Library compcert.backend.Locations


Locations are a refinement of RTL pseudo-registers, used to reflect the results of register allocation (file Allocation).

Require Import OrderedType.
Require Import Coqlib.
Require Import Maps.
Require Import Ordered.
Require Import AST.
Require Import Values.
Require Export Machregs.

Representation of locations

A location is either a processor register or (an abstract designation of) a slot in the activation record of the current function.

Processor registers

Processor registers usable for register allocation are defined in module Machregs.

Slots in activation records

A slot in an activation record is designated abstractly by a kind, a type and an integer offset. Three kinds are considered:
  • Local: these are the slots used by register allocation for pseudo-registers that cannot be assigned a hardware register.
  • Incoming: used to store the parameters of the current function that cannot reside in hardware registers, as determined by the calling conventions.
  • Outgoing: used to store arguments to called functions that cannot reside in hardware registers, as determined by the calling conventions.

Inductive slot: Type :=
  | Local
  | Incoming
  | Outgoing.

Morally, the Incoming slots of a function are the Outgoing slots of its caller function.
The type of a slot indicates how it will be accessed later once mapped to actual memory locations inside a memory-allocated activation record: as 32-bit integers/pointers (type Tint) or as 64-bit floats (type Tfloat).
The offset of a slot, combined with its type and its kind, identifies uniquely the slot and will determine later where it resides within the memory-allocated activation record. Offsets are always positive.

Lemma slot_eq: (p q: slot), {p = q} + {p q}.
Proof.
  decide equality.
Defined.

Open Scope Z_scope.

Definition typesize (ty: typ) : Z :=
  match ty with
  | Tint ⇒ 1
  | Tlong ⇒ 2
  | Tfloat ⇒ 2
  | Tsingle ⇒ 1
  | Tany32 ⇒ 1
  | Tany64 ⇒ 2
  end.

Lemma typesize_pos:
   (ty: typ), typesize ty > 0.
Proof.
  destruct ty; compute; auto.
Qed.

Definition typealign (ty: typ) : Z :=
  match ty with
  | Tint ⇒ 1
  | Tlong ⇒ 2
  | Tfloat ⇒ 1
  | Tsingle ⇒ 1
  | Tany32 ⇒ 1
  | Tany64 ⇒ 1
  end.

Lemma typealign_pos:
   (ty: typ), typealign ty > 0.
Proof.
  destruct ty; compute; auto.
Qed.

Lemma typealign_typesize:
   (ty: typ), (typealign ty | typesize ty).
Proof.
  intros. (typesize ty / typealign ty); destruct ty; reflexivity.
Qed.

Locations

Locations are just the disjoint union of machine registers and activation record slots.

Inductive loc : Type :=
  | R (r: mreg)
  | S (sl: slot) (pos: Z) (ty: typ).

Module Loc.

  Definition type (l: loc) : typ :=
    match l with
    | R rmreg_type r
    | S sl pos tyty
    end.

  Lemma eq: (p q: loc), {p = q} + {p q}.
  Proof.
    decide equality.
    apply mreg_eq.
    apply typ_eq.
    apply zeq.
    apply slot_eq.
  Defined.

As mentioned previously, two locations can be different (in the sense of the mathematical disequality), yet denote overlapping memory chunks within the activation record. Given two locations, three cases are possible:
  • They are equal (in the sense of the = equality)
  • They are different and non-overlapping.
  • They are different but overlapping.
    The second case (different and non-overlapping) is characterized by the following Loc.diff predicate.
  Definition diff (l1 l2: loc) : Prop :=
    match l1, l2 with
    | R r1, R r2
        r1 r2
    | S s1 d1 t1, S s2 d2 t2
        s1 s2 d1 + typesize t1 d2 d2 + typesize t2 d1
    | _, _
        True
    end.

  Lemma same_not_diff:
     l, ~(diff l l).
  Proof.
    destruct l; unfold diff; auto.
    red; intros. destruct H; auto. generalize (typesize_pos ty); omega.
  Qed.

  Lemma diff_not_eq:
     l1 l2, diff l1 l2 l1 l2.
  Proof.
    unfold not; intros. subst l2. elim (same_not_diff l1 H).
  Qed.

