Library mcertikos.proc.QueueInitGen
This file provide the contextual refinement proof between PQueueIntro layer and PQueueInit layer
Require Import Coqlib.
Require Import Errors.
Require Import AST.
Require Import Integers.
Require Import Floats.
Require Import Op.
Require Import Asm.
Require Import Events.
Require Import Globalenvs.
Require Import Smallstep.
Require Import Values.
Require Import Memory.
Require Import Maps.
Require Import CommonTactic.
Require Import AuxLemma.
Require Import FlatMemory.
Require Import AuxStateDataType.
Require Import Constant.
Require Import GlobIdent.
Require Import RealParams.
Require Import LoadStoreSem2.
Require Import AsmImplLemma.
Require Import GenSem.
Require Import RefinementTactic.
Require Import PrimSemantics.
Require Import XOmega.
Require Import liblayers.logic.PTreeModules.
Require Import liblayers.logic.LayerLogicImpl.
Require Import liblayers.compcertx.Stencil.
Require Import liblayers.compcertx.MakeProgram.
Require Import liblayers.compat.CompatLayers.
Require Import liblayers.compat.CompatGenSem.
Require Import compcert.cfrontend.Ctypes.
Require Import LayerCalculusLemma.
Require Import AbstractDataType.
Require Import PQueueIntro.
Require Import PQueueInit.
Require Import QueueInitGenSpec.
Require Import Errors.
Require Import AST.
Require Import Integers.
Require Import Floats.
Require Import Op.
Require Import Asm.
Require Import Events.
Require Import Globalenvs.
Require Import Smallstep.
Require Import Values.
Require Import Memory.
Require Import Maps.
Require Import CommonTactic.
Require Import AuxLemma.
Require Import FlatMemory.
Require Import AuxStateDataType.
Require Import Constant.
Require Import GlobIdent.
Require Import RealParams.
Require Import LoadStoreSem2.
Require Import AsmImplLemma.
Require Import GenSem.
Require Import RefinementTactic.
Require Import PrimSemantics.
Require Import XOmega.
Require Import liblayers.logic.PTreeModules.
Require Import liblayers.logic.LayerLogicImpl.
Require Import liblayers.compcertx.Stencil.
Require Import liblayers.compcertx.MakeProgram.
Require Import liblayers.compat.CompatLayers.
Require Import liblayers.compat.CompatGenSem.
Require Import compcert.cfrontend.Ctypes.
Require Import LayerCalculusLemma.
Require Import AbstractDataType.
Require Import PQueueIntro.
Require Import PQueueInit.
Require Import QueueInitGenSpec.
Section Refinement.
Local Open Scope string_scope.
Local Open Scope error_monad_scope.
Local Open Scope Z_scope.
Context `{real_params: RealParams}.
Context `{multi_oracle_prop: MultiOracleProp}.
Notation HDATA := RData.
Notation LDATA := RData.
Notation HDATAOps := (cdata (cdata_ops := pqueueinit_data_ops) HDATA).
Notation LDATAOps := (cdata (cdata_ops := pqueueintro_data_ops) LDATA).
Section WITHMEM.
Context `{Hstencil: Stencil}.
Context `{Hmem: Mem.MemoryModelX}.
Context `{Hmwd: UseMemWithData mem}.
Local Open Scope string_scope.
Local Open Scope error_monad_scope.
Local Open Scope Z_scope.
Context `{real_params: RealParams}.
Context `{multi_oracle_prop: MultiOracleProp}.
Notation HDATA := RData.
Notation LDATA := RData.
Notation HDATAOps := (cdata (cdata_ops := pqueueinit_data_ops) HDATA).
Notation LDATAOps := (cdata (cdata_ops := pqueueintro_data_ops) LDATA).
Section WITHMEM.
Context `{Hstencil: Stencil}.
Context `{Hmem: Mem.MemoryModelX}.
Context `{Hmwd: UseMemWithData mem}.
