Library compcert.cfrontend.Ctypes


Type expressions for the Compcert C and Clight languages

Require Import Axioms Coqlib Maps Errors.
Require Import AST Linking.
Require Archi.

Syntax of types

Compcert C types are similar to those of C. They include numeric types, pointers, arrays, function types, and composite types (struct and union). Numeric types (integers and floats) fully specify the bit size of the type. An integer type is a pair of a signed/unsigned flag and a bit size: 8, 16, or 32 bits, or the special IBool size standing for the C99 _Bool type. 64-bit integers are treated separately.

Inductive signedness : Type :=
  | Signed: signedness
  | Unsigned: signedness.

Inductive intsize : Type :=
  | I8: intsize
  | I16: intsize
  | I32: intsize
  | IBool: intsize.

Float types come in two sizes: 32 bits (single precision) and 64-bit (double precision).

Inductive floatsize : Type :=
  | F32: floatsize
  | F64: floatsize.

Every type carries a set of attributes. Currently, only two attributes are modeled: volatile and _Alignas(n) (from ISO C 2011).

Record attr : Type := mk_attr {
  attr_volatile: bool;
  attr_alignas: option N
}.

Definition noattr := {| attr_volatile := false; attr_alignas := None |}.

The syntax of type expressions. Some points to note:
  • Array types Tarray n carry the size n of the array. Arrays with unknown sizes are represented by pointer types.
  • Function types Tfunction targs tres specify the number and types of the function arguments (list targs), and the type of the function result (tres). Variadic functions and old-style unprototyped functions are not supported.

Inductive type : Type :=
  | Tvoid: type
  | Tint: intsize signedness attr type
  | Tlong: signedness attr type
  | Tfloat: floatsize attr type
  | Tpointer: type attr type
  | Tarray: type Z attr type
  | Tfunction: typelist type calling_convention type
  | Tstruct: ident attr type
  | Tunion: ident attr type
with typelist : Type :=
  | Tnil: typelist
  | Tcons: type typelist typelist.

Lemma intsize_eq: (s1 s2: intsize), {s1=s2} + {s1s2}.
Proof.
  decide equality.
Defined.

Lemma type_eq: (ty1 ty2: type), {ty1=ty2} + {ty1ty2}
with typelist_eq: (tyl1 tyl2: typelist), {tyl1=tyl2} + {tyl1tyl2}.
Proof.
  assert ( (x y: signedness), {x=y} + {xy}) by decide equality.
  assert ( (x y: floatsize), {x=y} + {xy}) by decide equality.
  assert ( (x y: attr), {x=y} + {xy}).
  { decide equality. decide equality. apply N.eq_dec. apply bool_dec. }
  generalize ident_eq zeq bool_dec ident_eq intsize_eq; intros.
  decide equality.
  decide equality.
  decide equality.
Defined.

Opaque type_eq typelist_eq.

Extract the attributes of a type.

Definition attr_of_type (ty: type) :=
  match ty with
  | Tvoidnoattr
  | Tint sz si aa
  | Tlong si aa
  | Tfloat sz aa
  | Tpointer elt aa
  | Tarray elt sz aa
  | Tfunction args res ccnoattr
  | Tstruct id aa
  | Tunion id aa
  end.

Change the top-level attributes of a type

Definition change_attributes (f: attr attr) (ty: type) : type :=
  match ty with
  | Tvoidty
  | Tint sz si aTint sz si (f a)
  | Tlong si aTlong si (f a)
  | Tfloat sz aTfloat sz (f a)
  | Tpointer elt aTpointer elt (f a)
  | Tarray elt sz aTarray elt sz (f a)
  | Tfunction args res ccty
  | Tstruct id aTstruct id (f a)
  | Tunion id aTunion id (f a)
  end.

Erase the top-level attributes of a type

Definition remove_attributes (ty: type) : type :=
  change_attributes (fun _noattr) ty.

Add extra attributes to the top-level attributes of a type

Definition attr_union (a1 a2: attr) : attr :=
  {| attr_volatile := a1.(attr_volatile) || a2.(attr_volatile);
     attr_alignas :=
       match a1.(attr_alignas), a2.(attr_alignas) with
       | None, al al
       | al, None al
       | Some n1, Some n2 Some (N.max n1 n2)
       end
  |}.

Definition merge_attributes (ty: type) (a: attr) : type :=
  change_attributes (attr_union a) ty.