  Lemma diff_sym:
     l1 l2, diff l1 l2 diff l2 l1.
  Proof.
    destruct l1; destruct l2; unfold diff; auto.
    intuition.
  Qed.

  Definition diff_dec (l1 l2: loc) : { Loc.diff l1 l2 } + { ¬Loc.diff l1 l2 }.
  Proof.
    intros. destruct l1; destruct l2; simpl.
  - destruct (mreg_eq r r0). right; tauto. left; auto.
  - left; auto.
  - left; auto.
  - destruct (slot_eq sl sl0).
    destruct (zle (pos + typesize ty) pos0).
    left; auto.
    destruct (zle (pos0 + typesize ty0) pos).
    left; auto.
    right; red; intros [P | [P | P]]. congruence. omega. omega.
    left; auto.
  Defined.

We now redefine some standard notions over lists, using the Loc.diff predicate instead of standard disequality .
Loc.notin l ll holds if the location l is different from all locations in the list ll.

  Fixpoint notin (l: loc) (ll: list loc) {struct ll} : Prop :=
    match ll with
    | nilTrue
    | l1 :: lsdiff l l1 notin l ls
    end.

  Lemma notin_iff:
     l ll, notin l ll ( l', In l' ll Loc.diff l l').
  Proof.
    induction ll; simpl.
    tauto.
    rewrite IHll. intuition. subst a. auto.
  Qed.

  Lemma notin_not_in:
     l ll, notin l ll ~(In l ll).
  Proof.
    intros; red; intros. rewrite notin_iff in H.
    elim (diff_not_eq l l); auto.
  Qed.

  Lemma notin_dec (l: loc) (ll: list loc) : {notin l ll} + {¬notin l ll}.
  Proof.
    induction ll; simpl.
    left; auto.
    destruct (diff_dec l a).
    destruct IHll.
    left; auto.
    right; tauto.
    right; tauto.
  Defined.

Loc.disjoint l1 l2 is true if the locations in list l1 are different from all locations in list l2.

  Definition disjoint (l1 l2: list loc) : Prop :=
     x1 x2, In x1 l1 In x2 l2 diff x1 x2.

  Lemma disjoint_cons_left:
     a l1 l2,
    disjoint (a :: l1) l2 disjoint l1 l2.
  Proof.
    unfold disjoint; intros. auto with coqlib.
  Qed.
  Lemma disjoint_cons_right:
     a l1 l2,
    disjoint l1 (a :: l2) disjoint l1 l2.
  Proof.
    unfold disjoint; intros. auto with coqlib.
  Qed.

  Lemma disjoint_sym:
     l1 l2, disjoint l1 l2 disjoint l2 l1.
  Proof.
    unfold disjoint; intros. apply diff_sym; auto.
  Qed.

  Lemma in_notin_diff:
     l1 l2 ll, notin l1 ll In l2 ll diff l1 l2.
  Proof.
    intros. rewrite notin_iff in H. auto.
  Qed.

  Lemma notin_disjoint:
     l1 l2,
    ( x, In x l1 notin x l2) disjoint l1 l2.
  Proof.
    intros; red; intros. exploit H; eauto. rewrite notin_iff; intros. auto.
  Qed.

  Lemma disjoint_notin:
     l1 l2 x, disjoint l1 l2 In x l1 notin x l2.
  Proof.
    intros; rewrite notin_iff; intros. red in H. auto.
  Qed.

Loc.norepet ll holds if the locations in list ll are pairwise different.

  Inductive norepet : list loc Prop :=
  | norepet_nil:
      norepet nil
  | norepet_cons:
       hd tl, notin hd tl norepet tl norepet (hd :: tl).

  Lemma norepet_dec (ll: list loc) : {norepet ll} + {¬norepet ll}.
  Proof.
    induction ll.
    left; constructor.
    destruct (notin_dec a ll).
    destruct IHll.
    left; constructor; auto.
    right; red; intros P; inv P; contradiction.
    right; red; intros P; inv P; contradiction.
  Defined.

