Library mcertikos.mm.MPTKern
This file defines the abstract data and the primitives for the MPTKern layer, which will initialize kernel's page table (0th page table)
Require Import Coqlib.
Require Import Maps.
Require Import ASTExtra.
Require Import Integers.
Require Import Floats.
Require Import Values.
Require Import Memory.
Require Import Events.
Require Import Stacklayout.
Require Import Globalenvs.
Require Import AsmX.
Require Import Smallstep.
Require Import AuxStateDataType.
Require Import Constant.
Require Import GlobIdent.
Require Import FlatMemory.
Require Import CommonTactic.
Require Import AuxLemma.
Require Import RealParams.
Require Import PrimSemantics.
Require Import LAsm.
Require Import LoadStoreSem2.
Require Import XOmega.
Require Import CalRealPTPool.
Require Import CalRealPT.
Require Import INVLemmaContainer.
Require Import INVLemmaMemory.
Require Import CalRealIDPDE.
Require Import CalRealInitPTE.
Require Import liblayers.logic.PTreeModules.
Require Import liblayers.logic.LayerLogicImpl.
Require Import liblayers.compat.CompatLayers.
Require Import liblayers.compat.CompatGenSem.
Require Import AbstractDataType.
Require Export MPTCommon.
Require Import INVLemmaQLock.
Require Import INVLemmaInterrupt.
Require Import INVLemmaDriver.
Require Import DeviceStateDataType.
Require Import FutureTactic.
Require Import ObjInterruptDriver.
Section WITHMEM.
Local Open Scope Z_scope.
Context `{real_params: RealParams}.
Context `{oracle_prop: MultiOracleProp}.
Context `{Hstencil: Stencil}.
Context `{Hmem: Mem.MemoryModelX}.
Context `{Hmwd: UseMemWithData mem}.
Require Import Maps.
Require Import ASTExtra.
Require Import Integers.
Require Import Floats.
Require Import Values.
Require Import Memory.
Require Import Events.
Require Import Stacklayout.
Require Import Globalenvs.
Require Import AsmX.
Require Import Smallstep.
Require Import AuxStateDataType.
Require Import Constant.
Require Import GlobIdent.
Require Import FlatMemory.
Require Import CommonTactic.
Require Import AuxLemma.
Require Import RealParams.
Require Import PrimSemantics.
Require Import LAsm.
Require Import LoadStoreSem2.
Require Import XOmega.
Require Import CalRealPTPool.
Require Import CalRealPT.
Require Import INVLemmaContainer.
Require Import INVLemmaMemory.
Require Import CalRealIDPDE.
Require Import CalRealInitPTE.
Require Import liblayers.logic.PTreeModules.
Require Import liblayers.logic.LayerLogicImpl.
Require Import liblayers.compat.CompatLayers.
Require Import liblayers.compat.CompatGenSem.
Require Import AbstractDataType.
Require Export MPTCommon.
Require Import INVLemmaQLock.
Require Import INVLemmaInterrupt.
Require Import INVLemmaDriver.
Require Import DeviceStateDataType.
Require Import FutureTactic.
Require Import ObjInterruptDriver.
Section WITHMEM.
Local Open Scope Z_scope.
Context `{real_params: RealParams}.
Context `{oracle_prop: MultiOracleProp}.
Context `{Hstencil: Stencil}.
Context `{Hmem: Mem.MemoryModelX}.
Context `{Hmwd: UseMemWithData mem}.
Section INV.
Section PTINSERT.
Section PTINSERT_PTE.
Lemma ptInsertPTE_high_level_inv:
∀ d d´ n vadr padr p,
ptInsertPTE_spec n vadr padr p d = Some d´ →
high_level_invariant d →
high_level_invariant d´.
Proof.
intros. functional inversion H; subst; eauto.
inv H0; constructor_gso_simpl_tac.
- intros. congruence.
Qed.
Lemma ptInsertPTE_low_level_inv:
∀ d d´ n vadr padr p n´,
ptInsertPTE_spec n vadr padr p d = Some d´ →
low_level_invariant n´ d →
low_level_invariant n´ d´.
Proof.
intros. functional inversion H; subst; eauto.
inv H0. constructor; eauto.