Syntax for struct and union definitions. struct and union are collectively called "composites". Each compilation unit comes with a list of top-level definitions of composites.

Inductive struct_or_union : Type := Struct | Union.

Definition members : Type := list (ident × type).

Inductive composite_definition : Type :=
  Composite (id: ident) (su: struct_or_union) (m: members) (a: attr).

Definition name_composite_def (c: composite_definition) : ident :=
  match c with Composite id su m aid end.

Definition composite_def_eq (x y: composite_definition): {x=y} + {xy}.
Proof.
  decide equality.
- decide equality. decide equality. apply N.eq_dec. apply bool_dec.
- apply list_eq_dec. decide equality. apply type_eq. apply ident_eq.
- decide equality.
- apply ident_eq.
Defined.

Global Opaque composite_def_eq.

For type-checking, compilation and semantics purposes, the composite definitions are collected in the following composite_env environment. The composite record contains additional information compared with the composite_definition, such as size and alignment information.

Operations over types

Conversions


Definition type_int32s := Tint I32 Signed noattr.
Definition type_bool := Tint IBool Signed noattr.

The usual unary conversion. Promotes small integer types to signed int32 and degrades array types and function types to pointer types. Attributes are erased.

Definition typeconv (ty: type) : type :=
  match ty with
  | Tint (I8 | I16 | IBool) _ _Tint I32 Signed noattr
  | Tarray t sz aTpointer t noattr
  | Tfunction _ _ _Tpointer ty noattr
  | _remove_attributes ty
  end.

Default conversion for arguments to an unprototyped or variadic function. Like typeconv but also converts single floats to double floats.

Definition default_argument_conversion (ty: type) : type :=
  match ty with
  | Tint (I8 | I16 | IBool) _ _Tint I32 Signed noattr
  | Tfloat _ _Tfloat F64 noattr
  | Tarray t sz aTpointer t noattr
  | Tfunction _ _ _Tpointer ty noattr
  | _remove_attributes ty
  end.

Complete types

A type is complete if it fully describes an object. All struct and union names appearing in the type must be defined, unless they occur under a pointer or function type. void and function types are incomplete types.

Fixpoint complete_type (env: composite_env) (t: type) : bool :=
  match t with
  | Tvoidfalse
  | Tint _ _ _true
  | Tlong _ _true
  | Tfloat _ _true
  | Tpointer _ _true
  | Tarray t' _ _complete_type env t'
  | Tfunction _ _ _false
  | Tstruct id _ | Tunion id _
      match env!id with Some cotrue | Nonefalse end
  end.

Definition complete_or_function_type (env: composite_env) (t: type) : bool :=
  match t with
  | Tfunction _ _ _true
  | _complete_type env t
  end.

Alignment of a type

Adjust the natural alignment al based on the attributes a attached to the type. If an "alignas" attribute is given, use it as alignment in preference to al.

Definition align_attr (a: attr) (al: Z) : Z :=
  match attr_alignas a with
  | Some ltwo_p (Z.of_N l)
  | Noneal
  end.

In the ISO C standard, alignment is defined only for complete types. However, it is convenient that alignof is a total function. For incomplete types, it returns 1.

Fixpoint alignof (env: composite_env) (t: type) : Z :=
  align_attr (attr_of_type t)
   (match t with
      | Tvoid ⇒ 1
      | Tint I8 _ _ ⇒ 1
      | Tint I16 _ _ ⇒ 2
      | Tint I32 _ _ ⇒ 4
      | Tint IBool _ _ ⇒ 1
      | Tlong _ _Archi.align_int64
      | Tfloat F32 _ ⇒ 4
      | Tfloat F64 _Archi.align_float64
      | Tpointer _ _if Archi.ptr64 then 8 else 4
      | Tarray t' _ _alignof env t'
      | Tfunction _ _ _ ⇒ 1
      | Tstruct id _ | Tunion id _
          match env!id with Some coco_alignof co | None ⇒ 1 end
    end).

Remark align_attr_two_p:
   al a,
  ( n, al = two_power_nat n)
  ( n, align_attr a al = two_power_nat n).
Proof.
  intros. unfold align_attr. destruct (attr_alignas a).
   (N.to_nat n). rewrite two_power_nat_two_p. rewrite N_nat_Z. auto.
  auto.
Qed.

