Library mcertikos.proc.PKContext
This file defines the abstract data and the primitives for the PKContext layer,
which will introduce abstraction of kernel context
Require Import Coqlib.
Require Import Maps.
Require Import ASTExtra.
Require Import Integers.
Require Import Floats.
Require Import Values.
Require Import Memory.
Require Import Events.
Require Import Stacklayout.
Require Import Globalenvs.
Require Import AsmX.
Require Import Smallstep.
Require Import AuxStateDataType.
Require Import Constant.
Require Import GlobIdent.
Require Import FlatMemory.
Require Import CommonTactic.
Require Import AuxLemma.
Require Import RealParams.
Require Import PrimSemantics.
Require Import LAsm.
Require Import LoadStoreSem2.
Require Import XOmega.
Require Import liblayers.logic.PTreeModules.
Require Import liblayers.logic.LayerLogicImpl.
Require Import liblayers.compat.CompatLayers.
Require Import liblayers.compat.CompatGenSem.
Require Import CalRealPTPool.
Require Import CalRealPT.
Require Import CalRealIDPDE.
Require Import CalRealInitPTE.
Require Import CalRealSMSPool.
Require Import INVLemmaMemory.
Require Import INVLemmaThread.
Require Import AbstractDataType.
Require Export MShare.
Require Export ObjThread.
Require Import INVLemmaQLock.
Require Import INVLemmaInterrupt.
Require Import INVLemmaDriver.
Require Import DeviceStateDataType.
Require Import FutureTactic.
Require Import Maps.
Require Import ASTExtra.
Require Import Integers.
Require Import Floats.
Require Import Values.
Require Import Memory.
Require Import Events.
Require Import Stacklayout.
Require Import Globalenvs.
Require Import AsmX.
Require Import Smallstep.
Require Import AuxStateDataType.
Require Import Constant.
Require Import GlobIdent.
Require Import FlatMemory.
Require Import CommonTactic.
Require Import AuxLemma.
Require Import RealParams.
Require Import PrimSemantics.
Require Import LAsm.
Require Import LoadStoreSem2.
Require Import XOmega.
Require Import liblayers.logic.PTreeModules.
Require Import liblayers.logic.LayerLogicImpl.
Require Import liblayers.compat.CompatLayers.
Require Import liblayers.compat.CompatGenSem.
Require Import CalRealPTPool.
Require Import CalRealPT.
Require Import CalRealIDPDE.
Require Import CalRealInitPTE.
Require Import CalRealSMSPool.
Require Import INVLemmaMemory.
Require Import INVLemmaThread.
Require Import AbstractDataType.
Require Export MShare.
Require Export ObjThread.
Require Import INVLemmaQLock.
Require Import INVLemmaInterrupt.
Require Import INVLemmaDriver.
Require Import DeviceStateDataType.
Require Import FutureTactic.
Abstract Data and Primitives at MPMap layer
The abstract data at MPMap layer is the same with MPTNew layer
Section WITHMEM.
Local Open Scope Z_scope.
Context `{oracle_prop: MultiOracleProp}.
Context `{real_params: RealParams}.
Local Open Scope Z_scope.
Context `{oracle_prop: MultiOracleProp}.
Context `{real_params: RealParams}.
**Definition of the raw data at MPTBit layer
Context `{Hstencil: Stencil}.
Context `{Hmem: Mem.MemoryModelX}.
Context `{Hmwd: UseMemWithData mem}.
Section INV.
Global Instance kctxt_switch_inv: KCtxtSwitchInvariants kctxt_switch_spec.
Proof.
constructor; intros; functional inversion H.
- inv H1. constructor; trivial.
eapply kctxt_inject_neutral_gss_mem; eauto.
- inv H0. subst. constructor; auto; simpl in *; intros; try congruence.
Qed.
Require Import compcert.cfrontend.Ctypes.
Section kctxt_ra.
Inductive extcall_kctxtra_sem (s: stencil) (WB: block → Prop):
list val → (mwd (cdata RData)) → val → (mwd (cdata RData)) → Prop :=
| extcall_kctxtra_sem_intro:
∀ m adt adt´ n b ofs,
(∃ fun_id, find_symbol s fun_id = Some b) →
kctxt_ra_spec adt (Int.unsigned n) b ofs = Some adt´
→ extcall_kctxtra_sem s WB (Vint n::Vptr b ofs::nil) (m, adt) Vundef (m, adt´).
