Translation from Mach to IA32 assembly language
Require Import Coqlib Errors.
Require Import AST Integers Floats Memdata.
Require Import Op Locations Mach Asm.
Local Open Scope string_scope.
Local Open Scope error_monad_scope.
The code generation functions take advantage of several characteristics of the
Mach code generated by earlier passes of the compiler:
-
Argument and result registers are of the correct type.
-
For two-address instructions, the result and the first argument
are in the same register. (True by construction in RTLgen, and preserved by Reload.)
-
The top of the floating-point stack (ST0, a.k.a. FP0) can only
appear in mov instructions, but never in arithmetic instructions.
All these properties are true by construction, but it is painful to track them statically. Instead, we recheck them during code generation and fail if they do not hold.
Extracting integer or float registers.
Definition ireg_of (
r:
mreg) :
res ireg :=
match preg_of r with IR mr =>
OK mr |
_ =>
Error(
msg "
Asmgen.ireg_of")
end.
Definition freg_of (
r:
mreg) :
res freg :=
match preg_of r with FR mr =>
OK mr |
_ =>
Error(
msg "
Asmgen.freg_of")
end.
Smart constructors for some operations.
Definition mk_mov (
rd rs:
preg) (
k:
code) :
res code :=
match rd,
rs with
|
IR rd,
IR rs =>
OK (
Pmov_rr rd rs ::
k)
|
FR rd,
FR rs =>
OK (
Pmovsd_ff rd rs ::
k)
|
_,
_ =>
Error(
msg "
Asmgen.mk_mov")
end.
Definition mk_shrximm (
n:
int) (
k:
code) :
res code :=
let p :=
Int.sub (
Int.shl Int.one n)
Int.one in
let l :=
Ptestl_rr RAX RAX ::
Pleal RCX (
Addrmode (
Some RAX)
None (
inl _ (
Int.unsigned p))) ::
Pcmov Cond_l RAX RCX ::
Psarl_ri RAX n ::
nil in
OK (
l ++
k).
Definition mk_shrxlimm (
n:
int) (
k:
code) :
res code :=
let l :=
if Int.eq n Int.zero then Pmov_rr RAX RAX ::
nil else
(
Pcqto ::
Pshrq_ri RDX (
Int.sub (
Int.repr 64)
n) ::
Pleaq RAX (
Addrmode (
Some RAX) (
Some(
RDX, 1)) (
inl _ 0)) ::
Psarq_ri RAX n ::
nil)
in
OK (
l ++
k).
Definition low_ireg (
r:
ireg) :
bool :=
match r with RAX |
RBX |
RCX |
RDX =>
true |
_ =>
false end.
Definition mk_intconv (
mk:
ireg ->
ireg ->
instruction) (
rd rs:
ireg) (
k:
code) :=
let l :=
if Archi.ptr64 ||
low_ireg rs then
(
mk rd rs ::
nil)
else
(
Pmov_rr RAX rs ::
mk rd RAX ::
nil)
in
OK (
l ++
k).
Definition addressing_mentions (
addr:
addrmode) (
r:
ireg) :
bool :=
match addr with Addrmode base displ const =>
match base with Some r' =>
ireg_eq r r' |
None =>
false end
||
match displ with Some(
r',
sc) =>
ireg_eq r r' |
None =>
false end
end.
Definition mk_storebyte (
addr:
addrmode) (
rs:
ireg) (
k:
code) :=
let l :=
if Archi.ptr64 ||
low_ireg rs then
Pmovb_mr addr rs ::
nil
else if addressing_mentions addr RAX then
Pleal RCX addr ::
Pmov_rr RAX rs ::
Pmovb_mr (
Addrmode (
Some RCX)
None (
inl _ 0))
RAX ::
nil
else
(
Pmov_rr RAX rs ::
Pmovb_mr addr RAX ::
nil)
in
OK (
l ++
k).
Accessing slots in the stack frame.
Definition loadind (
base:
ireg) (
ofs:
ptrofs) (
ty:
typ) (
dst:
mreg) (
k:
code) :=
do instr <-
let a :=
Addrmode (
Some base)
None (
inl _ (
Ptrofs.unsigned ofs))
in
match ty,
preg_of dst with
|
Tint,
IR r =>
OK (
Pmovl_rm r a)
|
Tlong,
IR r =>
OK (
Pmovq_rm r a)
|
Tsingle,
FR r =>
OK (
Pmovss_fm r a)
|
Tsingle,
ST0 =>
OK (
Pflds_m a)
|
Tfloat,
FR r =>
OK (
Pmovsd_fm r a)
|
Tfloat,
ST0 =>
OK (
Pfldl_m a)
|
Tany32,
IR r =>
if Archi.ptr64 then Error (
msg "
Asmgen.loadind1")
else OK (
Pmov_rm_a r a)
|
Tany64,
IR r =>
if Archi.ptr64 then OK (
Pmov_rm_a r a)
else Error (
msg "
Asmgen.loadind2")
|
Tany64,
FR r =>
OK (
Pmovsd_fm_a r a)
|
_,
_ =>
Error (
msg "
Asmgen.loadind")
end;
OK (
instr ::
k).
Definition storeind (
src:
mreg) (
base:
ireg) (
ofs:
ptrofs) (
ty:
typ) (
k:
code) :=
do instr <-
let a :=
Addrmode (
Some base)
None (
inl _ (
Ptrofs.unsigned ofs))
in
match ty,
preg_of src with
|
Tint,
IR r =>
OK (
Pmovl_mr a r)
|
Tlong,
IR r =>
OK (
Pmovq_mr a r)
|
Tsingle,
FR r =>
OK (
Pmovss_mf a r)
|
Tsingle,
ST0 =>
OK (
Pfstps_m a)
|
Tfloat,
FR r =>
OK (
Pmovsd_mf a r)
|
Tfloat,
ST0 =>
OK (
Pfstpl_m a)
|
Tany32,
IR r =>
if Archi.ptr64 then Error (
msg "
Asmgen.storeind1")
else OK (
Pmov_mr_a a r)
|
Tany64,
IR r =>
if Archi.ptr64 then OK (
Pmov_mr_a a r)
else Error (
msg "
Asmgen.storeind2")
|
Tany64,
FR r =>
OK (
Pmovsd_mf_a a r)
|
_,
_ =>
Error (
msg "
Asmgen.storeind")
end;
OK (
instr ::
k).