Lemma alignof_two_p:
   env t, n, alignof env t = two_power_nat n.
Proof.
  induction t; apply align_attr_two_p; simpl.
   0%nat; auto.
  destruct i.
     0%nat; auto.
     1%nat; auto.
     2%nat; auto.
     0%nat; auto.
    unfold Archi.align_int64. destruct Archi.ptr64; (( 2%nat; reflexivity) || ( 3%nat; reflexivity)).
  destruct f.
     2%nat; auto.
    unfold Archi.align_float64. destruct Archi.ptr64; (( 2%nat; reflexivity) || ( 3%nat; reflexivity)).
   (if Archi.ptr64 then 3%nat else 2%nat); destruct Archi.ptr64; auto.
  apply IHt.
   0%nat; auto.
  destruct (env!i). apply co_alignof_two_p. 0%nat; auto.
  destruct (env!i). apply co_alignof_two_p. 0%nat; auto.
Qed.

Lemma alignof_pos:
   env t, alignof env t > 0.
Proof.
  intros. destruct (alignof_two_p env t) as [n EQ]. rewrite EQ. apply two_power_nat_pos.
Qed.

Size of a type

In the ISO C standard, size is defined only for complete types. However, it is convenient that sizeof is a total function. For void and function types, we follow GCC and define their size to be 1. For undefined structures and unions, the size is arbitrarily taken to be 0.

Fixpoint sizeof (env: composite_env) (t: type) : Z :=
  match t with
  | Tvoid ⇒ 1
  | Tint I8 _ _ ⇒ 1
  | Tint I16 _ _ ⇒ 2
  | Tint I32 _ _ ⇒ 4
  | Tint IBool _ _ ⇒ 1
  | Tlong _ _ ⇒ 8
  | Tfloat F32 _ ⇒ 4
  | Tfloat F64 _ ⇒ 8
  | Tpointer _ _if Archi.ptr64 then 8 else 4
  | Tarray t' n _sizeof env t' × Z.max 0 n
  | Tfunction _ _ _ ⇒ 1
  | Tstruct id _ | Tunion id _
      match env!id with Some coco_sizeof co | None ⇒ 0 end
  end.

Lemma sizeof_pos:
   env t, sizeof env t 0.
Proof.
  induction t; simpl; try omega.
  destruct i; omega.
  destruct f; omega.
  destruct Archi.ptr64; omega.
  change 0 with (0 × Z.max 0 z) at 2. apply Zmult_ge_compat_r. auto. xomega.
  destruct (env!i). apply co_sizeof_pos. omega.
  destruct (env!i). apply co_sizeof_pos. omega.
Qed.

The size of a type is an integral multiple of its alignment, unless the alignment was artificially increased with the __Alignas attribute.

Fixpoint naturally_aligned (t: type) : Prop :=
  attr_alignas (attr_of_type t) = None
  match t with
  | Tarray t' _ _naturally_aligned t'
  | _True
  end.

Lemma sizeof_alignof_compat:
   env t, naturally_aligned t (alignof env t | sizeof env t).
Proof.
  induction t; intros [A B]; unfold alignof, align_attr; rewrite A; simpl.
- apply Zdivide_refl.
- destruct i; apply Zdivide_refl.
- (8 / Archi.align_int64). unfold Archi.align_int64; destruct Archi.ptr64; reflexivity.
- destruct f. apply Zdivide_refl. (8 / Archi.align_float64). unfold Archi.align_float64; destruct Archi.ptr64; reflexivity.
- apply Zdivide_refl.
- apply Z.divide_mul_l; auto.
- apply Zdivide_refl.
- destruct (env!i). apply co_sizeof_alignof. apply Zdivide_0.
- destruct (env!i). apply co_sizeof_alignof. apply Zdivide_0.
Qed.

Size and alignment for composite definitions

The alignment for a structure or union is the max of the alignment of its members.

Fixpoint alignof_composite (env: composite_env) (m: members) : Z :=
  match m with
  | nil ⇒ 1
  | (id, t) :: m'Z.max (alignof env t) (alignof_composite env m')
  end.

The size of a structure corresponds to its layout: fields are laid out consecutively, and padding is inserted to align each field to the alignment for its type.

Fixpoint sizeof_struct (env: composite_env) (cur: Z) (m: members) : Z :=
  match m with
  | nilcur
  | (id, t) :: m'sizeof_struct env (align cur (alignof env t) + sizeof env t) m'
  end.

The size of an union is the max of the sizes of its members.