Definition extcall_kctxtra_info: sextcall_info :=
{|
sextcall_step := extcall_kctxtra_sem;
sextcall_csig := mkcsig (type_of_list_type (Tint32::Tpointer Tvoid noattr::nil)) Tvoid;
sextcall_valid s := true
|}.
Global Instance extcall_kctxtra_invs:
ExtcallInvariants extcall_kctxtra_info.
Proof.
constructor; intros; inv H;
try (unfold kctxt_ra_spec in *;
inv H0; subdestruct; inv H8; constructor; simpl; eauto 2); try congruence.
-
eapply kctxt_inject_neutral_gss_ptr; eauto.
-
reflexivity.
-
split; auto.
-
simpl. trivial.
Qed.
Global Instance extcall_kctxtra_props:
ExtcallProperties extcall_kctxtra_info.
Proof.
constructor; intros.
-
inv H. simpl. trivial.
-
inv H. unfold Mem.valid_block in ×.
lift_unfold. trivial.
-
inv H. lift_unfold. trivial.
-
inv H. simpl. apply Mem.unchanged_on_refl.
-
inv H. inv_val_inject. lift_simpl.
destruct H0 as [HT1 HT2].
destruct m1´ as [? ?]. simpl in ×. subst.
∃ Vundef, (m0, adt´).
refine_split; eauto.
+ econstructor; eauto.
+ lift_unfold. split; trivial.
+ simpl. apply Mem.unchanged_on_refl.
-
inv H0. destruct H3 as [fun_id Hsymbol].
pose proof Hsymbol as Hsymbol´. apply H in Hsymbol´.
inv_val_inject.
lift_simpl. destruct H1 as [HT1 HT2].
destruct m1´ as [? ?]. simpl in ×. subst.
∃ f, Vundef, (m0, adt´).
refine_split; eauto.
+ econstructor; eauto.
+ lift_unfold. split; trivial.
+ apply Mem.unchanged_on_refl.
+ simpl. apply Mem.unchanged_on_refl.
+ constructor; congruence.
-
inv H. inv H0. rewrite H2 in H10.
inv H10. split; reflexivity.
-
inv H0. econstructor; eauto.
-
inv H. lift_unfold. trivial.
Qed.
Definition kctxt_ra_compatsem : compatsem (cdata RData) :=
compatsem_inl {|
sextcall_primsem_step := extcall_kctxtra_info;
sextcall_props := OK _;
sextcall_invs := OK _
|}.
End kctxt_ra.
Section kctxt_sp.
Inductive extcall_kctxtsp_sem (s: stencil) (WB: block → Prop):
list val → (mwd (cdata RData)) → val → (mwd (cdata RData)) → Prop :=
| extcall_kctxtsp_sem_intro:
∀ m adt adt´ n b ofs,
(∃ fun_id, find_symbol s fun_id = Some b) →
(Int.unsigned ofs) = ((Int.unsigned n) + 1) × PgSize - 4 →
kctxt_sp_spec adt (Int.unsigned n) b ofs = Some adt´ →
extcall_kctxtsp_sem s WB (Vint n::Vptr b ofs::nil) (m, adt) Vundef (m, adt´).
Definition extcall_kctxtsp_info: sextcall_info :=
{|
sextcall_step := extcall_kctxtsp_sem;
sextcall_csig := mkcsig (type_of_list_type (Tint32::Tpointer Tvoid noattr::nil)) Tvoid;
sextcall_valid s := true
|}.
Global Instance extcall_kctxtsp_invs:
ExtcallInvariants extcall_kctxtsp_info.
Proof.
constructor; intros; inv H;
try (unfold kctxt_sp_spec in *;
inv H0; subdestruct; inv H9; constructor; simpl; eauto 2); try congruence.
-
eapply kctxt_inject_neutral_gss_ptr; eauto.
-
reflexivity.
-
simpl. trivial.
Qed.
Global Instance extcall_kctxtsp_props:
ExtcallProperties extcall_kctxtsp_info.
Proof.
constructor; intros.
-
inv H. simpl. trivial.
-
inv H. unfold Mem.valid_block in ×.
lift_unfold. trivial.