Relation between raw data at two layers
Record relate_RData (f: meminj) (hadt: LDATA) (ladt: LDATA) :=
mkrelate_RData {
flatmem_re: FlatMem.flatmem_inj (HP hadt) (HP ladt);
vmxinfo_re: vmxinfo hadt = vmxinfo ladt;
CR3_re: CR3 hadt = CR3 ladt;
ikern_re: ikern hadt = ikern ladt;
pg_re: pg hadt = pg ladt;
ihost_re: ihost hadt = ihost ladt;
AC_re: AC hadt = AC ladt;
ti_fst_re: (fst (ti hadt)) = (fst (ti ladt));
ti_snd_re: val_inject f (snd (ti hadt)) (snd (ti ladt));
LAT_re: LAT hadt = LAT ladt;
nps_re: nps hadt = nps ladt;
init_re: init hadt = init ladt;
pperm_re: pperm hadt = pperm ladt;
PT_re: PT hadt = PT ladt;
ptp_re: ptpool hadt = ptpool ladt;
idpde_re: idpde hadt = idpde ladt;
ipt_re: ipt hadt = ipt ladt;
smspool_re: smspool hadt = smspool ladt;
CPU_ID_re: CPU_ID hadt = CPU_ID ladt;
cid_re: cid hadt = cid ladt;
multi_oracle_re: multi_oracle hadt = multi_oracle ladt;
multi_log_re: multi_log hadt = multi_log ladt;
lock_re: lock hadt = lock ladt;
tcb_re: tcb hadt = tcb ladt;
tdq_re: tdq hadt = tdq ladt;
com1_re: com1 hadt = com1 ladt;
console_re: console hadt = console ladt;
console_concrete_re: console_concrete hadt = console_concrete ladt;
ioapic_re: ioapic ladt = ioapic hadt;
lapic_re: lapic ladt = lapic hadt;
intr_flag_re: intr_flag ladt = intr_flag hadt;
curr_intr_num_re: curr_intr_num ladt = curr_intr_num hadt;
in_intr_re: in_intr ladt = in_intr hadt;
drv_serial_re: drv_serial hadt = drv_serial ladt;
kctxt_re: kctxt_inj f num_proc (kctxt hadt) (kctxt ladt);
sleeper_re: sleeper hadt = sleeper ladt
}.
Inductive match_RData: stencil → HDATA → mem → meminj → Prop :=
| MATCH_RDATA: ∀ habd m f s, match_RData s habd m f.
Local Hint Resolve MATCH_RDATA.
Global Instance rel_ops: CompatRelOps HDATAOps LDATAOps :=
{
relate_AbData s f d1 d2 := relate_RData f d1 d2;
match_AbData s d1 m f := match_RData s d1 m f;
new_glbl := nil
}.
mkrelate_RData {
flatmem_re: FlatMem.flatmem_inj (HP hadt) (HP ladt);
vmxinfo_re: vmxinfo hadt = vmxinfo ladt;
CR3_re: CR3 hadt = CR3 ladt;
ikern_re: ikern hadt = ikern ladt;
pg_re: pg hadt = pg ladt;
ihost_re: ihost hadt = ihost ladt;
AC_re: AC hadt = AC ladt;
ti_fst_re: (fst (ti hadt)) = (fst (ti ladt));
ti_snd_re: val_inject f (snd (ti hadt)) (snd (ti ladt));
LAT_re: LAT hadt = LAT ladt;
nps_re: nps hadt = nps ladt;
init_re: init hadt = init ladt;
pperm_re: pperm hadt = pperm ladt;
PT_re: PT hadt = PT ladt;
ptp_re: ptpool hadt = ptpool ladt;
idpde_re: idpde hadt = idpde ladt;
ipt_re: ipt hadt = ipt ladt;
smspool_re: smspool hadt = smspool ladt;
CPU_ID_re: CPU_ID hadt = CPU_ID ladt;
cid_re: cid hadt = cid ladt;
multi_oracle_re: multi_oracle hadt = multi_oracle ladt;
multi_log_re: multi_log hadt = multi_log ladt;
lock_re: lock hadt = lock ladt;
tcb_re: tcb hadt = tcb ladt;
tdq_re: tdq hadt = tdq ladt;
com1_re: com1 hadt = com1 ladt;
console_re: console hadt = console ladt;
console_concrete_re: console_concrete hadt = console_concrete ladt;
ioapic_re: ioapic ladt = ioapic hadt;
lapic_re: lapic ladt = lapic hadt;
intr_flag_re: intr_flag ladt = intr_flag hadt;
curr_intr_num_re: curr_intr_num ladt = curr_intr_num hadt;
in_intr_re: in_intr ladt = in_intr hadt;
drv_serial_re: drv_serial hadt = drv_serial ladt;
kctxt_re: kctxt_inj f num_proc (kctxt hadt) (kctxt ladt);
sleeper_re: sleeper hadt = sleeper ladt
}.