  Lemma norepet_app_inv l1:
     l2,
      norepet (l1 ++ l2)
      norepet l1 norepet l2 disjoint l1 l2.
  Proof.
    induction l1; simpl.
    {
      intros l2 H.
      split.
      {
        constructor.
      }
      split; auto.
      red.
      contradiction.
    }
    inversion 1; subst.
    apply IHl1 in H3.
    destruct H3 as (L1 & L2 & DISJ).
    split.
    {
      constructor; auto.
      rewrite notin_iff in H2.
      rewrite notin_iff.
      intros l' H0.
      apply H2.
      apply in_or_app. auto.
    }
    split; auto.
    red.
    unfold disjoint in DISJ.
    inversion 1; subst; eauto.
    intros H1.
    rewrite notin_iff in H2.
    eapply H2.
    apply in_or_app.
    auto.
  Qed.


Loc.no_overlap l1 l2 holds if elements of l1 never overlap partially with elements of l2.

  Definition no_overlap (l1 l2 : list loc) :=
    r, In r l1 s, In s l2 r = s Loc.diff r s.

End Loc.

Mappings from locations to values

The Locmap module defines mappings from locations to values, used as evaluation environments for the semantics of the LTL and Linear intermediate languages.

Set Implicit Arguments.

Module Locmap.

  Definition t := loc val.

  Definition init (x: val) : t := fun (_: loc) ⇒ x.

  Definition get (l: loc) (m: t) : val := m l.

The set operation over location mappings reflects the overlapping properties of locations: changing the value of a location l invalidates (sets to Vundef) the locations that partially overlap with l. In other terms, the result of set l v m maps location l to value v, locations that overlap with l to Vundef, and locations that are different (and non-overlapping) from l to their previous values in m. This is apparent in the ``good variables'' properties Locmap.gss and Locmap.gso.
Additionally, the set operation also anticipates the fact that abstract stack slots are mapped to concrete memory locations in the Stacking phase. Hence, values stored in stack slots are normalized according to the type of the slot.

  Definition set (l: loc) (v: val) (m: t) : t :=
    fun (p: loc) ⇒
      if Loc.eq l p then
        match l with R rv | S sl ofs tyVal.load_result (chunk_of_type ty) v end
      else if Loc.diff_dec l p then
        m p
      else Vundef.

  Lemma gss: l v m,
    (set l v m) l =
    match l with R rv | S sl ofs tyVal.load_result (chunk_of_type ty) v end.
  Proof.
    intros. unfold set. apply dec_eq_true.
  Qed.

  Lemma gss_reg: r v m, (set (R r) v m) (R r) = v.
  Proof.
    intros. unfold set. rewrite dec_eq_true. auto.
  Qed.

  Lemma gss_typed: l v m, Val.has_type v (Loc.type l) (set l v m) l = v.
  Proof.
    intros. rewrite gss. destruct l. auto. apply Val.load_result_same; auto.
  Qed.

  Lemma gso: l v m p, Loc.diff l p (set l v m) p = m p.
  Proof.
    intros. unfold set. destruct (Loc.eq l p).
    subst p. elim (Loc.same_not_diff _ H).
    destruct (Loc.diff_dec l p).
    auto.
    contradiction.
  Qed.

  Fixpoint undef (ll: list loc) (m: t) {struct ll} : t :=
    match ll with
    | nilm
    | l1 :: ll'undef ll' (set l1 Vundef m)
    end.

  Lemma guo: ll l m, Loc.notin l ll (undef ll m) l = m l.
  Proof.
    induction ll; simpl; intros. auto.
    destruct H. rewrite IHll; auto. apply gso. apply Loc.diff_sym; auto.
  Qed.

  Lemma gus: ll l m, In l ll (undef ll m) l = Vundef.
  Proof.
    assert (P: ll l m, m l = Vundef (undef ll m) l = Vundef).
      induction ll; simpl; intros. auto. apply IHll.
      unfold set. destruct (Loc.eq a l).
      destruct a. auto. destruct ty; reflexivity.
      destruct (Loc.diff_dec a l); auto.
    induction ll; simpl; intros. contradiction.
    destruct H. apply P. subst a. apply gss_typed. exact I.
    auto.
  Qed.