Qed.
Lemma ptInsertPTE_kernel_mode:
∀ d d´ n vadr padr p,
ptInsertPTE_spec n vadr padr p d = Some d´ →
kernel_mode d →
kernel_mode d´.
Proof.
intros. functional inversion H; subst; eauto.
Qed.
End PTINSERT_PTE.
Lemma ptInsert_high_level_inv:
∀ d d´ n vadr padr p v,
ptInsert_spec n vadr padr p d = Some (d´, v) →
high_level_invariant d →
high_level_invariant d´.
Proof.
intros. functional inversion H; subst; eauto.
- eapply ptInsertPTE_high_level_inv; eassumption.
- eapply ptAllocPDE_high_level_inv; eassumption.
- eapply ptInsertPTE_high_level_inv; try eassumption.
eapply ptAllocPDE_high_level_inv; eassumption.
Qed.
Lemma ptInsert_low_level_inv:
∀ d d´ n vadr padr p n´ v,
ptInsert_spec n vadr padr p d = Some (d´, v) →
low_level_invariant n´ d →
low_level_invariant n´ d´.
Proof.
intros. functional inversion H; subst; eauto.
- eapply ptInsertPTE_low_level_inv; eassumption.
- eapply ptAllocPDE_low_level_inv; eassumption.
- eapply ptInsertPTE_low_level_inv; try eassumption.
eapply ptAllocPDE_low_level_inv; eassumption.
Qed.
Lemma ptInsert_kernel_mode:
∀ d d´ n vadr padr p v,
ptInsert_spec n vadr padr p d = Some (d´, v) →
kernel_mode d →
kernel_mode d´.
Proof.
intros. functional inversion H; subst; eauto.
- eapply ptInsertPTE_kernel_mode; eassumption.
- eapply ptAllocPDE_kernel_mode; eassumption.
- eapply ptInsertPTE_kernel_mode; try eassumption.
eapply ptAllocPDE_kernel_mode; eassumption.
Qed.
Global Instance ptInsert_inv: PreservesInvariants ptInsert_spec.
Proof.
preserves_invariants_simpl´.
- eapply ptInsert_low_level_inv; eassumption.
- eapply ptInsert_high_level_inv; eassumption.
- eapply ptInsert_kernel_mode; eassumption.
Qed.
End PTINSERT.
Global Instance ptRmv_inv: PreservesInvariants ptRmv_spec.
Proof.
preserves_invariants_simpl low_level_invariant high_level_invariant; eauto;
try (rewrite ZMap.gso; eauto; fail).
Qed.
Global Instance pt_init_kern_inv: PreservesInvariants pt_init_kern_spec.
Proof.
preserves_invariants_simpl low_level_invariant high_level_invariant.
- apply real_nps_range.
- apply AC_init_container_valid.
- rewrite init_pperm; [|try assumption].
apply real_pperm_log_valid.
- assumption.
- assumption.
- eapply real_valid_hlock_pool1; eauto.
- assumption.
- eapply real_valid_AT_log_pool_H; eauto.
Qed.
End INV.
Section PTINSERT.
Section PTINSERT_PTE.
Lemma ptInsertPTE_high_level_inv:
∀ d d´ n vadr padr p,
ptInsertPTE_spec n vadr padr p d = Some d´ →
high_level_invariant d →
high_level_invariant d´.
Proof.
intros. functional inversion H; subst; eauto.
inv H0; constructor_gso_simpl_tac.
- intros. congruence.
Qed.
Lemma ptInsertPTE_low_level_inv:
∀ d d´ n vadr padr p n´,
ptInsertPTE_spec n vadr padr p d = Some d´ →
low_level_invariant n´ d →
low_level_invariant n´ d´.
Proof.
intros. functional inversion H; subst; eauto.
inv H0. constructor; eauto.
Qed.
Lemma ptInsertPTE_kernel_mode:
∀ d d´ n vadr padr p,
ptInsertPTE_spec n vadr padr p d = Some d´ →
kernel_mode d →
kernel_mode d´.
Proof.
intros. functional inversion H; subst; eauto.
Qed.
End PTINSERT_PTE.