Inductive match_RData: stencil → HDATA → mem → meminj → Prop :=
| MATCH_RDATA: ∀ habd m f s, match_RData s habd m f.
Local Hint Resolve MATCH_RDATA.
Global Instance rel_ops: CompatRelOps HDATAOps LDATAOps :=
{
relate_AbData s f d1 d2 := relate_RData f d1 d2;
match_AbData s d1 m f := match_RData s d1 m f;
new_glbl := nil
}.
Prove that after taking one step, the refinement relation still holds
Lemma relate_incr:
∀ abd abd´ f f´,
relate_RData f abd abd´
→ inject_incr f f´
→ relate_RData f´ abd abd´.
Proof.
inversion 1; subst; intros; inv H; constructor; eauto.
- eapply kctxt_inj_incr; eauto.
Qed.
Global Instance rel_prf: CompatRel HDATAOps LDATAOps.
Proof.
constructor; intros; simpl; trivial.
eapply relate_incr; eauto.
Qed.
End Rel_Property.
∀ abd abd´ f f´,
relate_RData f abd abd´
→ inject_incr f f´
→ relate_RData f´ abd abd´.
Proof.
inversion 1; subst; intros; inv H; constructor; eauto.
- eapply kctxt_inj_incr; eauto.
Qed.
Global Instance rel_prf: CompatRel HDATAOps LDATAOps.
Proof.
constructor; intros; simpl; trivial.
eapply relate_incr; eauto.
Qed.
End Rel_Property.
Section Exists.
Lemma tdqueue_init_exist:
∀ s habd habd´ labd i f,
tdqueue_init_spec i habd = ret habd´
→ relate_AbData s f habd labd
→ ∃ labd´, PQueueIntro.tdqueue_init_spec i labd = Some labd´
∧ relate_AbData s f habd´ labd´
∧ kernel_mode labd.
Proof.
unfold tdqueue_init_spec, PQueueIntro.tdqueue_init_spec, thread_init_spec, sharedmem_init_spec.
intros.
exploit relate_impl_iflags_eq; eauto. inversion 1.
exploit relate_impl_ipt_eq; eauto.
exploit relate_impl_init_eq; eauto.
exploit relate_impl_ioapic_eq; eauto.
exploit relate_impl_in_intr_eq; eauto.
exploit relate_impl_lapic_eq; eauto.
exploit relate_impl_in_intr_eq; eauto. intros.
exploit relate_impl_LAT_eq; eauto.
exploit relate_impl_ptpool_eq; eauto.
exploit relate_impl_multi_log_eq; eauto. intros.
exploit relate_impl_lock_eq; eauto.
exploit relate_impl_idpde_eq; eauto.
exploit relate_impl_smspool_eq; eauto. intros.
exploit relate_impl_tcb_eq; eauto.
exploit relate_impl_tdq_eq; eauto. intros.
revert H; subrewrite. subdestruct.
inv HQ. refine_split´; trivial.
generalize (relate_impl_tdq_update s); intros Hup; simpl in Hup; eapply Hup; clear Hup.
