Vundef)
m'
Saving and restoring registers
|
Pmov_rm_a rd a =>
exec_load _ _ ge (
if Archi.ptr64 then Many64 else Many32)
m a rs rd sz
|
Pmov_mr_a a r1 =>
exec_store _ _ ge (
if Archi.ptr64 then Many64 else Many32)
m a rs r1 nil sz
|
Pmovsd_fm_a rd a =>
exec_load _ _ ge Many64 m a rs rd sz
|
Pmovsd_mf_a a r1 =>
exec_store _ _ ge Many64 m a rs r1 nil sz
Pseudo-instructions
|
Plabel lbl =>
Next (
nextinstr rs sz)
m
|
Pallocframe size pubrange ofs_ra =>
do fi <-
frame_info_of_size_and_pubrange size pubrange;
check (
Mem.check_top_tc m) ;
let (
m1,
b) :=
Mem.alloc m 0
size in
do m2 <-
Mem.store Mptr m1 b (
Ptrofs.unsigned ofs_ra)
rs#
RA;
do m3 <-
Mem.record_stack_blocks m2 (
make_singleton_frame_adt'
b fi size);
Next (
nextinstr (
rs #
RAX <- (
rs#
RSP) #
RSP <- (
Vptr b Ptrofs.zero))
sz)
m3
|
Pfreeframe sz'
ofs_ra =>
do ra <-
Mem.loadbytesv Mptr m (
Val.offset_ptr rs#
RSP ofs_ra);
match rs#
RSP with
|
Vptr stk ofs =>
check (
check_top_frame m (
Some stk)
sz');
check (
is_stack_top_dec (
Mem.stack m)
stk);
do m' <-
Mem.free m stk 0
sz';
do m' <-
Mem.tailcall_stage m';
check (
check_init_sp_in_stack_dec m');
do sp <-
Mem.is_ptr (
parent_sp (
Mem.stack m));
Next (
nextinstr (
rs#
RSP <-
sp #
RA <-
ra)
sz)
m'
|
_ =>
Stuck
end
|
Pload_parent_pointer rd sz' =>
check (
check_top_frame m None sz');
check (
Sumbool.sumbool_not _ _ (
preg_eq rd RSP));
do sp <-
Mem.is_ptr (
parent_sp (
Mem.stack m));
Next (
nextinstr (
rs#
rd <-
sp)
sz)
m
|
Pcfi_adjust n =>
Next rs m
|
Pbuiltin ef args res =>
Stuck (* treated specially below *)
The following instructions and directives are not generated
directly by Asmgen, so we do not model them.
|
Padcl_ri _ _
|
Padcl_rr _ _
|
Paddl_mi _ _
|
Paddl_rr _ _
|
Pbsfl _ _
|
Pbsfq _ _
|
Pbsrl _ _
|
Pbsrq _ _
|
Pbswap64 _
|
Pbswap32 _
|
Pbswap16 _
|
Pfmadd132 _ _ _
|
Pfmadd213 _ _ _
|
Pfmadd231 _ _ _
|
Pfmsub132 _ _ _
|
Pfmsub213 _ _ _
|
Pfmsub231 _ _ _
|
Pfnmadd132 _ _ _
|
Pfnmadd213 _ _ _
|
Pfnmadd231 _ _ _
|
Pfnmsub132 _ _ _
|
Pfnmsub213 _ _ _
|
Pfnmsub231 _ _ _
|
Pmaxsd _ _
|
Pminsd _ _
|
Pmovb_rm _ _
|
Pmovsq_rm _ _
|
Pmovsq_mr _ _
|
Pmovsb
|
Pmovsw
|
Pmovw_rm _ _
|
Prep_movsl
|
Psbbl_rr _ _
|
Psqrtsd _ _
=>
Stuck
end.
Translation of the LTL/Linear/Mach view of machine registers
to the Asm view.