Lemma ptInsert_high_level_inv:
∀ d d´ n vadr padr p v,
ptInsert_spec n vadr padr p d = Some (d´, v) →
high_level_invariant d →
high_level_invariant d´.
Proof.
intros. functional inversion H; subst; eauto.
- eapply ptInsertPTE_high_level_inv; eassumption.
- eapply ptAllocPDE_high_level_inv; eassumption.
- eapply ptInsertPTE_high_level_inv; try eassumption.
eapply ptAllocPDE_high_level_inv; eassumption.
Qed.
Lemma ptInsert_low_level_inv:
∀ d d´ n vadr padr p n´ v,
ptInsert_spec n vadr padr p d = Some (d´, v) →
low_level_invariant n´ d →
low_level_invariant n´ d´.
Proof.
intros. functional inversion H; subst; eauto.
- eapply ptInsertPTE_low_level_inv; eassumption.
- eapply ptAllocPDE_low_level_inv; eassumption.
- eapply ptInsertPTE_low_level_inv; try eassumption.
eapply ptAllocPDE_low_level_inv; eassumption.
Qed.
Lemma ptInsert_kernel_mode:
∀ d d´ n vadr padr p v,
ptInsert_spec n vadr padr p d = Some (d´, v) →
kernel_mode d →
kernel_mode d´.
Proof.
intros. functional inversion H; subst; eauto.
- eapply ptInsertPTE_kernel_mode; eassumption.
- eapply ptAllocPDE_kernel_mode; eassumption.
- eapply ptInsertPTE_kernel_mode; try eassumption.
eapply ptAllocPDE_kernel_mode; eassumption.
Qed.
Global Instance ptInsert_inv: PreservesInvariants ptInsert_spec.
Proof.
preserves_invariants_simpl´.
- eapply ptInsert_low_level_inv; eassumption.
- eapply ptInsert_high_level_inv; eassumption.
- eapply ptInsert_kernel_mode; eassumption.
Qed.
End PTINSERT.
Global Instance ptRmv_inv: PreservesInvariants ptRmv_spec.
Proof.
preserves_invariants_simpl low_level_invariant high_level_invariant; eauto;
try (rewrite ZMap.gso; eauto; fail).
Qed.
Global Instance pt_init_kern_inv: PreservesInvariants pt_init_kern_spec.
Proof.
preserves_invariants_simpl low_level_invariant high_level_invariant.
- apply real_nps_range.
- apply AC_init_container_valid.
- rewrite init_pperm; [|try assumption].
apply real_pperm_log_valid.
- assumption.
- assumption.
- eapply real_valid_hlock_pool1; eauto.
- assumption.
- eapply real_valid_AT_log_pool_H; eauto.
Qed.
End INV.
Definition mptkern_fresh : compatlayer (cdata RData) :=
pt_insert ↦ gensem ptInsert_spec
⊕ pt_rmv ↦ gensem ptRmv_spec
⊕ pt_init_kern ↦ gensem pt_init_kern_spec.
pt_insert ↦ gensem ptInsert_spec
⊕ pt_rmv ↦ gensem ptRmv_spec
⊕ pt_init_kern ↦ gensem pt_init_kern_spec.