Fixpoint sizeof_union (env: composite_env) (m: members) : Z :=
  match m with
  | nil ⇒ 0
  | (id, t) :: m'Z.max (sizeof env t) (sizeof_union env m')
  end.

Lemma alignof_composite_two_p:
   env m, n, alignof_composite env m = two_power_nat n.
Proof.
  induction m as [|[id t]]; simpl.
- 0%nat; auto.
- apply Z.max_case; auto. apply alignof_two_p.
Qed.

Lemma alignof_composite_pos:
   env m a, align_attr a (alignof_composite env m) > 0.
Proof.
  intros.
  exploit align_attr_two_p. apply (alignof_composite_two_p env m).
  instantiate (1 := a). intros [n EQ].
  rewrite EQ; apply two_power_nat_pos.
Qed.

Lemma sizeof_struct_incr:
   env m cur, cur sizeof_struct env cur m.
Proof.
  induction m as [|[id t]]; simpl; intros.
- omega.
- apply Zle_trans with (align cur (alignof env t)).
  apply align_le. apply alignof_pos.
  apply Zle_trans with (align cur (alignof env t) + sizeof env t).
  generalize (sizeof_pos env t); omega.
  apply IHm.
Qed.

Lemma sizeof_union_pos:
   env m, 0 sizeof_union env m.
Proof.
  induction m as [|[id t]]; simpl; xomega.
Qed.

Byte offset for a field of a structure

field_offset env id fld returns the byte offset for field id in a structure whose members are fld. Fields are laid out consecutively, and padding is inserted to align each field to the alignment for its type.

Fixpoint field_offset_rec (env: composite_env) (id: ident) (fld: members) (pos: Z)
                          {struct fld} : res Z :=
  match fld with
  | nilError (MSG "Unknown field " :: CTX id :: nil)
  | (id', t) :: fld'
      if ident_eq id id'
      then OK (align pos (alignof env t))
      else field_offset_rec env id fld' (align pos (alignof env t) + sizeof env t)
  end.

Definition field_offset (env: composite_env) (id: ident) (fld: members) : res Z :=
  field_offset_rec env id fld 0.

Fixpoint field_type (id: ident) (fld: members) {struct fld} : res type :=
  match fld with
  | nilError (MSG "Unknown field " :: CTX id :: nil)
  | (id', t) :: fld'if ident_eq id id' then OK t else field_type id fld'
  end.

Some sanity checks about field offsets. First, field offsets are within the range of acceptable offsets.

Remark field_offset_rec_in_range:
   env id ofs ty fld pos,
  field_offset_rec env id fld pos = OK ofs field_type id fld = OK ty
  pos ofs ofs + sizeof env ty sizeof_struct env pos fld.
Proof.
  intros until ty. induction fld as [|[i t]]; simpl; intros.
- discriminate.
- destruct (ident_eq id i); intros.
  inv H. inv H0. split.
  apply align_le. apply alignof_pos. apply sizeof_struct_incr.
  exploit IHfld; eauto. intros [A B]. split; auto.
  eapply Zle_trans; eauto. apply Zle_trans with (align pos (alignof env t)).
  apply align_le. apply alignof_pos. generalize (sizeof_pos env t). omega.
Qed.

Lemma field_offset_in_range:
   env fld id ofs ty,
  field_offset env id fld = OK ofs field_type id fld = OK ty
  0 ofs ofs + sizeof env ty sizeof_struct env 0 fld.
Proof.
  intros. eapply field_offset_rec_in_range; eauto.
Qed.

Second, two distinct fields do not overlap

Lemma field_offset_no_overlap:
   env id1 ofs1 ty1 id2 ofs2 ty2 fld,
  field_offset env id1 fld = OK ofs1 field_type id1 fld = OK ty1
  field_offset env id2 fld = OK ofs2 field_type id2 fld = OK ty2
  id1 id2
  ofs1 + sizeof env ty1 ofs2 ofs2 + sizeof env ty2 ofs1.
Proof.
  intros until fld. unfold field_offset. generalize 0 as pos.
  induction fld as [|[i t]]; simpl; intros.
- discriminate.
- destruct (ident_eq id1 i); destruct (ident_eq id2 i).
+ congruence.
+ subst i. inv H; inv H0.
  exploit field_offset_rec_in_range. eexact H1. eauto. tauto.
+ subst i. inv H1; inv H2.
  exploit field_offset_rec_in_range. eexact H. eauto. tauto.
+ eapply IHfld; eauto.
Qed.