Translation of addressing modes
Definition transl_addressing (
a:
addressing) (
args:
list mreg):
res addrmode :=
match a,
args with
|
Aindexed n,
a1 ::
nil =>
do r1 <-
ireg_of a1;
OK(
Addrmode (
Some r1)
None (
inl _ n))
|
Aindexed2 n,
a1 ::
a2 ::
nil =>
do r1 <-
ireg_of a1;
do r2 <-
ireg_of a2;
OK(
Addrmode (
Some r1) (
Some(
r2, 1)) (
inl _ n))
|
Ascaled sc n,
a1 ::
nil =>
do r1 <-
ireg_of a1;
OK(
Addrmode None (
Some(
r1,
sc)) (
inl _ n))
|
Aindexed2scaled sc n,
a1 ::
a2 ::
nil =>
do r1 <-
ireg_of a1;
do r2 <-
ireg_of a2;
OK(
Addrmode (
Some r1) (
Some(
r2,
sc)) (
inl _ n))
|
Aglobal id ofs,
nil =>
OK(
Addrmode None None (
inr _ (
id,
ofs)))
|
Abased id ofs,
a1 ::
nil =>
do r1 <-
ireg_of a1;
OK(
Addrmode (
Some r1)
None (
inr _ (
id,
ofs)))
|
Abasedscaled sc id ofs,
a1 ::
nil =>
do r1 <-
ireg_of a1;
OK(
Addrmode None (
Some(
r1,
sc)) (
inr _ (
id,
ofs)))
|
Ainstack n,
nil =>
OK(
Addrmode (
Some RSP)
None (
inl _ (
Ptrofs.signed n)))
|
_,
_ =>
Error(
msg "
Asmgen.transl_addressing")
end.
Definition normalize_addrmode_32 (
a:
addrmode) :=
match a with
|
Addrmode base ofs (
inl n) =>
Addrmode base ofs (
inl _ (
Int.signed (
Int.repr n)))
|
Addrmode base ofs (
inr _) =>
a
end.
Definition normalize_addrmode_64 (
a:
addrmode) :=
match a with
|
Addrmode base ofs (
inl n) =>
let n' :=
Int.signed (
Int.repr n)
in
if zeq n'
n
then (
a,
None)
else (
Addrmode base ofs (
inl _ 0),
Some (
Int64.repr n))
|
Addrmode base ofs (
inr _) =>
(
a,
None)
end.
Floating-point comparison. We swap the operands in some cases
to simplify the handling of the unordered case.
Definition floatcomp (
cmp:
comparison) (
r1 r2:
freg) :
instruction :=
match cmp with
|
Clt |
Cle =>
Pcomisd_ff r2 r1
|
Ceq |
Cne |
Cgt |
Cge =>
Pcomisd_ff r1 r2
end.
Definition floatcomp32 (
cmp:
comparison) (
r1 r2:
freg) :
instruction :=
match cmp with
|
Clt |
Cle =>
Pcomiss_ff r2 r1
|
Ceq |
Cne |
Cgt |
Cge =>
Pcomiss_ff r1 r2
end.
Translation of a condition. Prepends to k the instructions
that evaluate the condition and leave its boolean result in bits
of the condition register.
Definition transl_cond
(
cond:
condition) (
args:
list mreg) (
k:
code) :
res code :=
match cond,
args with
|
Ccomp c,
a1 ::
a2 ::
nil =>
do r1 <-
ireg_of a1;
do r2 <-
ireg_of a2;
OK ((
Pcmpl_rr r1 r2) ::
k)
|
Ccompu c,
a1 ::
a2 ::
nil =>
do r1 <-
ireg_of a1;
do r2 <-
ireg_of a2;
OK ((
Pcmpl_rr r1 r2) ::
k)
|
Ccompimm c n,
a1 ::
nil =>
do r1 <-
ireg_of a1;
OK (
if Int.eq_dec n Int.zero then
(
Ptestl_rr r1 r1) ::
k
else
(
Pcmpl_ri r1 n) ::
k)
|
Ccompuimm c n,
a1 ::
nil =>
do r1 <-
ireg_of a1;
OK ((
Pcmpl_ri r1 n) ::
k)
|
Ccompl c,
a1 ::
a2 ::
nil =>
do r1 <-
ireg_of a1;
do r2 <-
ireg_of a2;
OK ((
Pcmpq_rr r1 r2) ::
k)
|
Ccomplu c,
a1 ::
a2 ::
nil =>
do r1 <-
ireg_of a1;
do r2 <-
ireg_of a2;
OK ((
Pcmpq_rr r1 r2) ::
k)
|
Ccomplimm c n,
a1 ::
nil =>
do r1 <-
ireg_of a1;
OK (
if Int64.eq_dec n Int64.zero then
(
Ptestq_rr r1 r1) ::
k
else
(
Pcmpq_ri r1 n) ::
k)
|
Ccompluimm c n,
a1 ::
nil =>
do r1 <-
ireg_of a1;
OK ((
Pcmpq_ri r1 n) ::
k)
|
Ccompf cmp,
a1 ::
a2 ::
nil =>
do r1 <-
freg_of a1;
do r2 <-
freg_of a2;
OK ((
floatcomp cmp r1 r2) ::
k)
|
Cnotcompf cmp,
a1 ::
a2 ::
nil =>
do r1 <-
freg_of a1;
do r2 <-
freg_of a2;
OK ((
floatcomp cmp r1 r2) ::
k)
|
Ccompfs cmp,
a1 ::
a2 ::
nil =>
do r1 <-
freg_of a1;
do r2 <-
freg_of a2;
OK ((
floatcomp32 cmp r1 r2) ::
k)
|
Cnotcompfs cmp,
a1 ::
a2 ::
nil =>
do r1 <-
freg_of a1;
do r2 <-
freg_of a2;
OK ((
floatcomp32 cmp r1 r2) ::
k)
|
Cmaskzero n,
a1 ::
nil =>
do r1 <-
ireg_of a1;
OK ((
Ptestl_ri r1 n) ::
k)
|
Cmasknotzero n,
a1 ::
nil =>
do r1 <-
ireg_of a1;
OK ((
Ptestl_ri r1 n) ::
k)
|
_,
_ =>
Error(
msg "
Asmgen.transl_cond")
end.
What processor condition to test for a given Mach condition.
Definition testcond_for_signed_comparison (
cmp:
comparison) :=
match cmp with
|
Ceq =>
Cond_e
|
Cne =>
Cond_ne
|
Clt =>
Cond_l
|
Cle =>
Cond_le
|
Cgt =>
Cond_g
|
Cge =>
Cond_ge
end.
Definition testcond_for_unsigned_comparison (
cmp:
comparison) :=
match cmp with
|
Ceq =>
Cond_e
|
Cne =>
Cond_ne
|
Clt =>
Cond_b
|
Cle =>
Cond_be
|
Cgt =>
Cond_a
|
Cge =>
Cond_ae
end.
Inductive extcond:
Type :=
|
Cond_base (
c:
testcond)
|
Cond_or (
c1 c2:
testcond)
|
Cond_and (
c1 c2:
testcond).