generalize (relate_impl_tcb_update s); intros Hup; simpl in Hup; eapply Hup; clear Hup.
generalize (relate_impl_smspool_update s); intros Hup; simpl in Hup; eapply Hup; clear Hup.
generalize (relate_impl_idpde_update s); intros Hup; simpl in Hup; eapply Hup; clear Hup.
generalize (relate_impl_lock_update s); intros Hup; simpl in Hup; eapply Hup; clear Hup.
generalize (relate_impl_multi_log_update s); intros Hup; simpl in Hup; eapply Hup; clear Hup.
generalize (relate_impl_ptpool_update s); intros Hup; simpl in Hup; eapply Hup; clear Hup.
generalize (relate_impl_PT_update s); intros Hup; simpl in Hup; eapply Hup; clear Hup.
generalize (relate_impl_init_update s); intros Hup; simpl in Hup; eapply Hup; clear Hup.
generalize (relate_impl_AC_update s); intros Hup; simpl in Hup; eapply Hup; clear Hup.
generalize (relate_impl_nps_update s); intros Hup; simpl in Hup; eapply Hup; clear Hup.
generalize (relate_impl_LAT_update s); intros Hup; simpl in Hup; eapply Hup; clear Hup.
generalize (relate_impl_pg_update s); intros Hup; simpl in Hup; eapply Hup; clear Hup.
generalize (relate_impl_vmxinfo_update s); intros Hup; simpl in Hup; eapply Hup; clear Hup.
generalize (relate_impl_ioapic_update s); intros Hup; simpl in Hup; eapply Hup; clear Hup.
generalize (relate_impl_lapic_update s); intros Hup; simpl in Hup; eapply Hup; clear Hup.
generalize (relate_impl_ioapic_update s); intros Hup; simpl in Hup; eapply Hup; clear Hup.
eauto.
Qed.
Lemma queue_rmv_exist:
∀ habd habd´ labd n i f,
queue_rmv_spec n i habd = ret habd´
→ relate_RData f habd labd
→ ∃ labd´, queue_rmv_spec n i labd = Some labd´
∧ relate_RData f habd´ labd´
∧ kernel_mode labd.
Proof.
unfold queue_rmv_spec. intros until f. exist_simpl.
Qed.
Lemma enqueue_exist:
∀ habd habd´ labd n i f,
enqueue_spec n i habd = ret habd´
→ relate_RData f habd labd
→ high_level_invariant habd
→ ∃ labd´, PQueueIntro.enqueue_spec n i labd = Some labd´
∧ relate_RData f habd´ labd´
∧ kernel_mode labd.
Proof.
unfold enqueue_spec, PQueueIntro.enqueue_spec.
intros until f.
intros HP HR HINV. pose proof HR as HR´. inv HR; revert HP.
specialize (valid_TDQ _ HINV).
unfold TDQCorrect_range; unfold Queue_arg. simpl.
subrewrite´; intros HTDQ HQ. subdestruct; inv HQ.
- refine_split´; eauto. inv HR´.
econstructor; eauto 1.
- specialize (HTDQ refl_equal _ a).
destruct HTDQ as [head0[tail0[HTDQ[_ HTail]]]].
inv HTDQ. rewrite H0 in Hdestruct5. inv Hdestruct5.
rewrite zle_lt_true; [|omega].
refine_split´; eauto. inv HR´.
econstructor; eauto.
Qed.
Lemma dequeue_exist:
∀ habd habd´ labd n i f,
dequeue_spec n habd = ret (habd´, i)
→ relate_RData f habd labd
→ high_level_invariant habd
→ ∃ labd´, PQueueIntro.dequeue_spec n labd = Some (labd´, i)
∧ relate_RData f habd´ labd´
∧ kernel_mode labd.
Proof.
unfold dequeue_spec, PQueueIntro.dequeue_spec. intros until f.
intros HP HR HINV. pose proof HR as HR´. inv HR; revert HP.
specialize (valid_TDQ _ HINV).
unfold TDQCorrect_range. unfold Queue_arg.
subrewrite´; intros HTDQ HQ. subdestruct; inv HQ.