Definition preg_of (
r:
mreg) :
preg :=
match r with
|
AX =>
IR RAX
|
BX =>
IR RBX
|
CX =>
IR RCX
|
DX =>
IR RDX
|
SI =>
IR RSI
|
DI =>
IR RDI
|
BP =>
IR RBP
|
Machregs.R8 =>
IR R8
|
Machregs.R9 =>
IR R9
|
Machregs.R10 =>
IR R10
|
Machregs.R11 =>
IR R11
|
Machregs.R12 =>
IR R12
|
Machregs.R13 =>
IR R13
|
Machregs.R14 =>
IR R14
|
Machregs.R15 =>
IR R15
|
X0 =>
FR XMM0
|
X1 =>
FR XMM1
|
X2 =>
FR XMM2
|
X3 =>
FR XMM3
|
X4 =>
FR XMM4
|
X5 =>
FR XMM5
|
X6 =>
FR XMM6
|
X7 =>
FR XMM7
|
X8 =>
FR XMM8
|
X9 =>
FR XMM9
|
X10 =>
FR XMM10
|
X11 =>
FR XMM11
|
X12 =>
FR XMM12
|
X13 =>
FR XMM13
|
X14 =>
FR XMM14
|
X15 =>
FR XMM15
|
FP0 =>
ST0
end.
Extract the values of the arguments of an external call.
We exploit the calling conventions from module Conventions, except that
we use machine registers instead of locations.
Inductive extcall_arg (
rs:
regset) (
m:
mem):
loc ->
val ->
Prop :=
|
extcall_arg_reg:
forall r,
extcall_arg rs m (
R r) (
rs (
preg_of r))
|
extcall_arg_stack:
forall ofs ty bofs v,
bofs =
Stacklayout.fe_ofs_arg + 4 *
ofs ->
Mem.loadv (
chunk_of_type ty)
m
(
Val.offset_ptr (
rs (
IR RSP)) (
Ptrofs.repr bofs)) =
Some v ->
extcall_arg rs m (
S Outgoing ofs ty)
v.
Inductive extcall_arg_pair (
rs:
regset) (
m:
mem):
rpair loc ->
val ->
Prop :=
|
extcall_arg_one:
forall l v,
extcall_arg rs m l v ->
extcall_arg_pair rs m (
One l)
v
|
extcall_arg_twolong:
forall hi lo vhi vlo,
extcall_arg rs m hi vhi ->
extcall_arg rs m lo vlo ->
extcall_arg_pair rs m (
Twolong hi lo) (
Val.longofwords vhi vlo).
Definition extcall_arguments
(
rs:
regset) (
m:
mem) (
sg:
signature) (
args:
list val) :
Prop :=
list_forall2 (
extcall_arg_pair rs m) (
loc_arguments sg)
args.
Definition loc_external_result (
sg:
signature) :
rpair preg :=
map_rpair preg_of (
loc_result sg).
Execution of the instruction at rs#PC.
Inductive state {
memory_model_ops:
Mem.MemoryModelOps mem}:
Type :=
|
State:
regset ->
mem ->
state.
Fixpoint in_builtin_res (
b:
builtin_res preg) (
r:
preg) :=
match b with
|
BR b =>
b =
r
|
BR_none =>
False
|
BR_splitlong hi lo =>
in_builtin_res hi r \/
in_builtin_res lo r
end.
Inductive step {
exec_load exec_store} `{!