Definition testcond_for_condition (
cond:
condition) :
extcond :=
match cond with
|
Ccomp c =>
Cond_base(
testcond_for_signed_comparison c)
|
Ccompu c =>
Cond_base(
testcond_for_unsigned_comparison c)
|
Ccompimm c n =>
Cond_base(
testcond_for_signed_comparison c)
|
Ccompuimm c n =>
Cond_base(
testcond_for_unsigned_comparison c)
|
Ccompl c =>
Cond_base(
testcond_for_signed_comparison c)
|
Ccomplu c =>
Cond_base(
testcond_for_unsigned_comparison c)
|
Ccomplimm c n =>
Cond_base(
testcond_for_signed_comparison c)
|
Ccompluimm c n =>
Cond_base(
testcond_for_unsigned_comparison c)
|
Ccompf c |
Ccompfs c =>
match c with
|
Ceq =>
Cond_and Cond_np Cond_e
|
Cne =>
Cond_or Cond_p Cond_ne
|
Clt =>
Cond_base Cond_a
|
Cle =>
Cond_base Cond_ae
|
Cgt =>
Cond_base Cond_a
|
Cge =>
Cond_base Cond_ae
end
|
Cnotcompf c |
Cnotcompfs c =>
match c with
|
Ceq =>
Cond_or Cond_p Cond_ne
|
Cne =>
Cond_and Cond_np Cond_e
|
Clt =>
Cond_base Cond_be
|
Cle =>
Cond_base Cond_b
|
Cgt =>
Cond_base Cond_be
|
Cge =>
Cond_base Cond_b
end
|
Cmaskzero n =>
Cond_base Cond_e
|
Cmasknotzero n =>
Cond_base Cond_ne
end.
Acting upon extended conditions.
Definition mk_setcc_base (
cond:
extcond) (
rd:
ireg) (
k:
code) :=
let l :=
match cond with
|
Cond_base c =>
Psetcc c rd ::
nil
|
Cond_and c1 c2 =>
if ireg_eq rd RAX
then Psetcc c1 RAX ::
Psetcc c2 RCX ::
Pandl_rr RAX RCX ::
nil
else Psetcc c1 RAX ::
Psetcc c2 rd ::
Pandl_rr rd RAX ::
nil
|
Cond_or c1 c2 =>
if ireg_eq rd RAX
then Psetcc c1 RAX ::
Psetcc c2 RCX ::
Porl_rr RAX RCX ::
nil
else Psetcc c1 RAX ::
Psetcc c2 rd ::
Porl_rr rd RAX ::
nil
end
in
l ++
k.
Definition mk_setcc (
cond:
extcond) (
rd:
ireg) (
k:
code) :=
if Archi.ptr64 ||
low_ireg rd
then mk_setcc_base cond rd k
else mk_setcc_base cond RAX ((
Pmov_rr rd RAX) ::
k).
Definition mk_jcc (
cond:
extcond) (
lbl:
label) (
k:
code) :=
let l :=
match cond with
|
Cond_base c =>
Pjcc c lbl ::
nil
|
Cond_and c1 c2 =>
Pjcc2 c1 c2 lbl ::
nil
|
Cond_or c1 c2 =>
Pjcc c1 lbl ::
Pjcc c2 lbl ::
nil
end
in
l ++
k.
Translation of the arithmetic operation r <- op(args).
The corresponding instructions are prepended to k.
Definition transl_op
(
op:
operation) (
args:
list mreg) (
res:
mreg) (
k:
code) :
Errors.res code :=
match op,
args with
|
Omove,
a1 ::
nil =>
mk_mov (
preg_of res) (
preg_of a1)
k
|
Ointconst n,
nil =>
do r <-
ireg_of res;
OK ((
if Int.eq_dec n Int.zero then (
Pxorl_r r)
else (
Pmovl_ri r n)) ::
k)
|
Olongconst n,
nil =>
do r <-
ireg_of res;
OK ((
if Int64.eq_dec n Int64.zero then (
Pxorq_r r)
else (
Pmovq_ri r n)) ::
k)
|
Ofloatconst f,
nil =>
do r <-
freg_of res;
OK ((
if Float.eq_dec f Float.zero then (
Pxorpd_f r)
else (
Pmovsd_fi r f)) ::
k)
|
Osingleconst f,
nil =>
do r <-
freg_of res;
OK ((
if Float32.eq_dec f Float32.zero then (
Pxorps_f r)
else (
Pmovss_fi r f)) ::
k)
|
Oindirectsymbol id,
nil =>
do r <-
ireg_of res;
OK ((
Pmov_rs r id) ::
k)
|
Ocast8signed,
a1 ::
nil =>
do r1 <-
ireg_of a1;
do r <-
ireg_of res;
mk_intconv Pmovsb_rr r r1 k
|
Ocast8unsigned,
a1 ::
nil =>
do r1 <-
ireg_of a1;
do r <-
ireg_of res;
mk_intconv Pmovzb_rr r r1 k
|
Ocast16signed,
a1 ::
nil =>
do r1 <-
ireg_of a1;
do r <-
ireg_of res;
OK ((
Pmovsw_rr r r1) ::
k)
|
Ocast16unsigned,
a1 ::
nil =>
do r1 <-
ireg_of a1;
do r <-
ireg_of res;
OK ((
Pmovzw_rr r r1) ::
k)
|
Oneg,
a1 ::
nil =>
assertion (
mreg_eq a1 res);
do r <-
ireg_of res;
OK ((
Pnegl r) ::
k)
|
Osub,
a1 ::
a2 ::
nil =>
assertion (
mreg_eq a1 res);
do r <-
ireg_of res;
do r2 <-
ireg_of a2;
OK ((
Psubl_rr r r2) ::
k)
|
Omul,
a1 ::
a2 ::
nil =>
assertion (
mreg_eq a1 res);
do r <-
ireg_of res;
do r2 <-
ireg_of a2;
OK ((
Pimull_rr r r2) ::
k)
|
Omulimm n,
a1 ::
nil =>
assertion (
mreg_eq a1 res);
do r <-
ireg_of res;
OK ((
Pimull_ri r n) ::
k)
|
Omulhs,
a1 ::
a2 ::
nil =>
assertion (
mreg_eq a1 AX);
assertion (
mreg_eq res DX);
do r2 <-
ireg_of a2;
OK ((
Pimull_r r2) ::
k)
|
Omulhu,
a1 ::
a2 ::
nil =>
assertion (
mreg_eq a1 AX);
assertion (
mreg_eq res DX);
do r2 <-
ireg_of a2;
OK ((
Pmull_r r2) ::
k)
|
Odiv,
a1 ::
a2 ::
nil =>
assertion (
mreg_eq a1 AX);
assertion (
mreg_eq a2 CX);
assertion (
mreg_eq res AX);
OK((
Pcltd) :: (
Pidivl RCX) ::
k)
|
Odivu,
a1 ::
a2 ::
nil =>
assertion (
mreg_eq a1 AX);
assertion (
mreg_eq a2 CX);
assertion (
mreg_eq res AX);