-
inv H. lift_unfold. trivial.
-
inv H. simpl. apply Mem.unchanged_on_refl.
-
inv H. inv_val_inject. lift_simpl.
destruct H0 as [HT1 HT2].
destruct m1´ as [? ?]. simpl in ×. subst.
∃ Vundef, (m0, adt´).
refine_split; eauto.
+ econstructor; eauto.
+ lift_unfold. split; trivial.
+ simpl. apply Mem.unchanged_on_refl.
-
inv H0. destruct H3 as [fun_id Hsymbol].
pose proof Hsymbol as Hsymbol´. apply H in Hsymbol´.
inv_val_inject.
lift_simpl. destruct H1 as [HT1 HT2].
destruct m1´ as [? ?]. simpl in ×. subst.
∃ f, Vundef, (m0, adt´).
refine_split; eauto.
+ econstructor; eauto.
+ lift_unfold. split; trivial.
+ apply Mem.unchanged_on_refl.
+ simpl. apply Mem.unchanged_on_refl.
+ constructor; congruence.
-
inv H. inv H0. rewrite H3 in H12.
inv H12. split; reflexivity.
-
inv H0. econstructor; eauto.
-
inv H. lift_unfold. trivial.
Qed.
Definition kctxt_sp_compatsem : compatsem (cdata RData) :=
compatsem_inl {|
sextcall_primsem_step := extcall_kctxtsp_info;
sextcall_props := OK _;
sextcall_invs := OK _
|}.
End kctxt_sp.
End INV.
Global Instance kctxt_switch_inv: KCtxtSwitchInvariants kctxt_switch_spec.
Proof.
constructor; intros; functional inversion H.
- inv H1. constructor; trivial.
eapply kctxt_inject_neutral_gss_mem; eauto.
- inv H0. subst. constructor; auto; simpl in *; intros; try congruence.
Qed.
Require Import compcert.cfrontend.Ctypes.
Section kctxt_ra.
Inductive extcall_kctxtra_sem (s: stencil) (WB: block → Prop):
list val → (mwd (cdata RData)) → val → (mwd (cdata RData)) → Prop :=
| extcall_kctxtra_sem_intro:
∀ m adt adt´ n b ofs,
(∃ fun_id, find_symbol s fun_id = Some b) →
kctxt_ra_spec adt (Int.unsigned n) b ofs = Some adt´
→ extcall_kctxtra_sem s WB (Vint n::Vptr b ofs::nil) (m, adt) Vundef (m, adt´).
Definition extcall_kctxtra_info: sextcall_info :=
{|
sextcall_step := extcall_kctxtra_sem;
sextcall_csig := mkcsig (type_of_list_type (Tint32::Tpointer Tvoid noattr::nil)) Tvoid;
sextcall_valid s := true
|}.
Global Instance extcall_kctxtra_invs:
ExtcallInvariants extcall_kctxtra_info.
Proof.
constructor; intros; inv H;
try (unfold kctxt_ra_spec in *;
inv H0; subdestruct; inv H8; constructor; simpl; eauto 2); try congruence.
-
eapply kctxt_inject_neutral_gss_ptr; eauto.
-
reflexivity.
-
split; auto.
-
simpl. trivial.
Qed.
Global Instance extcall_kctxtra_props:
ExtcallProperties extcall_kctxtra_info.
Proof.
constructor; intros.
-
inv H. simpl. trivial.
-
inv H. unfold Mem.valid_block in ×.
lift_unfold. trivial.
-
inv H. lift_unfold. trivial.
-
inv H. simpl. apply Mem.unchanged_on_refl.
-
inv H. inv_val_inject. lift_simpl.
destruct H0 as [HT1 HT2].
destruct m1´ as [? ?]. simpl in ×. subst.
∃ Vundef, (m0, adt´).
refine_split; eauto.
+ econstructor; eauto.
+ lift_unfold. split; trivial.
+ simpl. apply Mem.unchanged_on_refl.
-
inv H0. destruct H3 as [fun_id Hsymbol].
pose proof Hsymbol as Hsymbol´. apply H in Hsymbol´.
inv_val_inject.
lift_simpl. destruct H1 as [HT1 HT2].
destruct m1´ as [? ?]. simpl in ×. subst.