MemAccessors exec_load exec_store} (
ge:
genv)
:
state ->
trace ->
state ->
Prop :=
|
exec_step_internal:
forall b ofs f i rs m rs'
m',
rs PC =
Vptr b ofs ->
Genv.find_funct_ptr ge b =
Some (
Internal f) ->
find_instr (
Ptrofs.unsigned ofs) (
fn_code f) =
Some i ->
exec_instr ge f i rs m =
Next rs'
m' ->
step ge (
State rs m)
E0 (
State rs'
m')
|
exec_step_builtin:
forall b ofs f ef args res rs m vargs t vres rs'
m'
m'',
rs PC =
Vptr b ofs ->
Genv.find_funct_ptr ge b =
Some (
Internal f) ->
find_instr (
Ptrofs.unsigned ofs)
f.(
fn_code) =
Some (
Pbuiltin ef args res) ->
eval_builtin_args ge rs (
rs RSP)
m args vargs ->
external_call ef ge vargs (
Mem.push_new_stage m)
t vres m' ->
Mem.unrecord_stack_block m' =
Some m'' ->
forall BUILTIN_ENABLED:
builtin_enabled ef,
no_rsp_builtin_preg res ->
rs' =
nextinstr_nf
(
set_res res vres
(
undef_regs (
map preg_of (
destroyed_by_builtin ef))
rs))
(
Ptrofs.repr (
instr_size (
Pbuiltin ef args res))) ->
step ge (
State rs m)
t (
State rs'
m'')
|
exec_step_external:
forall b ef args res rs m t rs'
m'
m'',
rs PC =
Vptr b Ptrofs.zero ->
Genv.find_funct_ptr ge b =
Some (
External ef) ->
extcall_arguments rs m (
ef_sig ef)
args ->
forall (
SP_TYPE:
Val.has_type (
rs RSP)
Tptr)
(
RA_TYPE:
Val.has_type (
rs RA)
Tptr)
(
SP_NOT_VUNDEF:
rs RSP <>
Vundef)
(
RA_NOT_VUNDEF:
rs RA <>
Vundef)
(
TIN:
top_tframe_tc (
Mem.stack m))
,
external_call ef ge args m t res m' ->
Mem.unrecord_stack_block m' =
Some m'' ->
no_rsp_pair (
loc_external_result (
ef_sig ef)) ->
ra_after_call ge (
rs#
RA) ->
rs' = (
set_pair (
loc_external_result (
ef_sig ef))
res (
undef_regs (
CR ZF ::
CR CF ::
CR PF ::
CR SF ::
CR OF ::
nil) (
undef_regs (
map preg_of destroyed_at_call)
rs))) #
PC <- (
rs RA) #
RA <-
Vundef ->
step ge (
State rs m)
t (
State rs'
m'').
End RELSEM.
Execution of whole programs.
Inductive initial_state {
F V} (
p:
AST.program F V):
state ->
Prop :=
|
initial_state_intro:
forall m0 m2 bmain,
Genv.init_mem p =
Some m0 ->
Mem.record_init_sp m0 =
Some m2 ->
let ge :=
Genv.globalenv p in
Genv.find_symbol ge p.(
prog_main) =
Some bmain ->
let rs0 :=
(
Pregmap.init Vundef)
#
PC <- (
Vptr bmain Ptrofs.zero)
#
RA <-
Vnullptr
#
RSP <- (
Vptr (
Mem.nextblock m0)
Ptrofs.zero)
in
initial_state p (
State rs0 (
Mem.push_new_stage m2)).
Inductive final_state:
state ->
int ->
Prop :=
|
final_state_intro:
forall rs m r,
rs#
PC =
Vnullptr ->
rs#
RAX =
Vint r ->
final_state (
State rs m)
r.
Local Existing Instance mem_accessors_default.
Definition semantics (
p:
program) (
init_stk:
stack) :=
Semantics (
step init_stk) (
initial_state p)
final_state (
Genv.globalenv p).
Determinacy of the Asm semantics.
Remark extcall_arguments_determ:
forall rs m sg args1 args2,
extcall_arguments rs m sg args1 ->
extcall_arguments rs m sg args2 ->
args1 =
args2.
Proof.
Lemma semantics_determinate:
forall p istk,
determinate (
semantics p istk).
Proof.
Ltac Equalities :=
match goal with
| [
H1: ?
a = ?
b,
H2: ?
a = ?
c |-
_ ] =>
rewrite H1 in H2;
inv H2;
Equalities
|
_ =>
idtac
end.
intros;
constructor;
simpl;
intros.
-
inv H;
inv H0;
Equalities.
+
split.
constructor.
auto.
+
discriminate.
+
discriminate.