OK((
Pxorl_r RDX) :: (
Pdivl RCX) ::
k)
|
Omod,
a1 ::
a2 ::
nil =>
assertion (
mreg_eq a1 AX);
assertion (
mreg_eq a2 CX);
assertion (
mreg_eq res DX);
OK((
Pcltd) :: (
Pidivl RCX) ::
k)
|
Omodu,
a1 ::
a2 ::
nil =>
assertion (
mreg_eq a1 AX);
assertion (
mreg_eq a2 CX);
assertion (
mreg_eq res DX);
OK((
Pxorl_r RDX) :: (
Pdivl RCX) ::
k)
|
Oand,
a1 ::
a2 ::
nil =>
assertion (
mreg_eq a1 res);
do r <-
ireg_of res;
do r2 <-
ireg_of a2;
OK ((
Pandl_rr r r2) ::
k)
|
Oandimm n,
a1 ::
nil =>
assertion (
mreg_eq a1 res);
do r <-
ireg_of res;
OK ((
Pandl_ri r n) ::
k)
|
Oor,
a1 ::
a2 ::
nil =>
assertion (
mreg_eq a1 res);
do r <-
ireg_of res;
do r2 <-
ireg_of a2;
OK ((
Porl_rr r r2) ::
k)
|
Oorimm n,
a1 ::
nil =>
assertion (
mreg_eq a1 res);
do r <-
ireg_of res;
OK ((
Porl_ri r n) ::
k)
|
Oxor,
a1 ::
a2 ::
nil =>
assertion (
mreg_eq a1 res);
do r <-
ireg_of res;
do r2 <-
ireg_of a2;
OK ((
Pxorl_rr r r2) ::
k)
|
Oxorimm n,
a1 ::
nil =>
assertion (
mreg_eq a1 res);
do r <-
ireg_of res;
OK ((
Pxorl_ri r n) ::
k)
|
Onot,
a1 ::
nil =>
assertion (
mreg_eq a1 res);
do r <-
ireg_of res;
OK ((
Pnotl r) ::
k)
|
Oshl,
a1 ::
a2 ::
nil =>
assertion (
mreg_eq a1 res);
assertion (
mreg_eq a2 CX);
do r <-
ireg_of res;
OK ((
Psall_rcl r) ::
k)
|
Oshlimm n,
a1 ::
nil =>
assertion (
mreg_eq a1 res);
do r <-
ireg_of res;
OK ((
Psall_ri r n) ::
k)
|
Oshr,
a1 ::
a2 ::
nil =>
assertion (
mreg_eq a1 res);
assertion (
mreg_eq a2 CX);
do r <-
ireg_of res;
OK ((
Psarl_rcl r) ::
k)
|
Oshrimm n,
a1 ::
nil =>
assertion (
mreg_eq a1 res);
do r <-
ireg_of res;
OK ((
Psarl_ri r n) ::
k)
|
Oshru,
a1 ::
a2 ::
nil =>
assertion (
mreg_eq a1 res);
assertion (
mreg_eq a2 CX);
do r <-
ireg_of res;
OK ((
Pshrl_rcl r) ::
k)
|
Oshruimm n,
a1 ::
nil =>
assertion (
mreg_eq a1 res);
do r <-
ireg_of res;
OK ((
Pshrl_ri r n) ::
k)
|
Oshrximm n,
a1 ::
nil =>
assertion (
mreg_eq a1 AX);
assertion (
mreg_eq res AX);
mk_shrximm n k
|
Ororimm n,
a1 ::
nil =>
assertion (
mreg_eq a1 res);
do r <-
ireg_of res;
OK ((
Prorl_ri r n) ::
k)
|
Oshldimm n,
a1 ::
a2 ::
nil =>
assertion (
mreg_eq a1 res);
do r <-
ireg_of res;
do r2 <-
ireg_of a2;
OK ((
Pshld_ri r r2 n) ::
k)
|
Olea addr,
_ =>
do am <-
transl_addressing addr args;
do r <-
ireg_of res;
OK ((
Pleal r (
normalize_addrmode_32 am)) ::
k)
|
Olowlong,
a1 ::
nil =>
assertion (
mreg_eq a1 res);
do r <-
ireg_of res;
OK ((
Pmovls_rr r) ::
k)
|
Ocast32signed,
a1 ::
nil =>
do r1 <-
ireg_of a1;
do r <-
ireg_of res;
OK ((
Pmovsl_rr r r1) ::
k)
|
Ocast32unsigned,
a1 ::
nil =>
do r1 <-
ireg_of a1;
do r <-
ireg_of res;
OK ((
Pmovzl_rr r r1) ::
k)
|
Onegl,
a1 ::
nil =>
assertion (
mreg_eq a1 res);
do r <-
ireg_of res;
OK ((
Pnegq r) ::
k)
|
Oaddlimm n,
a1 ::
nil =>
assertion (
mreg_eq a1 res);
do r <-
ireg_of res;
OK ((
Paddq_ri r n) ::
k)
|
Osubl,
a1 ::
a2 ::
nil =>
assertion (
mreg_eq a1 res);
do r <-
ireg_of res;
do r2 <-
ireg_of a2;
OK ((
Psubq_rr r r2) ::
k)
|
Omull,
a1 ::
a2 ::
nil =>
assertion (
mreg_eq a1 res);
do r <-
ireg_of res;
do r2 <-
ireg_of a2;
OK ((
Pimulq_rr r r2) ::
k)
|
Omullimm n,
a1 ::
nil =>
assertion (
mreg_eq a1 res);
do r <-
ireg_of res;
OK ((
Pimulq_ri r n) ::
k)
|
Omullhs,
a1 ::
a2 ::
nil =>
assertion (
mreg_eq a1 AX);
assertion (
mreg_eq res DX);
do r2 <-
ireg_of a2;
OK ((
Pimulq_r r2) ::
k)
|
Omullhu,
a1 ::
a2 ::
nil =>
assertion (
mreg_eq a1 AX);
assertion (
mreg_eq res DX);
do r2 <-
ireg_of a2;
OK ((
Pmulq_r r2) ::
k)
|
Odivl,
a1 ::
a2 ::
nil =>
assertion (
mreg_eq a1 AX);
assertion (
mreg_eq a2 CX);
assertion (
mreg_eq res AX);
OK((
Pcqto) :: (
Pidivq RCX) ::
k)
|
Odivlu,
a1 ::
a2 ::
nil =>
assertion (
mreg_eq a1 AX);
assertion (
mreg_eq a2 CX);
assertion (
mreg_eq res AX);
OK((
Pxorq_r RDX) :: (
Pdivq RCX) ::
k)
|
Omodl,
a1 ::
a2 ::
nil =>
assertion (
mreg_eq a1 AX);
assertion (
mreg_eq a2 CX);
assertion (
mreg_eq res DX);
OK((
Pcqto) :: (
Pidivq RCX) ::
k)
|
Omodlu,
a1 ::
a2 ::
nil =>
assertion (
mreg_eq a1 AX);
assertion (
mreg_eq a2 CX);
assertion (
mreg_eq res DX);
OK((
Pxorq_r RDX) :: (
Pdivq RCX) ::
k)
|
Oandl,
a1 ::
a2 ::
nil =>
assertion (
mreg_eq a1 res);
do r <-
ireg_of res;
do r2 <-
ireg_of a2;
OK ((
Pandq_rr r r2) ::
k)
|
Oandlimm n,
a1 ::
nil =>
assertion (
mreg_eq a1 res);
do r <-
ireg_of res;
OK ((
Pandq_ri r n) ::
k)
|
Oorl,