Definition mptkern_passthrough : compatlayer (cdata RData) :=
fload ↦ gensem fload_spec
⊕ fstore ↦ gensem fstore_spec
⊕ page_copy ↦ gensem page_copy_spec
⊕ page_copy_back ↦ gensem page_copy_back_spec
⊕ vmxinfo_get ↦ gensem vmxinfo_get_spec
⊕ set_pg ↦ gensem setPG1_spec
⊕ at_get_c ↦ gensem get_at_c_spec
⊕ at_set_c ↦ gensem set_at_c0_spec
⊕ palloc ↦ gensem lpalloc_spec
⊕ set_pt ↦ gensem setPT´_spec
⊕ pt_read ↦ gensem ptRead_spec
⊕ pt_read_pde ↦ gensem ptReadPDE_spec
⊕ pt_in ↦ primcall_general_compatsem´ ptin´_spec (prim_ident:= pt_in)
⊕ pt_out ↦ primcall_general_compatsem´ ptout_spec (prim_ident:= pt_out)
⊕ container_get_parent ↦ gensem container_get_parent_spec
⊕ container_get_nchildren ↦ gensem container_get_nchildren_spec
⊕ container_get_quota ↦ gensem container_get_quota_spec
⊕ container_get_usage ↦ gensem container_get_usage_spec
⊕ container_can_consume ↦ gensem container_can_consume_spec
⊕ container_split ↦ gensem container_split_spec
⊕ get_CPU_ID ↦ gensem get_CPU_ID_spec
⊕ get_curid ↦ gensem get_curid_spec
⊕ set_curid ↦ gensem set_curid_spec
⊕ set_curid_init ↦ gensem set_curid_init_spec
⊕ release_lock ↦ primcall_release_lock_compatsem release_lock release_lock_spec1
⊕ acquire_lock ↦ primcall_acquire_lock_compatsem acquire_lock_spec1
⊕ cli ↦ gensem cli_spec
⊕ sti ↦ gensem sti_spec
⊕ serial_intr_disable ↦ gensem serial_intr_disable_spec
⊕ serial_intr_enable ↦ gensem serial_intr_enable_spec
⊕ serial_putc ↦ gensem serial_putc_spec
⊕ cons_buf_read ↦ gensem cons_buf_read_spec
⊕ trap_in ↦ primcall_general_compatsem trapin_spec
⊕ trap_out ↦ primcall_general_compatsem trapout_spec
⊕ host_in ↦ primcall_general_compatsem hostin_spec
⊕ host_out ↦ primcall_general_compatsem hostout_spec
⊕ proc_create_postinit ↦ gensem proc_create_postinit_spec
⊕ trap_get ↦ primcall_trap_info_get_compatsem trap_info_get_spec
⊕ trap_set ↦ primcall_trap_info_ret_compatsem trap_info_ret_spec
⊕ accessors ↦ {| exec_load := (@exec_loadex _ _ _ _ _ _ _ _ _ _ _ _ _ _ Hmwd);
exec_store := (@exec_storeex _ _ _ _ _ _ _ _ _ _ _ _ _ _ Hmwd) |}.
fload ↦ gensem fload_spec
⊕ fstore ↦ gensem fstore_spec
⊕ page_copy ↦ gensem page_copy_spec
⊕ page_copy_back ↦ gensem page_copy_back_spec
⊕ vmxinfo_get ↦ gensem vmxinfo_get_spec
⊕ set_pg ↦ gensem setPG1_spec
⊕ at_get_c ↦ gensem get_at_c_spec
⊕ at_set_c ↦ gensem set_at_c0_spec
⊕ palloc ↦ gensem lpalloc_spec
⊕ set_pt ↦ gensem setPT´_spec
⊕ pt_read ↦ gensem ptRead_spec
⊕ pt_read_pde ↦ gensem ptReadPDE_spec
⊕ pt_in ↦ primcall_general_compatsem´ ptin´_spec (prim_ident:= pt_in)
⊕ pt_out ↦ primcall_general_compatsem´ ptout_spec (prim_ident:= pt_out)
⊕ container_get_parent ↦ gensem container_get_parent_spec
⊕ container_get_nchildren ↦ gensem container_get_nchildren_spec
⊕ container_get_quota ↦ gensem container_get_quota_spec
⊕ container_get_usage ↦ gensem container_get_usage_spec
⊕ container_can_consume ↦ gensem container_can_consume_spec
⊕ container_split ↦ gensem container_split_spec
⊕ get_CPU_ID ↦ gensem get_CPU_ID_spec
⊕ get_curid ↦ gensem get_curid_spec
⊕ set_curid ↦ gensem set_curid_spec
⊕ set_curid_init ↦ gensem set_curid_init_spec
⊕ release_lock ↦ primcall_release_lock_compatsem release_lock release_lock_spec1
⊕ acquire_lock ↦ primcall_acquire_lock_compatsem acquire_lock_spec1
⊕ cli ↦ gensem cli_spec
⊕ sti ↦ gensem sti_spec
⊕ serial_intr_disable ↦ gensem serial_intr_disable_spec
⊕ serial_intr_enable ↦ gensem serial_intr_enable_spec
⊕ serial_putc ↦ gensem serial_putc_spec
⊕ cons_buf_read ↦ gensem cons_buf_read_spec
⊕ trap_in ↦ primcall_general_compatsem trapin_spec
⊕ trap_out ↦ primcall_general_compatsem trapout_spec
⊕ host_in ↦ primcall_general_compatsem hostin_spec
⊕ host_out ↦ primcall_general_compatsem hostout_spec
⊕ proc_create_postinit ↦ gensem proc_create_postinit_spec
⊕ trap_get ↦ primcall_trap_info_get_compatsem trap_info_get_spec
⊕ trap_set ↦ primcall_trap_info_ret_compatsem trap_info_ret_spec
⊕ accessors ↦ {| exec_load := (@exec_loadex _ _ _ _ _ _ _ _ _ _ _ _ _ _ Hmwd);
exec_store := (@exec_storeex _ _ _ _ _ _ _ _ _ _ _ _ _ _ Hmwd) |}.