Third, if a struct is a prefix of another, the offsets of common fields are the same.

Lemma field_offset_prefix:
   env id ofs fld2 fld1,
  field_offset env id fld1 = OK ofs
  field_offset env id (fld1 ++ fld2) = OK ofs.
Proof.
  intros until fld1. unfold field_offset. generalize 0 as pos.
  induction fld1 as [|[i t]]; simpl; intros.
- discriminate.
- destruct (ident_eq id i); auto.
Qed.

Fourth, the position of each field respects its alignment.

Lemma field_offset_aligned:
   env id fld ofs ty,
  field_offset env id fld = OK ofs field_type id fld = OK ty
  (alignof env ty | ofs).
Proof.
  intros until ty. unfold field_offset. generalize 0 as pos. revert fld.
  induction fld as [|[i t]]; simpl; intros.
- discriminate.
- destruct (ident_eq id i).
+ inv H; inv H0. apply align_divides. apply alignof_pos.
+ eauto.
Qed.

Access modes

The access_mode function describes how a l-value of the given type must be accessed:
  • By_value ch: access by value, i.e. by loading from the address of the l-value using the memory chunk ch;
  • By_reference: access by reference, i.e. by just returning the address of the l-value (used for arrays and functions);
  • By_copy: access is by reference, assignment is by copy (used for struct and union types)
  • By_nothing: no access is possible, e.g. for the void type.

Inductive mode: Type :=
  | By_value: memory_chunk mode
  | By_reference: mode
  | By_copy: mode
  | By_nothing: mode.

Definition access_mode (ty: type) : mode :=
  match ty with
  | Tint I8 Signed _By_value Mint8signed
  | Tint I8 Unsigned _By_value Mint8unsigned
  | Tint I16 Signed _By_value Mint16signed
  | Tint I16 Unsigned _By_value Mint16unsigned
  | Tint I32 _ _By_value Mint32
  | Tint IBool _ _By_value Mint8unsigned
  | Tlong _ _By_value Mint64
  | Tfloat F32 _By_value Mfloat32
  | Tfloat F64 _By_value Mfloat64
  | TvoidBy_nothing
  | Tpointer _ _By_value Mptr
  | Tarray _ _ _By_reference
  | Tfunction _ _ _By_reference
  | Tstruct _ _By_copy
  | Tunion _ _By_copy
end.

For the purposes of the semantics and the compiler, a type denotes a volatile access if it carries the volatile attribute and it is accessed by value.

Definition type_is_volatile (ty: type) : bool :=
  match access_mode ty with
  | By_value _attr_volatile (attr_of_type ty)
  | _false
  end.

Alignment for block copy operations

A variant of alignof for use in block copy operations. Block copy operations do not support alignments greater than 8, and require the size to be an integral multiple of the alignment.

Fixpoint alignof_blockcopy (env: composite_env) (t: type) : Z :=
  match t with
  | Tvoid ⇒ 1
  | Tint I8 _ _ ⇒ 1
  | Tint I16 _ _ ⇒ 2
  | Tint I32 _ _ ⇒ 4
  | Tint IBool _ _ ⇒ 1
  | Tlong _ _ ⇒ 8
  | Tfloat F32 _ ⇒ 4
  | Tfloat F64 _ ⇒ 8
  | Tpointer _ _if Archi.ptr64 then 8 else 4
  | Tarray t' _ _alignof_blockcopy env t'
  | Tfunction _ _ _ ⇒ 1
  | Tstruct id _ | Tunion id _
      match env!id with
      | Some coZ.min 8 (co_alignof co)
      | None ⇒ 1
      end
  end.

Lemma alignof_blockcopy_1248:
   env ty, let a := alignof_blockcopy env ty in a = 1 a = 2 a = 4 a = 8.
Proof.
  assert (X: co, let a := Zmin 8 (co_alignof co) in
             a = 1 a = 2 a = 4 a = 8).
  {
    intros. destruct (co_alignof_two_p co) as [n EQ]. unfold a; rewrite EQ.
    destruct n; auto.
    destruct n; auto.
    destruct n; auto.
    right; right; right. apply Z.min_l.
    rewrite two_power_nat_two_p. rewrite ! inj_S.
    change 8 with (two_p 3). apply two_p_monotone. omega.
  }
  induction ty; simpl.
  auto.
  destruct i; auto.
  auto.
  destruct f; auto.
  destruct Archi.ptr64; auto.
  apply IHty.
  auto.
  destruct (env!i); auto.
  destruct (env!i); auto.
Qed.