a1 ::
a2 ::
nil =>
assertion (
mreg_eq a1 res);
do r <-
ireg_of res;
do r2 <-
ireg_of a2;
OK ((
Porq_rr r r2) ::
k)
|
Oorlimm n,
a1 ::
nil =>
assertion (
mreg_eq a1 res);
do r <-
ireg_of res;
OK ((
Porq_ri r n) ::
k)
|
Oxorl,
a1 ::
a2 ::
nil =>
assertion (
mreg_eq a1 res);
do r <-
ireg_of res;
do r2 <-
ireg_of a2;
OK ((
Pxorq_rr r r2) ::
k)
|
Oxorlimm n,
a1 ::
nil =>
assertion (
mreg_eq a1 res);
do r <-
ireg_of res;
OK ((
Pxorq_ri r n) ::
k)
|
Onotl,
a1 ::
nil =>
assertion (
mreg_eq a1 res);
do r <-
ireg_of res;
OK ((
Pnotq r) ::
k)
|
Oshll,
a1 ::
a2 ::
nil =>
assertion (
mreg_eq a1 res);
assertion (
mreg_eq a2 CX);
do r <-
ireg_of res;
OK ((
Psalq_rcl r) ::
k)
|
Oshllimm n,
a1 ::
nil =>
assertion (
mreg_eq a1 res);
do r <-
ireg_of res;
OK ((
Psalq_ri r n) ::
k)
|
Oshrl,
a1 ::
a2 ::
nil =>
assertion (
mreg_eq a1 res);
assertion (
mreg_eq a2 CX);
do r <-
ireg_of res;
OK ((
Psarq_rcl r) ::
k)
|
Oshrlimm n,
a1 ::
nil =>
assertion (
mreg_eq a1 res);
do r <-
ireg_of res;
OK ((
Psarq_ri r n) ::
k)
|
Oshrxlimm n,
a1 ::
nil =>
assertion (
mreg_eq a1 AX);
assertion (
mreg_eq res AX);
mk_shrxlimm n k
|
Oshrlu,
a1 ::
a2 ::
nil =>
assertion (
mreg_eq a1 res);
assertion (
mreg_eq a2 CX);
do r <-
ireg_of res;
OK ((
Pshrq_rcl r) ::
k)
|
Oshrluimm n,
a1 ::
nil =>
assertion (
mreg_eq a1 res);
do r <-
ireg_of res;
OK ((
Pshrq_ri r n) ::
k)
|
Ororlimm n,
a1 ::
nil =>
assertion (
mreg_eq a1 res);
do r <-
ireg_of res;
OK ((
Prorq_ri r n) ::
k)
|
Oleal addr,
_ =>
do am <-
transl_addressing addr args;
do r <-
ireg_of res;
OK (
match normalize_addrmode_64 am with
| (
am',
None) => (
Pleaq r am') ::
k
| (
am',
Some delta) => (
Pleaq r am') :: (
Paddq_ri r delta) ::
k
end)
|
Onegf,
a1 ::
nil =>
assertion (
mreg_eq a1 res);
do r <-
freg_of res;
OK ((
Pnegd r) ::
k)
|
Oabsf,
a1 ::
nil =>
assertion (
mreg_eq a1 res);
do r <-
freg_of res;
OK ((
Pabsd r) ::
k)
|
Oaddf,
a1 ::
a2 ::
nil =>
assertion (
mreg_eq a1 res);
do r <-
freg_of res;
do r2 <-
freg_of a2;
OK ((
Paddd_ff r r2) ::
k)
|
Osubf,
a1 ::
a2 ::
nil =>
assertion (
mreg_eq a1 res);
do r <-
freg_of res;
do r2 <-
freg_of a2;
OK ((
Psubd_ff r r2) ::
k)
|
Omulf,
a1 ::
a2 ::
nil =>
assertion (
mreg_eq a1 res);
do r <-
freg_of res;
do r2 <-
freg_of a2;
OK ((
Pmuld_ff r r2) ::
k)
|
Odivf,
a1 ::
a2 ::
nil =>
assertion (
mreg_eq a1 res);
do r <-
freg_of res;
do r2 <-
freg_of a2;
OK ((
Pdivd_ff r r2) ::
k)
|
Onegfs,
a1 ::
nil =>
assertion (
mreg_eq a1 res);
do r <-
freg_of res;
OK ((
Pnegs r) ::
k)
|
Oabsfs,
a1 ::
nil =>
assertion (
mreg_eq a1 res);
do r <-
freg_of res;
OK ((
Pabss r) ::
k)
|
Oaddfs,
a1 ::
a2 ::
nil =>
assertion (
mreg_eq a1 res);
do r <-
freg_of res;
do r2 <-
freg_of a2;
OK ((
Padds_ff r r2) ::
k)
|
Osubfs,
a1 ::
a2 ::
nil =>
assertion (
mreg_eq a1 res);
do r <-
freg_of res;
do r2 <-
freg_of a2;
OK ((
Psubs_ff r r2) ::
k)
|
Omulfs,
a1 ::
a2 ::
nil =>
assertion (
mreg_eq a1 res);
do r <-
freg_of res;
do r2 <-
freg_of a2;
OK ((
Pmuls_ff r r2) ::
k)
|
Odivfs,
a1 ::
a2 ::
nil =>
assertion (
mreg_eq a1 res);
do r <-
freg_of res;
do r2 <-
freg_of a2;
OK ((
Pdivs_ff r r2) ::
k)
|
Osingleoffloat,
a1 ::
nil =>
do r <-
freg_of res;
do r1 <-
freg_of a1;
OK ((
Pcvtsd2ss_ff r r1) ::
k)
|
Ofloatofsingle,
a1 ::
nil =>
do r <-
freg_of res;
do r1 <-
freg_of a1;
OK ((
Pcvtss2sd_ff r r1) ::
k)
|
Ointoffloat,
a1 ::
nil =>
do r <-
ireg_of res;
do r1 <-
freg_of a1;
OK ((
Pcvttsd2si_rf r r1) ::
k)
|
Ofloatofint,
a1 ::
nil =>
do r <-
freg_of res;
do r1 <-
ireg_of a1;
OK ((
Pcvtsi2sd_fr r r1) ::
k)
|
Ointofsingle,
a1 ::
nil =>
do r <-
ireg_of res;
do r1 <-
freg_of a1;
OK ((
Pcvttss2si_rf r r1) ::
k)
|
Osingleofint,
a1 ::
nil =>
do r <-
freg_of res;
do r1 <-
ireg_of a1;
OK ((
Pcvtsi2ss_fr r r1) ::
k)
|
Olongoffloat,
a1 ::
nil =>
do r <-
ireg_of res;
do r1 <-
freg_of a1;
OK ((
Pcvttsd2sl_rf r r1) ::
k)
|
Ofloatoflong,
a1 ::
nil =>
do r <-
freg_of res;
do r1 <-
ireg_of a1;
OK ((
Pcvtsl2sd_fr r r1) ::
k)
|
Olongofsingle,
a1 ::
nil =>
do r <-
ireg_of res;
do r1 <-
freg_of a1;
OK ((
Pcvttss2sl_rf r r1) ::
k)
|
Osingleoflong,
a1 ::
nil =>
do r <-
freg_of res;
do r1 <-
ireg_of a1;
OK ((
Pcvtsl2ss_fr r r1) ::
k)
|
Ocmp c,
args =>
do r <-
ireg_of res;
transl_cond c args (
mk_setcc (
testcond_for_condition c)
r k)
|
_,
_ =>
Error(
msg "
Asmgen.transl_op")
end.