∃ f, Vundef, (m0, adt´).
refine_split; eauto.
+ econstructor; eauto.
+ lift_unfold. split; trivial.
+ apply Mem.unchanged_on_refl.
+ simpl. apply Mem.unchanged_on_refl.
+ constructor; congruence.
-
inv H. inv H0. rewrite H2 in H10.
inv H10. split; reflexivity.
-
inv H0. econstructor; eauto.
-
inv H. lift_unfold. trivial.
Qed.
Definition kctxt_ra_compatsem : compatsem (cdata RData) :=
compatsem_inl {|
sextcall_primsem_step := extcall_kctxtra_info;
sextcall_props := OK _;
sextcall_invs := OK _
|}.
End kctxt_ra.
Section kctxt_sp.
Inductive extcall_kctxtsp_sem (s: stencil) (WB: block → Prop):
list val → (mwd (cdata RData)) → val → (mwd (cdata RData)) → Prop :=
| extcall_kctxtsp_sem_intro:
∀ m adt adt´ n b ofs,
(∃ fun_id, find_symbol s fun_id = Some b) →
(Int.unsigned ofs) = ((Int.unsigned n) + 1) × PgSize - 4 →
kctxt_sp_spec adt (Int.unsigned n) b ofs = Some adt´ →
extcall_kctxtsp_sem s WB (Vint n::Vptr b ofs::nil) (m, adt) Vundef (m, adt´).
Definition extcall_kctxtsp_info: sextcall_info :=
{|
sextcall_step := extcall_kctxtsp_sem;
sextcall_csig := mkcsig (type_of_list_type (Tint32::Tpointer Tvoid noattr::nil)) Tvoid;
sextcall_valid s := true
|}.
Global Instance extcall_kctxtsp_invs:
ExtcallInvariants extcall_kctxtsp_info.
Proof.
constructor; intros; inv H;
try (unfold kctxt_sp_spec in *;
inv H0; subdestruct; inv H9; constructor; simpl; eauto 2); try congruence.
-
eapply kctxt_inject_neutral_gss_ptr; eauto.
-
reflexivity.
-
simpl. trivial.
Qed.
Global Instance extcall_kctxtsp_props:
ExtcallProperties extcall_kctxtsp_info.
Proof.
constructor; intros.
-
inv H. simpl. trivial.
-
inv H. unfold Mem.valid_block in ×.
lift_unfold. trivial.
-
inv H. lift_unfold. trivial.
-
inv H. simpl. apply Mem.unchanged_on_refl.
-
inv H. inv_val_inject. lift_simpl.
destruct H0 as [HT1 HT2].
destruct m1´ as [? ?]. simpl in ×. subst.
∃ Vundef, (m0, adt´).
refine_split; eauto.
+ econstructor; eauto.
+ lift_unfold. split; trivial.
+ simpl. apply Mem.unchanged_on_refl.
-
inv H0. destruct H3 as [fun_id Hsymbol].
pose proof Hsymbol as Hsymbol´. apply H in Hsymbol´.
inv_val_inject.
lift_simpl. destruct H1 as [HT1 HT2].
destruct m1´ as [? ?]. simpl in ×. subst.
∃ f, Vundef, (m0, adt´).
refine_split; eauto.
+ econstructor; eauto.
+ lift_unfold. split; trivial.
+ apply Mem.unchanged_on_refl.
+ simpl. apply Mem.unchanged_on_refl.
+ constructor; congruence.
-
inv H. inv H0. rewrite H3 in H12.
inv H12. split; reflexivity.
-
inv H0. econstructor; eauto.
-
inv H. lift_unfold. trivial.
Qed.
Definition kctxt_sp_compatsem : compatsem (cdata RData) :=
compatsem_inl {|
sextcall_primsem_step := extcall_kctxtsp_info;
sextcall_props := OK _;
sextcall_invs := OK _
|}.
End kctxt_sp.
End INV.
Definition pkcontext_fresh_c : compatlayer (cdata RData) :=
set_RA ↦ kctxt_ra_compatsem
⊕ set_SP ↦ kctxt_sp_compatsem.
Definition pkcontext_fresh_asm : compatlayer (cdata RData) :=
kctxt_switch ↦ primcall_kctxt_switch_compatsem kctxt_switch_spec.