+
assert (
vargs0 =
vargs)
by (
eapply eval_builtin_args_determ;
eauto).
subst vargs0.
exploit external_call_determ.
eexact H5.
eexact H13.
intros [
A B].
split.
auto.
intros.
destruct B;
auto.
subst.
auto.
congruence.
+
assert (
args0 =
args)
by (
eapply extcall_arguments_determ;
eauto).
subst args0.
exploit external_call_determ.
eexact H4.
eexact H12.
intros [
A B].
split.
auto.
intros.
destruct B;
auto.
subst.
congruence.
-
red;
intros;
inv H;
simpl.
omega.
eapply external_call_trace_length;
eauto.
eapply external_call_trace_length;
eauto.
-
inv H;
inv H0.
unfold rs0 ,
rs1,
ge,
ge0 in *.
congruence.
-
assert (
NOTNULL:
forall b ofs,
Vnullptr <>
Vptr b ofs).
{
intros;
unfold Vnullptr;
destruct Archi.ptr64;
congruence. }
inv H.
red;
intros;
red;
intros.
inv H;
rewrite H0 in *;
eelim NOTNULL;
eauto.
-
inv H;
inv H0.
congruence.
Qed.
End WITHEXTERNALCALLS.
Classification functions for processor registers (used in Asmgenproof).
Definition data_preg (
r:
preg) :
bool :=
match r with
|
PC =>
false
|
IR _ =>
true
|
FR _ =>
true
|
ST0 =>
true
|
CR _ =>
false
|
RA =>
false
end.
Definition instr_to_string (
i:
instruction) :
string :=
match i with
Moves
|
Pmov_rr rd r1 => "
Pmov_rr"
|
Pmovl_ri rd n => "
Pmovl_ri"
|
Pmovq_ri rd n => "
Pmovq_ri"
|
Pmov_rs rd id => "
Pmov_rs"
|
Pmovl_rm rd a => "
Pmovl_rm"
|
Pmovq_rm rd a => "
Pmovq_rm"
|
Pmovl_mr a rs => "
Pmovl_mr"
|
Pmovq_mr a rs => "
Pmovq_mr"
|
Pmovsd_ff rd r1 => "
Pmovsd_ff"
(* movsd (single 64-bit float) *)
|
Pmovsd_fi rd n => "
Pmovsd_fi"
(* (pseudo-instruction) *)
|
Pmovsd_fm rd a => "
Pmovsd_fm"
|
Pmovsd_mf a r1 => "
Pmovsd_mf"
|
Pmovss_fi rd n => "
Pmovss_fi"
(* movss (single 32-bit float) *)
|
Pmovss_fm rd a => "
Pmovss_fm"
|
Pmovss_mf a r1 => "
Pmovss_mf"
|
Pfldl_m a => "
Pfldl_m"
(* fld double precision *)
|
Pfstpl_m a => "
Pfstpl_m"
(* fstp double precision *)
|
Pflds_m a => "
Pflds_m"
(* fld simple precision *)
|
Pfstps_m a => "
Pfstps_m"
(* fstp simple precision *)
|
Pxchg_rr r1 r2 => "
Pxchg_rr"
(* register-register exchange *)
Moves with conversion
|
Pmovb_mr a rs => "
Pmovb_mr"
(* mov (8-bit int) *)
|
Pmovw_mr a rs => "
Pmovw_mr"
(* mov (16-bit int) *)
|
Pmovzb_rr rd rs => "
Pmovzb_rr"
(* movzb (8-bit zero-extension) *)