Translation of memory loads and stores
Definition transl_load (
chunk:
memory_chunk)
(
addr:
addressing) (
args:
list mreg) (
dest:
mreg)
(
k:
code) :
res code :=
do instr <-
do am <-
transl_addressing addr args;
match chunk with
|
Mint8unsigned =>
do r <-
ireg_of dest;
OK(
Pmovzb_rm r am)
|
Mint8signed =>
do r <-
ireg_of dest;
OK(
Pmovsb_rm r am)
|
Mint16unsigned =>
do r <-
ireg_of dest;
OK(
Pmovzw_rm r am)
|
Mint16signed =>
do r <-
ireg_of dest;
OK(
Pmovsw_rm r am)
|
Mint32 =>
do r <-
ireg_of dest;
OK(
Pmovl_rm r am)
|
Mint64 =>
do r <-
ireg_of dest;
OK(
Pmovq_rm r am)
|
Mfloat32 =>
do r <-
freg_of dest;
OK(
Pmovss_fm r am)
|
Mfloat64 =>
do r <-
freg_of dest;
OK(
Pmovsd_fm r am)
|
_ =>
Error (
msg "
Asmgen.transl_load")
end;
OK (
instr ::
k).
Definition transl_store (
chunk:
memory_chunk)
(
addr:
addressing) (
args:
list mreg) (
src:
mreg)
(
k:
code) :
res code :=
do am <-
transl_addressing addr args;
match chunk with
|
Mint8unsigned |
Mint8signed =>
do r <-
ireg_of src;
mk_storebyte am r k
|
Mint16unsigned |
Mint16signed =>
do r <-
ireg_of src;
OK((
Pmovw_mr am r) ::
k)
|
Mint32 =>
do r <-
ireg_of src;
OK((
Pmovl_mr am r) ::
k)
|
Mint64 =>
do r <-
ireg_of src;
OK((
Pmovq_mr am r) ::
k)
|
Mfloat32 =>
do r <-
freg_of src;
OK((
Pmovss_mf am r) ::
k)
|
Mfloat64 =>
do r <-
freg_of src;
OK((
Pmovsd_mf am r) ::
k)
|
_ =>
Error (
msg "
Asmgen.transl_store")
end.
Translation of a Mach instruction.
Definition transl_instr (
f:
Mach.function) (
i:
Mach.instruction)
(
ax_is_parent:
bool) (
k:
code) :=
match i with
|
Mgetstack ofs ty dst =>
loadind RSP ofs ty dst k
|
Msetstack src ofs ty =>
storeind src RSP ofs ty k
|
Mgetparam ofs ty dst =>
if ax_is_parent then
loadind RAX ofs ty dst k
else
(
do k1 <-
loadind RAX ofs ty dst k;
OK ((
Pload_parent_pointer RAX (
Mach.fn_stacksize f)) ::
k1)
)
|
Mop op args res =>
transl_op op args res k
|
Mload chunk addr args dst =>
transl_load chunk addr args dst k
|
Mstore chunk addr args src =>
transl_store chunk addr args src k
|
Mcall sig (
inl reg) =>
do r <-
ireg_of reg;
OK ((
Pcall (
inl r)
sig) ::
k)
|
Mcall sig (
inr symb) =>
OK ((
Pcall (
inr symb)
sig) ::
k)
|
Mtailcall sig (
inl reg) =>
do r <-
ireg_of reg;
OK ((
Pfreeframe (
Mach.fn_stacksize f)
f.(
fn_retaddr_ofs)) ::
(
Pjmp (
inl r)
sig) ::
k)
|
Mtailcall sig (
inr symb) =>
OK ((
Pfreeframe (
Mach.fn_stacksize f)
f.(
fn_retaddr_ofs)) ::
(
Pjmp (
inr symb)
sig) ::
k)
|
Mlabel lbl =>
OK((
Plabel lbl) ::
k)
|
Mgoto lbl =>
OK((
Pjmp_l lbl) ::
k)
|
Mcond cond args lbl =>
transl_cond cond args (
mk_jcc (
testcond_for_condition cond)
lbl k)
|
Mjumptable arg tbl =>
do r <-
ireg_of arg;
OK ((
Pjmptbl r tbl) ::
k)
|
Mreturn =>
OK ((
Pfreeframe (
Mach.fn_stacksize f)
f.(
fn_retaddr_ofs)) ::
(
Pret) ::
k)
|
Mbuiltin ef args res =>
OK ((
Pbuiltin ef (
List.map (
map_builtin_arg preg_of)
args) (
map_builtin_res preg_of res)) ::
k)
end.
Translation of a code sequence
Definition it1_is_parent (
before:
bool) (
i:
Mach.instruction) :
bool :=
match i with
|
Msetstack src ofs ty =>
before
|
Mgetparam ofs ty dst =>
negb (
mreg_eq dst AX)
|
_ =>
false
end.
This is the naive definition that we no longer use because it
is not tail-recursive. It is kept as specification.
Fixpoint transl_code (
f:
Mach.function) (
il:
list Mach.instruction) (
axp:
bool) :=
match il with
|
nil =>
OK nil
|
i1 ::
il' =>
do k <-
transl_code f il' (
it1_is_parent axp i1);
transl_instr f i1 axp k
end.
This is an equivalent definition in continuation-passing style
that runs in constant stack space.
Fixpoint transl_code_rec (
f:
Mach.function) (
il:
list Mach.instruction)
(
axp:
bool) (
k:
code ->
res code) :=
match il with
|
nil =>
k nil
|
i1 ::
il' =>
transl_code_rec f il' (
it1_is_parent axp i1)
(
fun c1 =>
do c2 <-
transl_instr f i1 axp c1;
k c2)
end.
Definition transl_code' (
f:
Mach.function) (
il:
list Mach.instruction) (
axp:
bool) :=
transl_code_rec f il axp (
fun c =>
OK c).
Translation of a whole function. Note that we must check
that the generated code contains less than 2^32 instructions,
otherwise the offset part of the PC code pointer could wrap
around, leading to incorrect executions.
Definition transl_function (
f:
Mach.function) :=
do c <-
transl_code'
f f.(
Mach.fn_code)
true;
match StackADT.frame_info_of_size_and_pubrange (
Mach.fn_stacksize f) (
Mach.fn_frame_pubrange f)
with
Some fi =>
OK (
mkfunction (
Mach.fn_sig f)
((
Pallocframe (
Mach.fn_stacksize f) (
Mach.fn_frame_pubrange f) (
fn_retaddr_ofs f)) ::
c)
(
Mach.fn_stacksize f) (
Mach.fn_frame_pubrange f))
|
None =>
Error (
msg "
should not happen --
Mach.fn_stacksize <= 0")
end.