Lemma alignof_blockcopy_pos:
   env ty, alignof_blockcopy env ty > 0.
Proof.
  intros. generalize (alignof_blockcopy_1248 env ty). simpl. intuition omega.
Qed.

Lemma sizeof_alignof_blockcopy_compat:
   env ty, (alignof_blockcopy env ty | sizeof env ty).
Proof.
  assert (X: co, (Z.min 8 (co_alignof co) | co_sizeof co)).
  {
    intros. apply Zdivide_trans with (co_alignof co). 2: apply co_sizeof_alignof.
    destruct (co_alignof_two_p co) as [n EQ]. rewrite EQ.
    destruct n. apply Zdivide_refl.
    destruct n. apply Zdivide_refl.
    destruct n. apply Zdivide_refl.
    apply Z.min_case.
     (two_p (Z.of_nat n)).
    change 8 with (two_p 3).
    rewrite <- two_p_is_exp by omega.
    rewrite two_power_nat_two_p. rewrite !inj_S. f_equal. omega.
    apply Zdivide_refl.
  }
  induction ty; simpl.
  apply Zdivide_refl.
  apply Zdivide_refl.
  apply Zdivide_refl.
  apply Zdivide_refl.
  apply Zdivide_refl.
  apply Z.divide_mul_l. auto.
  apply Zdivide_refl.
  destruct (env!i). apply X. apply Zdivide_0.
  destruct (env!i). apply X. apply Zdivide_0.
Qed.

Type ranks
The rank of a type is a nonnegative integer that measures the direct nesting of arrays, struct and union types. It does not take into account indirect nesting such as a struct type that appears under a pointer or function type. Type ranks ensure that type expressions (ignoring pointer and function types) have an inductive structure.

Fixpoint rank_type (ce: composite_env) (t: type) : nat :=
  match t with
  | Tarray t' _ _S (rank_type ce t')
  | Tstruct id _ | Tunion id _
      match ce!id with
      | NoneO
      | Some coS (co_rank co)
      end
  | _O
  end.

Fixpoint rank_members (ce: composite_env) (m: members) : nat :=
  match m with
  | nil ⇒ 0%nat
  | (id, t) :: mPeano.max (rank_type ce t) (rank_members ce m)
  end.

C types and back-end types

Extracting a type list from a function parameter declaration.

Fixpoint type_of_params (params: list (ident × type)) : typelist :=
  match params with
  | nilTnil
  | (id, ty) :: remTcons ty (type_of_params rem)
  end.

Translating C types to Cminor types and function signatures.

Definition typ_of_type (t: type) : AST.typ :=
  match t with
  | TvoidAST.Tint
  | Tint _ _ _AST.Tint
  | Tlong _ _AST.Tlong
  | Tfloat F32 _AST.Tsingle
  | Tfloat F64 _AST.Tfloat
  | Tpointer _ _ | Tarray _ _ _ | Tfunction _ _ _ | Tstruct _ _ | Tunion _ _AST.Tptr
  end.

Definition opttyp_of_type (t: type) : option AST.typ :=
  if type_eq t Tvoid then None else Some (typ_of_type t).

Fixpoint typlist_of_typelist (tl: typelist) : list AST.typ :=
  match tl with
  | Tnilnil
  | Tcons hd tltyp_of_type hd :: typlist_of_typelist tl
  end.

Definition signature_of_type (args: typelist) (res: type) (cc: calling_convention): signature :=
  mksignature (typlist_of_typelist args) (opttyp_of_type res) cc.

Construction of the composite environment


Definition sizeof_composite (env: composite_env) (su: struct_or_union) (m: members) : Z :=
  match su with
  | Structsizeof_struct env 0 m
  | Unionsizeof_union env m
  end.

Lemma sizeof_composite_pos:
   env su m, 0 sizeof_composite env su m.
Proof.
  intros. destruct su; simpl.
  apply sizeof_struct_incr.
  apply sizeof_union_pos.
Qed.

Fixpoint complete_members (env: composite_env) (m: members) : bool :=
  match m with
  | niltrue
  | (id, t) :: m'complete_type env t && complete_members env m'
  end.