Definition pkcontext_fresh : compatlayer (cdata RData) :=
pkcontext_fresh_c
⊕ pkcontext_fresh_asm.
Definition pkcontext_passthrough : compatlayer (cdata RData) :=
fload ↦ gensem fload_spec
⊕ fstore ↦ gensem fstore_spec
⊕ page_copy ↦ gensem page_copy_spec
⊕ page_copy_back ↦ gensem page_copy_back_spec
⊕ vmxinfo_get ↦ gensem vmxinfo_get_spec
⊕ palloc ↦ gensem palloc_spec
⊕ set_pt ↦ gensem setPT_spec
⊕ pt_read ↦ gensem ptRead_spec
⊕ pt_resv ↦ gensem ptResv_spec
⊕ pt_new ↦ gensem pt_new_spec
⊕ shared_mem_init ↦ gensem sharedmem_init_spec
⊕ shared_mem_status ↦ gensem ObjShareMem.shared_mem_status_spec
⊕ offer_shared_mem ↦ gensem ObjShareMem.offer_shared_mem_spec
⊕ pt_in ↦ primcall_general_compatsem´ ptin_spec (prim_ident:= pt_in)
⊕ pt_out ↦ primcall_general_compatsem´ ptout_spec (prim_ident:= pt_out)
⊕ container_get_nchildren ↦ gensem container_get_nchildren_spec
⊕ container_get_quota ↦ gensem container_get_quota_spec
⊕ container_get_usage ↦ gensem container_get_usage_spec
⊕ container_can_consume ↦ gensem container_can_consume_spec
⊕ get_CPU_ID ↦ gensem get_CPU_ID_spec
⊕ get_curid ↦ gensem get_curid_spec
⊕ set_curid ↦ gensem set_curid_spec
⊕ set_curid_init ↦ gensem set_curid_init_spec
⊕ release_lock ↦ primcall_release_lock_compatsem release_lock release_lock_spec1
⊕ acquire_lock ↦ primcall_acquire_lock_compatsem acquire_lock_spec1
⊕ cli ↦ gensem cli_spec
⊕ sti ↦ gensem sti_spec
⊕ serial_intr_disable ↦ gensem serial_intr_disable_spec
⊕ serial_intr_enable ↦ gensem serial_intr_enable_spec
⊕ serial_putc ↦ gensem serial_putc_spec
⊕ cons_buf_read ↦ gensem cons_buf_read_spec
⊕ trap_in ↦ primcall_general_compatsem trapin_spec
⊕ trap_out ↦ primcall_general_compatsem trapout_spec
⊕ host_in ↦ primcall_general_compatsem hostin_spec
⊕ host_out ↦ primcall_general_compatsem hostout_spec
⊕ proc_create_postinit ↦ gensem proc_create_postinit_spec
⊕ trap_get ↦ primcall_trap_info_get_compatsem trap_info_get_spec
⊕ trap_set ↦ primcall_trap_info_ret_compatsem trap_info_ret_spec
⊕ accessors ↦ {| exec_load := (@exec_loadex _ _ _ _ _ _ _ _ _ _ _ _ _ _ Hmwd);
exec_store := (@exec_storeex _ _ _ _ _ _ _ _ _ _ _ _ _ _ Hmwd) |}.
Definition pkcontext : compatlayer (cdata RData) := pkcontext_fresh ⊕ pkcontext_passthrough.
End WITHMEM.
Section WITHPARAM.
Local Open Scope Z_scope.
Section Impl.
Function kctxt_new_spec (abd: RData) (b: block) (b´:block) (ofs´:int) id q : option (RData × Z) :=
match pt_new_spec id q abd with
| Some (abd0, i) ⇒
if zeq i num_proc then Some (abd0, num_proc)
else
let ofs := Int.repr ((i + 1) × PgSize -4) in
match kctxt_sp_spec abd0 i b ofs with
| Some abd1 ⇒
match kctxt_ra_spec abd1 i b´ ofs´ with
| Some abd2 ⇒ Some (abd2, i)
| _ ⇒ None
end
| _ ⇒ None
end
| _ ⇒ None
end.
End Impl.
End WITHPARAM.
set_RA ↦ kctxt_ra_compatsem
⊕ set_SP ↦ kctxt_sp_compatsem.