  Definition getpair (p: rpair loc) (m: t) : val :=
    match p with
    | One lm l
    | Twolong l1 l2Val.longofwords (m l1) (m l2)
    end.

  Definition setpair (p: rpair mreg) (v: val) (m: t) : t :=
    match p with
    | One rset (R r) v m
    | Twolong hi loset (R lo) (Val.loword v) (set (R hi) (Val.hiword v) m)
    end.

  Lemma getpair_exten:
     p ls1 ls2,
    ( l, In l (regs_of_rpair p) ls2 l = ls1 l)
    getpair p ls2 = getpair p ls1.
  Proof.
    intros. destruct p; simpl.
    apply H; simpl; auto.
    f_equal; apply H; simpl; auto.
  Qed.

  Lemma gpo:
     p v m l,
    forall_rpair (fun rLoc.diff l (R r)) p setpair p v m l = m l.
  Proof.
    intros; destruct p; simpl in ×.
  - apply gso. apply Loc.diff_sym; auto.
  - destruct H. rewrite ! gso by (apply Loc.diff_sym; auto). auto.
  Qed.

  Fixpoint setres (res: builtin_res mreg) (v: val) (m: t) : t :=
    match res with
    | BR rset (R r) v m
    | BR_nonem
    | BR_splitlong hi lo
        setres lo (Val.loword v) (setres hi (Val.hiword v) m)
    end.

End Locmap.

Total ordering over locations


Module IndexedTyp <: INDEXED_TYPE.
  Definition t := typ.
  Definition index (x: t) :=
    match x with
    | Tany32 ⇒ 1%positive
    | Tint ⇒ 2%positive
    | Tsingle ⇒ 3%positive
    | Tany64 ⇒ 4%positive
    | Tfloat ⇒ 5%positive
    | Tlong ⇒ 6%positive
    end.
  Lemma index_inj: x y, index x = index y x = y.
  Proof. destruct x; destruct y; simpl; congruence. Qed.
  Definition eq := typ_eq.
End IndexedTyp.

Module OrderedTyp := OrderedIndexed(IndexedTyp).

Module IndexedSlot <: INDEXED_TYPE.
  Definition t := slot.
  Definition index (x: t) :=
    match x with Local ⇒ 1%positive | Incoming ⇒ 2%positive | Outgoing ⇒ 3%positive end.
  Lemma index_inj: x y, index x = index y x = y.
  Proof. destruct x; destruct y; simpl; congruence. Qed.
  Definition eq := slot_eq.
End IndexedSlot.

Module OrderedSlot := OrderedIndexed(IndexedSlot).

Module OrderedLoc <: OrderedType.
  Definition t := loc.
  Definition eq (x y: t) := x = y.
  Definition lt (x y: t) :=
    match x, y with
    | R r1, R r2Plt (IndexedMreg.index r1) (IndexedMreg.index r2)
    | R _, S _ _ _True
    | S _ _ _, R _False
    | S sl1 ofs1 ty1, S sl2 ofs2 ty2
        OrderedSlot.lt sl1 sl2 (sl1 = sl2
        (ofs1 < ofs2 (ofs1 = ofs2 OrderedTyp.lt ty1 ty2)))
    end.
  Lemma eq_refl : x : t, eq x x.
  Proof (@refl_equal t).
  Lemma eq_sym : x y : t, eq x y eq y x.
  Proof (@sym_equal t).
  Lemma eq_trans : x y z : t, eq x y eq y z eq x z.
  Proof (@trans_equal t).
  Lemma lt_trans : x y z : t, lt x y lt y z lt x z.
  Proof.
    unfold lt; intros.
    destruct x; destruct y; destruct z; try tauto.
    eapply Plt_trans; eauto.
    destruct H.
    destruct H0. left; eapply OrderedSlot.lt_trans; eauto.
    destruct H0. subst sl0. auto.
    destruct H. subst sl.
    destruct H0. auto.
    destruct H.
    right. split. auto.
    intuition.
    right; split. congruence. eapply OrderedTyp.lt_trans; eauto.
  Qed.
  Lemma lt_not_eq : x y : t, lt x y ¬ eq x y.
  Proof.
    unfold lt, eq; intros; red; intros. subst y.
    destruct x.
    eelim Plt_strict; eauto.
    destruct H. eelim OrderedSlot.lt_not_eq; eauto. red; auto.
    destruct H. destruct H0. omega.
    destruct H0. eelim OrderedTyp.lt_not_eq; eauto. red; auto.
  Qed.
  Definition compare : x y : t, Compare lt eq x y.
  Proof.
    intros. destruct x; destruct y.
  - destruct (OrderedPositive.compare (IndexedMreg.index r) (IndexedMreg.index r0)).
    + apply LT. red. auto.
    + apply EQ. red. f_equal. apply IndexedMreg.index_inj. auto.
    + apply GT. red. auto.
  - apply LT. red; auto.
  - apply GT. red; auto.
  - destruct (OrderedSlot.compare sl sl0).
    + apply LT. red; auto.
    + destruct (OrderedZ.compare pos pos0).
      × apply LT. red. auto.
      × destruct (OrderedTyp.compare ty ty0).
        apply LT. red; auto.
        apply EQ. red; red in e; red in e0; red in e1. congruence.
        apply GT. red; auto.
      × apply GT. red. auto.
    + apply GT. red; auto.
  Defined.
  Definition eq_dec := Loc.eq.