|
Pmovzb_rm rd a => "
Pmovzb_rm"
|
Pmovsb_rr rd rs => "
Pmovsb_rr"
(* movsb (8-bit sign-extension) *)
|
Pmovsb_rm rd a => "
Pmovsb_rm"
|
Pmovzw_rr rd rs => "
Pmovzw_rr"
(* movzw (16-bit zero-extension) *)
|
Pmovzw_rm rd a => "
Pmovzw_rm"
|
Pmovsw_rr rd rs => "
Pmovsw_rr"
(* movsw (16-bit sign-extension) *)
|
Pmovsw_rm rd a => "
Pmovsw_rm"
|
Pmovzl_rr rd rs => "
Pmovzl_rr"
(* movzl (32-bit zero-extension) *)
|
Pmovsl_rr rd rs => "
Pmovsl_rr"
(* movsl (32-bit sign-extension) *)
|
Pmovls_rr rd => "
Pmovls_rr"
|
Pcvtsd2ss_ff rd r1 => "
Pcvtsd2ss_ff"
(* conversion to single float *)
|
Pcvtss2sd_ff rd r1 => "
Pcvtss2sd_ff"
(* conversion to double float *)
|
Pcvttsd2si_rf rd r1 => "
Pcvttsd2si_rf"
(* double to signed int *)
|
Pcvtsi2sd_fr rd r1 => "
Pcvtsi2sd_fr"
(* signed int to double *)
|
Pcvttss2si_rf rd r1 => "
Pcvttss2si_rf"
(* single to signed int *)
|
Pcvtsi2ss_fr rd r1 => "
Pcvtsi2ss_fr"
(* signed int to single *)
|
Pcvttsd2sl_rf rd r1 => "
Pcvttsd2sl_rf"
(* double to signed long *)
|
Pcvtsl2sd_fr rd r1 => "
Pcvtsl2sd_fr"
(* signed long to double *)
|
Pcvttss2sl_rf rd r1 => "
Pcvttss2sl_rf"
(* single to signed long *)
|
Pcvtsl2ss_fr rd r1 => "
Pcvtsl2ss_fr"
(* signed long to single *)
|
Pleal rd a => "
Pleal"
|
Pleaq rd a => "
Pleaq"
|
Pnegl rd => "
Pnegl"
|
Pnegq rd => "
Pnegq"
|
Paddl_ri rd n => "
Paddl_ri"
|
Paddq_ri rd n => "
Paddq_ri"
|
Psubl_rr rd r1 => "
Psubl_rr"
|
Psubq_rr rd r1 => "
Psubq_rr"
|
Pimull_rr rd r1 => "
Pimull_rr"
|
Pimulq_rr rd r1 => "
Pimulq_rr"
|
Pimull_ri rd n => "
Pimull_ri"
|
Pimulq_ri rd n => "
Pimulq_ri"
|
Pimull_r r1 => "
Pimull_r"
|
Pimulq_r r1 => "
Pimulq_r"
|
Pmull_r r1 => "
Pmull_r"
|
Pmulq_r r1 => "
Pmulq_r"
|
Pcltd => "
Pcltd"
|
Pcqto => "
Pcqto"
|
Pdivl r1 => "
Pdivl"
|
Pdivq r1 => "
Pdivq"
|
Pidivl r1 => "
Pidivl"
|
Pidivq r1 => "
Pidivq"
|
Pandl_rr rd r1 => "
Pandl_rr"
|
Pandq_rr rd r1 => "
Pandq_rr"
|
Pandl_ri rd n => "
Pandl_ri"
|
Pandq_ri rd n => "
Pandq_ri"
|
Porl_rr rd r1 => "
Porl_rr"
|
Porq_rr rd r1 => "
Porq_rr"
|
Porl_ri rd n => "
Porl_ri"
|
Porq_ri rd n => "
Porq_ri"
|
Pxorl_r rd => "
Pxorl_r"
(* xor with self = set to zero *)
|
Pxorq_r rd => "
Pxorq_r"
|
Pxorl_rr rd r1 => "
Pxorl_rr"
|
Pxorq_rr rd r1 => "