Definition pkcontext_fresh_asm : compatlayer (cdata RData) :=
kctxt_switch ↦ primcall_kctxt_switch_compatsem kctxt_switch_spec.
Definition pkcontext_fresh : compatlayer (cdata RData) :=
pkcontext_fresh_c
⊕ pkcontext_fresh_asm.
Definition pkcontext_passthrough : compatlayer (cdata RData) :=
fload ↦ gensem fload_spec
⊕ fstore ↦ gensem fstore_spec
⊕ page_copy ↦ gensem page_copy_spec
⊕ page_copy_back ↦ gensem page_copy_back_spec
⊕ vmxinfo_get ↦ gensem vmxinfo_get_spec
⊕ palloc ↦ gensem palloc_spec
⊕ set_pt ↦ gensem setPT_spec
⊕ pt_read ↦ gensem ptRead_spec
⊕ pt_resv ↦ gensem ptResv_spec
⊕ pt_new ↦ gensem pt_new_spec
⊕ shared_mem_init ↦ gensem sharedmem_init_spec
⊕ shared_mem_status ↦ gensem ObjShareMem.shared_mem_status_spec
⊕ offer_shared_mem ↦ gensem ObjShareMem.offer_shared_mem_spec
⊕ pt_in ↦ primcall_general_compatsem´ ptin_spec (prim_ident:= pt_in)
⊕ pt_out ↦ primcall_general_compatsem´ ptout_spec (prim_ident:= pt_out)
⊕ container_get_nchildren ↦ gensem container_get_nchildren_spec
⊕ container_get_quota ↦ gensem container_get_quota_spec
⊕ container_get_usage ↦ gensem container_get_usage_spec
⊕ container_can_consume ↦ gensem container_can_consume_spec
⊕ get_CPU_ID ↦ gensem get_CPU_ID_spec
⊕ get_curid ↦ gensem get_curid_spec
⊕ set_curid ↦ gensem set_curid_spec
⊕ set_curid_init ↦ gensem set_curid_init_spec
⊕ release_lock ↦ primcall_release_lock_compatsem release_lock release_lock_spec1
⊕ acquire_lock ↦ primcall_acquire_lock_compatsem acquire_lock_spec1
⊕ cli ↦ gensem cli_spec
⊕ sti ↦ gensem sti_spec
⊕ serial_intr_disable ↦ gensem serial_intr_disable_spec
⊕ serial_intr_enable ↦ gensem serial_intr_enable_spec
⊕ serial_putc ↦ gensem serial_putc_spec
⊕ cons_buf_read ↦ gensem cons_buf_read_spec
⊕ trap_in ↦ primcall_general_compatsem trapin_spec
⊕ trap_out ↦ primcall_general_compatsem trapout_spec
⊕ host_in ↦ primcall_general_compatsem hostin_spec
⊕ host_out ↦ primcall_general_compatsem hostout_spec
⊕ proc_create_postinit ↦ gensem proc_create_postinit_spec
⊕ trap_get ↦ primcall_trap_info_get_compatsem trap_info_get_spec
⊕ trap_set ↦ primcall_trap_info_ret_compatsem trap_info_ret_spec
⊕ accessors ↦ {| exec_load := (@exec_loadex _ _ _ _ _ _ _ _ _ _ _ _ _ _ Hmwd);
exec_store := (@exec_storeex _ _ _ _ _ _ _ _ _ _ _ _ _ _ Hmwd) |}.
Definition pkcontext : compatlayer (cdata RData) := pkcontext_fresh ⊕ pkcontext_passthrough.
End WITHMEM.
Section WITHPARAM.
Local Open Scope Z_scope.
Section Impl.
Function kctxt_new_spec (abd: RData) (b: block) (b´:block) (ofs´:int) id q : option (RData × Z) :=
match pt_new_spec id q abd with
| Some (abd0, i) ⇒
if zeq i num_proc then Some (abd0, num_proc)
else
let ofs := Int.repr ((i + 1) × PgSize -4) in
match kctxt_sp_spec abd0 i b ofs with
| Some abd1 ⇒
match kctxt_ra_spec abd1 i b´ ofs´ with
| Some abd2 ⇒ Some (abd2, i)
| _ ⇒ None
end
| _ ⇒ None
end
| _ ⇒ None
end.
End Impl.
End WITHPARAM.