Definition transf_function (
f:
Mach.function) :
res Asm.function :=
do tf <-
transl_function f;
if zlt Ptrofs.max_unsigned (
code_size tf.(
fn_code))
then Error (
msg "
code size exceeded")
else OK tf.
Definition transf_fundef (
f:
Mach.fundef) :
res Asm.fundef :=
transf_partial_fundef transf_function f.
Definition transf_program (
p:
Mach.program) :
res Asm.program :=
transform_partial_program transf_fundef p.
Section AsmgenFacts.
Lemma mk_setcc_app:
forall cond x c,
mk_setcc cond x c =
mk_setcc cond x nil ++
c.
Proof.
Lemma transl_cond_app:
forall a b cond lr tc,
transl_cond cond lr (
a ++
b) =
OK tc ->
exists tc',
transl_cond cond lr a =
OK tc' /\
tc =
tc' ++
b.
Proof.
intros a b cond lr tc TC.
unfold transl_cond in *.
repeat destr_in TC;
monadInv H0;
rewrite EQ, ?
EQ1;
simpl;
eauto.
Qed.
Lemma transl_op_eq:
forall op lr r c tc,
transl_op op lr r c =
OK tc ->
exists ti,
transl_op op lr r nil =
OK ti /\
tc =
ti ++
c.
Proof.
intros op lr r c tc TO.
destruct op;
simpl in *;
repeat destr_in TO;
eauto;
try (
monadInv H0;
rewrite EQ;
simpl;
now eauto).
-
unfold mk_mov in *.
repeat destr_in H0;
eauto.
-
monadInv H0.
rewrite EQ,
EQ1.
simpl.
unfold mk_intconv in *.
repeat destr_in EQ2;
eauto.
-
monadInv H0.
rewrite EQ,
EQ1.
simpl.
unfold mk_intconv in *.
repeat destr_in EQ2;
eauto.
-
monadInv H0.
rewrite EQ,
EQ1.
simpl.
unfold mk_intconv in *.
repeat destr_in EQ2;
eauto.
-
monadInv H0.
rewrite EQ,
EQ1.
simpl.
unfold mk_intconv in *.
repeat destr_in EQ2;
eauto.
-
monadInv H0.
rewrite EQ,
EQ1.
simpl.
unfold mk_intconv in *.
repeat destr_in EQ2;
eauto.
-
monadInv H0.
rewrite EQ,
EQ1.
simpl.
unfold mk_intconv in *.
repeat destr_in EQ2;
eauto.
-
monadInv H0.
rewrite EQ,
EQ1.
simpl.
unfold mk_intconv in *.
repeat destr_in EQ2;
eauto.
-
monadInv H0.
rewrite EQ,
EQ1.
simpl.
unfold mk_intconv in *.
repeat destr_in EQ2;
eauto.
-
monadInv H0.
rewrite EQ,
EQ1.
simpl.
unfold mk_intconv in *.
repeat destr_in EQ2;
eauto.
-
unfold mk_shrximm.
eauto.
-
monadInv H0.
rewrite EQ,
EQ1.
simpl.
eauto.
-
monadInv H0.
rewrite EQ,
EQ1.
simpl.
eauto.
-
monadInv H0.
rewrite EQ,
EQ1.
simpl.
eauto.
-
monadInv H0.
rewrite EQ,
EQ1.
simpl.
eauto.
-
monadInv H0.
rewrite EQ,
EQ1.
simpl.
eauto.
-
monadInv H0.
rewrite EQ,
EQ1.
simpl.
eauto.
-
monadInv H0.
rewrite EQ,
EQ1.
simpl.
eauto.
-
monadInv H0.
rewrite EQ,
EQ1.
simpl.
eauto.
-
monadInv H0.
rewrite EQ,
EQ1.
simpl.
eauto.
-
unfold mk_shrxlimm.
destr.
eauto.
eauto.
-
monadInv H0.
rewrite EQ,
EQ1.
simpl.
repeat destr;
eauto.
-
monadInv H0.
rewrite EQ,
EQ1.
simpl.
eauto.
-
monadInv H0.
rewrite EQ,
EQ1.
simpl.
eauto.
-
monadInv H0.
rewrite EQ,
EQ1.
simpl.
eauto.
-
monadInv H0.
rewrite EQ,
EQ1.
simpl.
eauto.
-
monadInv H0.
rewrite EQ,
EQ1.
simpl.
eauto.
-
monadInv H0.
rewrite EQ,
EQ1.
simpl.
eauto.
-
monadInv H0.
rewrite EQ,
EQ1.
simpl.
eauto.
-
monadInv H0.
rewrite EQ,
EQ1.
simpl.
eauto.
-
monadInv H0.
rewrite EQ,
EQ1.
simpl.
eauto.
-
monadInv H0.
rewrite EQ,
EQ1.
simpl.
eauto.
-
monadInv H0.
rewrite EQ,
EQ1.
simpl.
eauto.
-
monadInv H0.
rewrite EQ,
EQ1.
simpl.
eauto.
-
monadInv H0.
rewrite EQ,
EQ1.
simpl.
eauto.
-
monadInv H0.
rewrite EQ,
EQ1.
simpl.
eauto.
-
monadInv H0.
rewrite EQ,
EQ1.
simpl.
eauto.
-
monadInv H0.
rewrite EQ,
EQ1.
simpl.
eauto.
-
monadInv H0.
rewrite EQ,
EQ1.
simpl.
eauto.
-
monadInv H0.
rewrite EQ,
EQ1.
simpl.
eauto.
-
monadInv H0.
rewrite EQ.
rewrite mk_setcc_app in EQ0.
edestruct transl_cond_app as (
tc' &
TC &
APP);
eauto.
Qed.
Lemma transl_cond_app':
forall a b cond lr tc,
transl_cond cond lr a =
OK tc ->
transl_cond cond lr (
a ++
b) =
OK (
tc ++
b).
Proof.
intros a b cond lr tc TC.
unfold transl_cond in *.
repeat destr_in TC;
monadInv H0;
rewrite EQ, ?
EQ1;
simpl;
eauto.
Qed.
Lemma mk_setcc_app':
forall cond x c c',
mk_setcc cond x (
c ++
c') =
mk_setcc cond x c ++
c'.
Proof.
Lemma transl_op_eq':
forall op lr r c c'
tc,
transl_op op lr r c =
OK tc ->
transl_op op lr r (
c ++
c') =
OK (
tc ++
c').
Proof.
intros op lr r c c'
tc TO;
destruct op;
simpl in *;
repeat match goal with
|
H:
bind _ _ =
_ |-
_ =>
monadInv H
|
H: ?
a =
OK ?
b |-
context [
bind ?
a _] =>
rewrite H;
simpl;
eauto
|
H:
mk_mov _ _ _ =
_ |-
_ =>
unfold mk_mov in H;
repeat destr_in H
|
H:
mk_intconv _ _ _ _ =
_ |-
_ =>
unfold mk_intconv in H;
inv H;
eauto
|
H:
context [
match ?
a with _ =>
_ end] |-
_ =>
repeat destr_in H
|
H:
OK _ =
OK _ |-
_ =>
inv H
|
H:
Error _ =
OK _ |-
_ =>
inv H
| |-
_ =>
simpl in *;
eauto
end.
unfold mk_intconv.
destr.
unfold mk_intconv.
destr.
unfold mk_shrxlimm.
destr;
eauto.
repeat destr;
eauto.
rewrite mk_setcc_app'.
eapply transl_cond_app';
eauto.