- refine_split´; eauto.
- specialize (HTDQ refl_equal _ a).
destruct HTDQ as [head0[tail0[HTDQ[Head HTail]]]].
inv HTDQ. rewrite H0 in Hdestruct4. inv Hdestruct4.
rewrite zle_lt_true; [|omega].
refine_split´; eauto.
econstructor; eauto.
- specialize (HTDQ refl_equal _ a).
destruct HTDQ as [head0[tail0[HTDQ[Head HTail]]]].
rewrite HTDQ in Hdestruct4. inv Hdestruct4.
rewrite zle_lt_true; [|omega].
rewrite zle_lt_true; [|try omega].
refine_split´; eauto.
+ econstructor; eauto.
+ specialize (valid_TCB _ HINV pg_re0). unfold TCBCorrect_range.
intros Htcb. assert (Hi: 0 ≤ i < num_proc) by omega.
specialize (Htcb i Hi). unfold TCBCorrect in Htcb.
Require Import FutureTactic.
blast Htcb. rewrite tcb_re0 in H0. rewrite H0 in Hdestruct6. inv Hdestruct6.
omega.
Qed.
End Exists.
Section FRESH_PRIM.
Lemma queue_rmv_spec_ref:
compatsim (crel HDATA LDATA) (gensem queue_rmv_spec)
queue_rmv_spec_low.
Proof.
compatsim_simpl (@match_AbData).
exploit queue_rmv_exist; eauto 1.
intros [labd´ [HP [HM Hkern]]].
refine_split; try econstructor; eauto. constructor.
Qed.
Lemma tdqueue_init_spec_ref:
compatsim (crel HDATA LDATA) (gensem tdqueue_init_spec)
tdqueue_init_spec_low.
Proof.
compatsim_simpl (@match_AbData).
exploit tdqueue_init_exist; eauto 1.
intros [labd´ [HP [HM Hkern]]].
refine_split; try econstructor; eauto. constructor.
Qed.
Lemma enqueue_spec_ref:
compatsim (crel HDATA LDATA) (gensem enqueue_spec)
enqueue_spec_low.
Proof.
compatsim_simpl (@match_AbData).
exploit enqueue_exist; eauto 1.
intros [labd´ [HP [HM Hkern]]].
refine_split; try econstructor; eauto. constructor.
Qed.
Lemma dequeue_spec_ref:
compatsim (crel HDATA LDATA) (gensem dequeue_spec)
dequeue_spec_low.
Proof.
compatsim_simpl (@match_AbData).
exploit dequeue_exist; eauto 1.
intros [labd´ [HP [HM Hkern]]].
refine_split; try econstructor; eauto. constructor.
Qed.
End FRESH_PRIM.
Section PASSTHROUGH_RPIM.
Global Instance: (LoadStoreProp (hflatmem_store:= flatmem_store) (lflatmem_store:= flatmem_store)).
Proof.
accessor_prop_tac.
- eapply flatmem_store_exists; eauto.
Qed.
Lemma passthrough_correct:
sim (crel HDATA LDATA) pqueueinit_passthrough pqueueintro.
Proof.
sim_oplus.
- apply fload_sim.
- apply fstore_sim.
- apply page_copy_sim.
- apply page_copy_back_sim.
- apply vmxinfo_get_sim.
- apply palloc_sim.
- apply setPT_sim.
- apply ptRead_sim.
- apply ptResv_sim.
- apply kctxt_new_sim.
- apply shared_mem_status_sim.
- apply offer_shared_mem_sim.
- apply get_state_sim.
- apply set_state_sim.
- apply tcb_get_CPU_ID_sim.
- apply tcb_set_CPU_ID_sim.
- apply acquire_lock_TCB_sim.
- apply release_lock_TCB_sim.
- apply ptin_sim.
- apply ptout_sim.
- apply container_get_nchildren_sim.