Lemma complete_member:
   env id t m,
  In (id, t) m complete_members env m = true complete_type env t = true.
Proof.
  induction m as [|[id1 t1] m]; simpl; intuition auto.
  InvBooleans; inv H1; auto.
  InvBooleans; eauto.
Qed.

Convert a composite definition to its internal representation. The size and alignment of the composite are determined at this time. The alignment takes into account the __Alignas attributes associated with the definition. The size is rounded up to a multiple of the alignment.
The conversion fails if a type of a member is not complete. This rules out incorrect recursive definitions such as
    struct s { int x; struct s next; }
Here, when we process the definition of struct s, the identifier s is not bound yet in the composite environment, hence field next has an incomplete type. However, recursions that go through a pointer type are correctly handled:
    struct s { int x; struct s * next; }
Here, next has a pointer type, which is always complete, even though s is not yet bound to a composite.

Program Definition composite_of_def
     (env: composite_env) (id: ident) (su: struct_or_union) (m: members) (a: attr)
     : res composite :=
  match env!id, complete_members env m return _ with
  | Some _, _
      Error (MSG "Multiple definitions of struct or union " :: CTX id :: nil)
  | None, false
      Error (MSG "Incomplete struct or union " :: CTX id :: nil)
  | None, true
      let al := align_attr a (alignof_composite env m) in
      OK {| co_su := su;
            co_members := m;
            co_attr := a;
            co_sizeof := align (sizeof_composite env su m) al;
            co_alignof := al;
            co_rank := rank_members env m;
            co_sizeof_pos := _;
            co_alignof_two_p := _;
            co_sizeof_alignof := _ |}
  end.
Next Obligation.
  apply Zle_ge. eapply Zle_trans. eapply sizeof_composite_pos.
  apply align_le; apply alignof_composite_pos.
Defined.
Next Obligation.
  apply align_attr_two_p. apply alignof_composite_two_p.
Defined.
Next Obligation.
  apply align_divides. apply alignof_composite_pos.
Defined.

The composite environment for a program is obtained by entering its composite definitions in sequence. The definitions are assumed to be listed in dependency order: the definition of a composite must precede all uses of this composite, unless the use is under a pointer or function type.

Local Open Scope error_monad_scope.

Fixpoint add_composite_definitions (env: composite_env) (defs: list composite_definition) : res composite_env :=
  match defs with
  | nilOK env
  | Composite id su m a :: defs
      do co <- composite_of_def env id su m a;
      add_composite_definitions (PTree.set id co env) defs
  end.

Definition build_composite_env (defs: list composite_definition) :=
  add_composite_definitions (PTree.empty _) defs.

Stability properties for alignments, sizes, and ranks. If the type is complete in a composite environment env, its size, alignment, and rank are unchanged if we add more definitions to env.

Section STABILITY.

Variables env env': composite_env.
Hypothesis extends: id co, env!id = Some co env'!id = Some co.

Lemma alignof_stable:
   t, complete_type env t = true alignof env' t = alignof env t.
Proof.
  induction t; simpl; intros; f_equal; auto.
  destruct (env!i) as [co|] eqn:E; try discriminate.
  erewrite extends by eauto. auto.
  destruct (env!i) as [co|] eqn:E; try discriminate.
  erewrite extends by eauto. auto.
Qed.

Lemma sizeof_stable:
   t, complete_type env t = true sizeof env' t = sizeof env t.
Proof.
  induction t; simpl; intros; auto.
  rewrite IHt by auto. auto.
  destruct (env!i) as [co|] eqn:E; try discriminate.
  erewrite extends by eauto. auto.
  destruct (env!i) as [co|] eqn:E; try discriminate.
  erewrite extends by eauto. auto.
Qed.

Lemma complete_type_stable:
   t, complete_type env t = true complete_type env' t = true.
Proof.
  induction t; simpl; intros; auto.
  destruct (env!i) as [co|] eqn:E; try discriminate.
  erewrite extends by eauto. auto.
  destruct (env!i) as [co|] eqn:E; try discriminate.
  erewrite extends by eauto. auto.
Qed.

Lemma rank_type_stable:
   t, complete_type env t = true rank_type env' t = rank_type env t.
Proof.
  induction t; simpl; intros; auto.
  destruct (env!i) as [co|] eqn:E; try discriminate.
  erewrite extends by eauto. auto.
  destruct (env!i) as [co|] eqn:E; try discriminate.
  erewrite extends by eauto. auto.
Qed.