Connection between the ordering defined here and the Loc.diff predicate.

  Definition diff_low_bound (l: loc) : loc :=
    match l with
    | R mrl
    | S sl ofs tyS sl (ofs - 1) Tany64
    end.

  Definition diff_high_bound (l: loc) : loc :=
    match l with
    | R mrl
    | S sl ofs tyS sl (ofs + typesize ty - 1) Tlong
    end.

  Lemma outside_interval_diff:
     l l', lt l' (diff_low_bound l) lt (diff_high_bound l) l' Loc.diff l l'.
  Proof.
    intros.
    destruct l as [mr | sl ofs ty]; destruct l' as [mr' | sl' ofs' ty']; simpl in *; auto.
    - assert (IndexedMreg.index mr IndexedMreg.index mr').
      { destruct H. apply sym_not_equal. apply Plt_ne; auto. apply Plt_ne; auto. }
      congruence.
    - assert (RANGE: ty, 1 typesize ty 2).
      { intros; unfold typesize. destruct ty0; omega. }
      destruct H.
      + destruct H. left. apply sym_not_equal. apply OrderedSlot.lt_not_eq; auto.
        destruct H. right.
        destruct H0. right. generalize (RANGE ty'); omega.
        destruct H0.
        assert (ty' = Tint ty' = Tsingle ty' = Tany32).
        { unfold OrderedTyp.lt in H1. destruct ty'; auto; compute in H1; congruence. }
        right. destruct H2 as [E|[E|E]]; subst ty'; simpl typesize; omega.
      + destruct H. left. apply OrderedSlot.lt_not_eq; auto.
        destruct H. right.
        destruct H0. left; omega.
        destruct H0. exfalso. destruct ty'; compute in H1; congruence.
  Qed.

  Lemma diff_outside_interval:
     l l', Loc.diff l l' lt l' (diff_low_bound l) lt (diff_high_bound l) l'.
  Proof.
    intros.
    destruct l as [mr | sl ofs ty]; destruct l' as [mr' | sl' ofs' ty']; simpl in *; auto.
    - unfold Plt, Pos.lt. destruct (Pos.compare (IndexedMreg.index mr) (IndexedMreg.index mr')) eqn:C.
      elim H. apply IndexedMreg.index_inj. apply Pos.compare_eq_iff. auto.
      auto.
      rewrite Pos.compare_antisym. rewrite C. auto.
    - destruct (OrderedSlot.compare sl sl'); auto.
      destruct H. contradiction.
      destruct H.
      right; right; split; auto. left; omega.
      left; right; split; auto.
      assert (EITHER: typesize ty' = 1 OrderedTyp.lt ty' Tany64 typesize ty' = 2).
      { destruct ty'; compute; auto. }
      destruct (zlt ofs' (ofs - 1)). left; auto.
      destruct EITHER as [[P Q] | P].
      right; split; auto. omega.
      left; omega.
  Qed.

End OrderedLoc.