- apply container_get_quota_sim.
- apply container_get_usage_sim.
- apply container_can_consume_sim.
- apply get_CPU_ID_sim.
- apply get_curid_sim.
- apply set_curid_sim.
- apply set_curid_init_sim.
- apply sleeper_inc_sim.
- apply sleeper_dec_sim.
- apply sleeper_zzz_sim.
- apply (release_lock_sim (valid_arg_imply:= Shared2ID2_imply)).
-
eapply acquire_lock_sim2; eauto.
intros. inv H; trivial.
- apply cli_sim.
- apply sti_sim.
- apply serial_intr_disable_sim.
- apply serial_intr_enable_sim.
- apply serial_putc_sim.
- apply cons_buf_read_sim.
- apply trapin_sim.
- apply trapout_sim.
- apply hostin_sim.
- apply hostout_sim.
- apply proc_create_postinit_sim.
- apply trap_info_get_sim.
- apply trap_info_ret_sim.
- apply kctxt_switch_sim.
- layer_sim_simpl.
+ eapply load_correct2.
+ eapply store_correct2.
Qed.
End PASSTHROUGH_RPIM.
End OneStep_Forward_Relation.
End WITHMEM.
End Refinement.
Lemma tdqueue_init_exist:
∀ s habd habd´ labd i f,
tdqueue_init_spec i habd = ret habd´
→ relate_AbData s f habd labd
→ ∃ labd´, PQueueIntro.tdqueue_init_spec i labd = Some labd´
∧ relate_AbData s f habd´ labd´
∧ kernel_mode labd.
Proof.
unfold tdqueue_init_spec, PQueueIntro.tdqueue_init_spec, thread_init_spec, sharedmem_init_spec.
intros.
exploit relate_impl_iflags_eq; eauto. inversion 1.
exploit relate_impl_ipt_eq; eauto.
exploit relate_impl_init_eq; eauto.
exploit relate_impl_ioapic_eq; eauto.
exploit relate_impl_in_intr_eq; eauto.
exploit relate_impl_lapic_eq; eauto.
exploit relate_impl_in_intr_eq; eauto. intros.
exploit relate_impl_LAT_eq; eauto.
exploit relate_impl_ptpool_eq; eauto.
exploit relate_impl_multi_log_eq; eauto. intros.
exploit relate_impl_lock_eq; eauto.
exploit relate_impl_idpde_eq; eauto.
exploit relate_impl_smspool_eq; eauto. intros.
exploit relate_impl_tcb_eq; eauto.
exploit relate_impl_tdq_eq; eauto. intros.
revert H; subrewrite. subdestruct.
inv HQ. refine_split´; trivial.
generalize (relate_impl_tdq_update s); intros Hup; simpl in Hup; eapply Hup; clear Hup.
generalize (relate_impl_tcb_update s); intros Hup; simpl in Hup; eapply Hup; clear Hup.
generalize (relate_impl_smspool_update s); intros Hup; simpl in Hup; eapply Hup; clear Hup.
generalize (relate_impl_idpde_update s); intros Hup; simpl in Hup; eapply Hup; clear Hup.
generalize (relate_impl_lock_update s); intros Hup; simpl in Hup; eapply Hup; clear Hup.
generalize (relate_impl_multi_log_update s); intros Hup; simpl in Hup; eapply Hup; clear Hup.
generalize (relate_impl_ptpool_update s); intros Hup; simpl in Hup; eapply Hup; clear Hup.
generalize (relate_impl_PT_update s); intros Hup; simpl in Hup; eapply Hup; clear Hup.
generalize (relate_impl_init_update s); intros Hup; simpl in Hup; eapply Hup; clear Hup.
generalize (relate_impl_AC_update s); intros Hup; simpl in Hup; eapply Hup; clear Hup.
generalize (relate_impl_nps_update s); intros Hup; simpl in Hup; eapply Hup; clear Hup.
generalize (relate_impl_LAT_update s); intros Hup; simpl in Hup; eapply Hup; clear Hup.