Definition mptkern : compatlayer (cdata RData) := mptkern_fresh ⊕ mptkern_passthrough.
End WITHMEM.
Require Import CalTicketLock.
Section WITHPARAM.
Context `{real_params: RealParams}.
Local Open Scope Z_scope.
Section Impl.
Function pt_init_spec (mbi_adr:Z) (adt: RData): option RData :=
match (init adt, pg adt, ikern adt, ihost adt, ipt adt, in_intr adt) with
| (false, false, true, true, true, false) ⇒
let n := adt.(ioapic).(s).(IoApicMaxIntr) + 1 in
if zeq n (Zlength (adt.(ioapic).(s).(IoApicIrqs))) then
if zeq n (Zlength (adt.(ioapic).(s).(IoApicEnables))) then
Some (adt {ioapic/s: ioapic_init_aux adt.(ioapic).(s) (Z.to_nat (n - 1))}
{lapic: (mkLApicData
(mkLApicState 0 NoIntr (LapicMaxLvt (s (lapic adt))) true
(32 + 7) true true true 0 50 false 0))
{l1: l1 (lapic adt)}
{l2: l2 (lapic adt)}
{l3: l3 (lapic adt)}
} {ioapic / s / CurrentIrq: None}
{vmxinfo: real_vmxinfo} {pg: true}
{ATC: real_ATC (ATC adt)} {nps: real_nps}
{AC: AC_init} {init: true} {PT: 0} {ptpool: real_pt (ptpool adt)}
{multi_log: real_multi_log (multi_log adt)}
{lock: real_lock (lock adt)}
{idpde: real_idpde (idpde adt)})
else None
else None
| _ ⇒ None
end.
End Impl.
End WITHPARAM.
End WITHMEM.
Require Import CalTicketLock.
Section WITHPARAM.
Context `{real_params: RealParams}.
Local Open Scope Z_scope.
Section Impl.
Function pt_init_spec (mbi_adr:Z) (adt: RData): option RData :=
match (init adt, pg adt, ikern adt, ihost adt, ipt adt, in_intr adt) with
| (false, false, true, true, true, false) ⇒
let n := adt.(ioapic).(s).(IoApicMaxIntr) + 1 in
if zeq n (Zlength (adt.(ioapic).(s).(IoApicIrqs))) then
if zeq n (Zlength (adt.(ioapic).(s).(IoApicEnables))) then
Some (adt {ioapic/s: ioapic_init_aux adt.(ioapic).(s) (Z.to_nat (n - 1))}
{lapic: (mkLApicData
(mkLApicState 0 NoIntr (LapicMaxLvt (s (lapic adt))) true
(32 + 7) true true true 0 50 false 0))
{l1: l1 (lapic adt)}
{l2: l2 (lapic adt)}
{l3: l3 (lapic adt)}
} {ioapic / s / CurrentIrq: None}
{vmxinfo: real_vmxinfo} {pg: true}
{ATC: real_ATC (ATC adt)} {nps: real_nps}
{AC: AC_init} {init: true} {PT: 0} {ptpool: real_pt (ptpool adt)}
{multi_log: real_multi_log (multi_log adt)}
{lock: real_lock (lock adt)}
{idpde: real_idpde (idpde adt)})
else None
else None
| _ ⇒ None
end.
End Impl.
End WITHPARAM.