Pxorq_rr"
|
Pxorl_ri rd n => "
Pxorl_ri"
|
Pxorq_ri rd n => "
Pxorq_ri"
|
Pnotl rd => "
Pnotl"
|
Pnotq rd => "
Pnotq"
|
Psall_rcl rd => "
Psall_rcl"
|
Psalq_rcl rd => "
Psalq_rcl"
|
Psall_ri rd n => "
Psall_ri"
|
Psalq_ri rd n => "
Psalq_ri"
|
Pshrl_rcl rd => "
Pshrl_rcl"
|
Pshrq_rcl rd => "
Pshrq_rcl"
|
Pshrl_ri rd n => "
Pshrl_ri"
|
Pshrq_ri rd n => "
Pshrq_ri"
|
Psarl_rcl rd => "
Psarl_rcl"
|
Psarq_rcl rd => "
Psarq_rcl"
|
Psarl_ri rd n => "
Psarl_ri"
|
Psarq_ri rd n => "
Psarq_ri"
|
Pshld_ri rd r1 n => "
Pshld_ri"
|
Prorl_ri rd n => "
Prorl_ri"
|
Prorq_ri rd n => "
Prorq_ri"
|
Pcmpl_rr r1 r2 => "
Pcmpl_rr"
|
Pcmpq_rr r1 r2 => "
Pcmpq_rr"
|
Pcmpl_ri r1 n => "
Pcmpl_ri"
|
Pcmpq_ri r1 n => "
Pcmpq_ri"
|
Ptestl_rr r1 r2 => "
Ptestl_rr"
|
Ptestq_rr r1 r2 => "
Ptestq_rr"
|
Ptestl_ri r1 n => "
Ptestl_ri"
|
Ptestq_ri r1 n => "
Ptestq_ri"
|
Pcmov c rd r1 => "
Pcmov"
|
Psetcc c rd => "
Psetcc"
|
Paddd_ff rd r1 => "
Paddd_ff"
|
Psubd_ff rd r1 => "
Psubd_ff"
|
Pmuld_ff rd r1 => "
Pmuld_ff"
|
Pdivd_ff rd r1 => "
Pdivd_ff"
|
Pnegd rd => "
Pnegd rd"
|
Pabsd rd => "
Pabsd rd"
|
Pcomisd_ff r1 r2 => "
Pcomisd_ff"
|
Pxorpd_f rd => "
Pxorpd_f"
(* xor with self = set to zero *)
|
Padds_ff rd r1 => "
Padds_ff"
|
Psubs_ff rd r1 => "
Psubs_ff"
|
Pmuls_ff rd r1 => "
Pmuls_ff"
|
Pdivs_ff rd r1 => "
Pdivs_ff"
|
Pnegs rd => "
Pnegs rd"
|
Pabss rd => "
Pabss rd"
|
Pcomiss_ff r1 r2 => "
Pcomiss_ff"
|
Pxorps_f rd => "
Pxorps_f"
(* xor with self = set to zero *)
|
Pjmp_l l => "
Pjmp_l"
|
Pjmp ros sg => "
Pjmp"
|
Pjcc c l => "
Pjcc"
|
Pjcc2 c1 c2 l => "
Pjcc2"
(* pseudo *)
|
Pjmptbl r tbl => "
Pjmptbl"
(* pseudo *)
|
Pcall ros sg => "
Pcall"
|
Pret => "
Pret"
|
Pmov_rm_a rd a => "
Pmov_rm_a"
(* like Pmov_rm, using Many64 chunk *)
|
Pmov_mr_a a rs => "
Pmov_mr_a"
(* like Pmov_mr, using Many64 chunk *)
|
Pmovsd_fm_a rd a => "
Pmovsd_fm_a"
(* like Pmovsd_fm, using Many64 chunk *)
|
Pmovsd_mf_a a r1 => "
Pmovsd_mf_a"
(* like Pmovsd_mf, using Many64 chunk *)
|
Plabel l => "
Plabel"
|
Pallocframe sz pubrange ofs_ra => "
Pallocframe"
|
Pfreeframe sz ofs_ra => "
Pfreeframe"
|
Pload_parent_pointer rd sz => "
Pload_parent_pointer"
|
Pbuiltin ef args res => "
Pbuiltin"
|
_ => "
Unknown instruction"
end.