generalize (relate_impl_pg_update s); intros Hup; simpl in Hup; eapply Hup; clear Hup.
generalize (relate_impl_vmxinfo_update s); intros Hup; simpl in Hup; eapply Hup; clear Hup.
generalize (relate_impl_ioapic_update s); intros Hup; simpl in Hup; eapply Hup; clear Hup.
generalize (relate_impl_lapic_update s); intros Hup; simpl in Hup; eapply Hup; clear Hup.
generalize (relate_impl_ioapic_update s); intros Hup; simpl in Hup; eapply Hup; clear Hup.
eauto.
Qed.
Lemma queue_rmv_exist:
∀ habd habd´ labd n i f,
queue_rmv_spec n i habd = ret habd´
→ relate_RData f habd labd
→ ∃ labd´, queue_rmv_spec n i labd = Some labd´
∧ relate_RData f habd´ labd´
∧ kernel_mode labd.
Proof.
unfold queue_rmv_spec. intros until f. exist_simpl.
Qed.
Lemma enqueue_exist:
∀ habd habd´ labd n i f,
enqueue_spec n i habd = ret habd´
→ relate_RData f habd labd
→ high_level_invariant habd
→ ∃ labd´, PQueueIntro.enqueue_spec n i labd = Some labd´
∧ relate_RData f habd´ labd´
∧ kernel_mode labd.
Proof.
unfold enqueue_spec, PQueueIntro.enqueue_spec.
intros until f.
intros HP HR HINV. pose proof HR as HR´. inv HR; revert HP.
specialize (valid_TDQ _ HINV).
unfold TDQCorrect_range; unfold Queue_arg. simpl.
subrewrite´; intros HTDQ HQ. subdestruct; inv HQ.
- refine_split´; eauto. inv HR´.
econstructor; eauto 1.
- specialize (HTDQ refl_equal _ a).
destruct HTDQ as [head0[tail0[HTDQ[_ HTail]]]].
inv HTDQ. rewrite H0 in Hdestruct5. inv Hdestruct5.
rewrite zle_lt_true; [|omega].
refine_split´; eauto. inv HR´.
econstructor; eauto.
Qed.
Lemma dequeue_exist:
∀ habd habd´ labd n i f,
dequeue_spec n habd = ret (habd´, i)
→ relate_RData f habd labd
→ high_level_invariant habd
→ ∃ labd´, PQueueIntro.dequeue_spec n labd = Some (labd´, i)
∧ relate_RData f habd´ labd´
∧ kernel_mode labd.
Proof.
unfold dequeue_spec, PQueueIntro.dequeue_spec. intros until f.
intros HP HR HINV. pose proof HR as HR´. inv HR; revert HP.
specialize (valid_TDQ _ HINV).
unfold TDQCorrect_range. unfold Queue_arg.
subrewrite´; intros HTDQ HQ. subdestruct; inv HQ.
- refine_split´; eauto.
- specialize (HTDQ refl_equal _ a).
destruct HTDQ as [head0[tail0[HTDQ[Head HTail]]]].
inv HTDQ. rewrite H0 in Hdestruct4. inv Hdestruct4.
rewrite zle_lt_true; [|omega].
refine_split´; eauto.
econstructor; eauto.
- specialize (HTDQ refl_equal _ a).
destruct HTDQ as [head0[tail0[HTDQ[Head HTail]]]].
rewrite HTDQ in Hdestruct4. inv Hdestruct4.
rewrite zle_lt_true; [|omega].
rewrite zle_lt_true; [|try omega].
refine_split´; eauto.
+ econstructor; eauto.
+ specialize (valid_TCB _ HINV pg_re0). unfold TCBCorrect_range.
intros Htcb. assert (Hi: 0 ≤ i < num_proc) by omega.
specialize (Htcb i Hi). unfold TCBCorrect in Htcb.
Require Import FutureTactic.
blast Htcb. rewrite tcb_re0 in H0. rewrite H0 in Hdestruct6. inv Hdestruct6.
omega.