Qed.
Lemma transl_load_eq:
forall m a l m0 c tc
(
TI :
transl_load m a l m0 c =
OK tc),
exists ti,
transl_load m a l m0 nil =
OK ti /\
tc =
ti ++
c.
Proof.
intros.
unfold transl_load.
monadInv TI.
monadInv EQ.
repeat destr_in EQ1;
rewrite EQ0;
simpl;
rewrite H0;
simpl;
eauto.
Qed.
Lemma mk_storebyte_eq:
forall x x0 c tc
(
EQ1 :
mk_storebyte x x0 c =
OK tc),
exists ti,
mk_storebyte x x0 nil =
OK ti /\
tc =
ti ++
c.
Proof.
unfold mk_storebyte.
intros.
inv EQ1.
repeat (
destr;
eauto).
Qed.
Lemma transl_store_eq:
forall m a l m0 c tc
(
TI :
transl_store m a l m0 c =
OK tc),
exists ti,
transl_store m a l m0 nil =
OK ti /\
tc =
ti ++
c.
Proof.
intros.
unfold transl_store.
monadInv TI.
rewrite EQ;
simpl.
repeat destr_in EQ0;
monadInv H0;
rewrite EQ0;
simpl;
eauto using mk_storebyte_eq.
Qed.
Lemma transl_load_eq':
forall m a l m0 c c'
tc
(
TI :
transl_load m a l m0 c =
OK tc),
transl_load m a l m0 (
c ++
c') =
OK (
tc ++
c').
Proof.
intros.
unfold transl_load.
monadInv TI.
monadInv EQ.
rewrite EQ0.
simpl.
repeat destr_in EQ1;
simpl;
rewrite H0;
simpl;
eauto.
Qed.
Lemma mk_storebyte_eq':
forall x x0 c c'
tc
(
EQ1 :
mk_storebyte x x0 c =
OK tc),
mk_storebyte x x0 (
c ++
c') =
OK (
tc ++
c').
Proof.
unfold mk_storebyte.
intros.
inv EQ1.
repeat (
destr;
eauto).
Qed.
Lemma transl_store_eq':
forall m a l m0 c c'
tc
(
TI :
transl_store m a l m0 c =
OK tc),
transl_store m a l m0 (
c ++
c') =
OK (
tc ++
c').
Proof.
intros.
unfold transl_store.
monadInv TI.
rewrite EQ;
simpl.
repeat destr_in EQ0;
monadInv H0;
rewrite EQ0;
simpl;
eauto using mk_storebyte_eq'.
Qed.
Lemma mk_jcc_app:
forall cond x c,
mk_jcc cond x c =
mk_jcc cond x nil ++
c.
Proof.
unfold mk_jcc.
intros.
repeat destr.
Qed.
Lemma transl_instr_eq:
forall f i ax c tc,
transl_instr f i ax c =
OK tc ->
exists ti,
transl_instr f i ax nil =
OK ti /\
tc =
ti ++
c.
Proof.
intros f i ax c tc TI.
destruct i;
simpl in *.
-
Transparent loadind.
monadInv TI.
unfold loadind.
repeat destr_in EQ;
simpl;
eauto.
-
monadInv TI.
unfold storeind.
repeat destr_in EQ;
simpl;
eauto.
-
destr.
monadInv TI.
unfold loadind.
repeat destr_in EQ;
simpl;
eauto.
monadInv TI.
monadInv EQ.
unfold loadind.
repeat destr_in EQ0;
simpl;
eauto.
-
edestruct transl_op_eq as (
ti &
TOP &
EQ);
eauto.
-
eauto using transl_load_eq.
-
eauto using transl_store_eq.
-
destr_in TI;
monadInv TI;
rewrite ?
EQ;
simpl;
eauto.
-
destr_in TI;
monadInv TI;
rewrite ?
EQ;
simpl;
eauto.
-
inv TI;
eauto.
-
inv TI;
eauto.
-
inv TI;
eauto.
-
eapply transl_cond_app;
eauto.
erewrite <-
mk_jcc_app.
auto.
-
monadInv TI;
rewrite EQ;
simpl;
eauto.
-
inv TI.
eauto.
Qed.
Lemma mk_jcc_app':
forall cond x c c',
mk_jcc cond x (
c ++
c') =
mk_jcc cond x c ++
c'.
Proof.
unfold mk_jcc.
intros.
repeat destr.
Qed.
Lemma transl_instr_eq':
forall f i ax c c'
tc,
transl_instr f i ax c =
OK tc ->
transl_instr f i ax (
c ++
c') =
OK (
tc ++
c').
Proof.
intros f i ax c c'
tc TI.
destruct i;
simpl in *;
repeat destr_in TI;
repeat match goal with
|
H:
loadind _ _ _ _ _ =
_ |-
_ =>
unfold loadind in *;
monadInv H
|
H:
storeind _ _ _ _ _ =
_ |-
_ =>
unfold storeind in *;
monadInv H
|
H:
bind _ _ =
_ |-
_ =>
monadInv H
|
H: ?
a =
OK ?
b |-
context [
bind ?
a _] =>
rewrite H;
simpl;
eauto
|
H:
context [
match ?
a with _ =>
_ end] |-
_ =>
repeat destr_in H
|
H:
OK _ =
OK _ |-
_ =>
inv H
| |-
_ =>
simpl in *;
eauto
end.
eapply transl_op_eq';
eauto.
eapply transl_load_eq';
eauto.
eapply transl_store_eq';
eauto.
rewrite mk_jcc_app'.
eapply transl_cond_app';
eauto.
Qed.
Lemma transl_code_app:
forall f l1 l2 ep1 x,
transl_code f (
l1 ++
l2)
ep1 =
OK x ->
exists ep2 y,
transl_code f l1 ep1 =
OK y /\
bind (
transl_code f l2 ep2) (
fun k =>
OK (
y ++
k)) =
OK x.
Proof.
induction l1;
simpl;
intros;
eauto.
exists ep1,
nil;
split;
auto.
rewrite H.
simpl.
auto.
monadInv H.
edestruct IHl1 as (
ep2 &
y &
TC1 &
TC2).
apply EQ.
rewrite TC1.
simpl.
edestruct transl_instr_eq as (
ti &
TI &
EQti).
eauto.
subst.
generalize (
transl_instr_eq'
_ _ _ _ y _ TI).
simpl.
intro TI2.
rewrite TI2.
monadInv TC2.
eexists _,
_;
split.
eauto.
rewrite EQ1.
simpl.
rewrite app_ass.
reflexivity.
Qed.
End AsmgenFacts.