Qed.
End Exists.
Section FRESH_PRIM.
Lemma queue_rmv_spec_ref:
compatsim (crel HDATA LDATA) (gensem queue_rmv_spec)
queue_rmv_spec_low.
Proof.
compatsim_simpl (@match_AbData).
exploit queue_rmv_exist; eauto 1.
intros [labd´ [HP [HM Hkern]]].
refine_split; try econstructor; eauto. constructor.
Qed.
Lemma tdqueue_init_spec_ref:
compatsim (crel HDATA LDATA) (gensem tdqueue_init_spec)
tdqueue_init_spec_low.
Proof.
compatsim_simpl (@match_AbData).
exploit tdqueue_init_exist; eauto 1.
intros [labd´ [HP [HM Hkern]]].
refine_split; try econstructor; eauto. constructor.
Qed.
Lemma enqueue_spec_ref:
compatsim (crel HDATA LDATA) (gensem enqueue_spec)
enqueue_spec_low.
Proof.
compatsim_simpl (@match_AbData).
exploit enqueue_exist; eauto 1.
intros [labd´ [HP [HM Hkern]]].
refine_split; try econstructor; eauto. constructor.
Qed.
Lemma dequeue_spec_ref:
compatsim (crel HDATA LDATA) (gensem dequeue_spec)
dequeue_spec_low.
Proof.
compatsim_simpl (@match_AbData).
exploit dequeue_exist; eauto 1.
intros [labd´ [HP [HM Hkern]]].
refine_split; try econstructor; eauto. constructor.
Qed.
End FRESH_PRIM.
Section PASSTHROUGH_RPIM.
Global Instance: (LoadStoreProp (hflatmem_store:= flatmem_store) (lflatmem_store:= flatmem_store)).
Proof.
accessor_prop_tac.
- eapply flatmem_store_exists; eauto.
Qed.
Lemma passthrough_correct:
sim (crel HDATA LDATA) pqueueinit_passthrough pqueueintro.
Proof.
sim_oplus.
- apply fload_sim.
- apply fstore_sim.
- apply page_copy_sim.
- apply page_copy_back_sim.
- apply vmxinfo_get_sim.
- apply palloc_sim.
- apply setPT_sim.
- apply ptRead_sim.
- apply ptResv_sim.
- apply kctxt_new_sim.
- apply shared_mem_status_sim.
- apply offer_shared_mem_sim.
- apply get_state_sim.
- apply set_state_sim.
- apply tcb_get_CPU_ID_sim.
- apply tcb_set_CPU_ID_sim.
- apply acquire_lock_TCB_sim.
- apply release_lock_TCB_sim.
- apply ptin_sim.
- apply ptout_sim.
- apply container_get_nchildren_sim.
- apply container_get_quota_sim.
- apply container_get_usage_sim.
- apply container_can_consume_sim.
- apply get_CPU_ID_sim.
- apply get_curid_sim.
- apply set_curid_sim.
- apply set_curid_init_sim.
- apply sleeper_inc_sim.
- apply sleeper_dec_sim.
- apply sleeper_zzz_sim.
- apply (release_lock_sim (valid_arg_imply:= Shared2ID2_imply)).
-
eapply acquire_lock_sim2; eauto.
intros. inv H; trivial.
- apply cli_sim.
- apply sti_sim.
- apply serial_intr_disable_sim.
- apply serial_intr_enable_sim.
- apply serial_putc_sim.
- apply cons_buf_read_sim.
- apply trapin_sim.
- apply trapout_sim.
- apply hostin_sim.
- apply hostout_sim.
- apply proc_create_postinit_sim.
- apply trap_info_get_sim.
- apply trap_info_ret_sim.
- apply kctxt_switch_sim.
- layer_sim_simpl.
+ eapply load_correct2.
+ eapply store_correct2.
Qed.
End PASSTHROUGH_RPIM.
End OneStep_Forward_Relation.
End WITHMEM.
End Refinement.