Lemma alignof_composite_stable:
   m, complete_members env m = true alignof_composite env' m = alignof_composite env m.
Proof.
  induction m as [|[id t]]; simpl; intros.
  auto.
  InvBooleans. rewrite alignof_stable by auto. rewrite IHm by auto. auto.
Qed.

Lemma sizeof_struct_stable:
   m pos, complete_members env m = true sizeof_struct env' pos m = sizeof_struct env pos m.
Proof.
  induction m as [|[id t]]; simpl; intros.
  auto.
  InvBooleans. rewrite alignof_stable by auto. rewrite sizeof_stable by auto.
  rewrite IHm by auto. auto.
Qed.

Lemma sizeof_union_stable:
   m, complete_members env m = true sizeof_union env' m = sizeof_union env m.
Proof.
  induction m as [|[id t]]; simpl; intros.
  auto.
  InvBooleans. rewrite sizeof_stable by auto. rewrite IHm by auto. auto.
Qed.

Lemma sizeof_composite_stable:
   su m, complete_members env m = true sizeof_composite env' su m = sizeof_composite env su m.
Proof.
  intros. destruct su; simpl.
  apply sizeof_struct_stable; auto.
  apply sizeof_union_stable; auto.
Qed.

Lemma complete_members_stable:
   m, complete_members env m = true complete_members env' m = true.
Proof.
  induction m as [|[id t]]; simpl; intros.
  auto.
  InvBooleans. rewrite complete_type_stable by auto. rewrite IHm by auto. auto.
Qed.

Lemma rank_members_stable:
   m, complete_members env m = true rank_members env' m = rank_members env m.
Proof.
  induction m as [|[id t]]; simpl; intros.
  auto.
  InvBooleans. f_equal; auto. apply rank_type_stable; auto.
Qed.

End STABILITY.

Lemma add_composite_definitions_incr:
   id co defs env1 env2,
  add_composite_definitions env1 defs = OK env2
  env1!id = Some co env2!id = Some co.
Proof.
  induction defs; simpl; intros.
- inv H; auto.
- destruct a; monadInv H.
  eapply IHdefs; eauto. rewrite PTree.gso; auto.
  red; intros; subst id0. unfold composite_of_def in EQ. rewrite H0 in EQ; discriminate.
Qed.

It follows that the sizes and alignments contained in the composite environment produced by build_composite_env are consistent with the sizes and alignments of the members of the composite types.

Record composite_consistent (env: composite_env) (co: composite) : Prop := {
  co_consistent_complete:
     complete_members env (co_members co) = true;
  co_consistent_alignof:
     co_alignof co = align_attr (co_attr co) (alignof_composite env (co_members co));
  co_consistent_sizeof:
     co_sizeof co = align (sizeof_composite env (co_su co) (co_members co)) (co_alignof co);
  co_consistent_rank:
     co_rank co = rank_members env (co_members co)
}.

Definition composite_env_consistent (env: composite_env) : Prop :=
   id co, env!id = Some co composite_consistent env co.

Lemma composite_consistent_stable:
   (env env': composite_env)
         (EXTENDS: id co, env!id = Some co env'!id = Some co)
         co,
  composite_consistent env co composite_consistent env' co.
Proof.
  intros. destruct H as [A B C D]. constructor.
  eapply complete_members_stable; eauto.
  symmetry; rewrite B. f_equal. apply alignof_composite_stable; auto.
  symmetry; rewrite C. f_equal. apply sizeof_composite_stable; auto.
  symmetry; rewrite D. apply rank_members_stable; auto.
Qed.

Lemma composite_of_def_consistent:
   env id su m a co,
  composite_of_def env id su m a = OK co
  composite_consistent env co.
Proof.
  unfold composite_of_def; intros.
  destruct (env!id); try discriminate. destruct (complete_members env m) eqn:C; inv H.
  constructor; auto.
Qed.

Theorem build_composite_env_consistent:
   defs env, build_composite_env defs = OK env composite_env_consistent env.
Proof.
  cut ( defs env0 env,
       add_composite_definitions env0 defs = OK env
       composite_env_consistent env0
       composite_env_consistent env).
  intros. eapply H; eauto. red; intros. rewrite PTree.gempty in H1; discriminate.
  induction defs as [|d1 defs]; simpl; intros.
- inv H; auto.
- destruct d1; monadInv H.
  eapply IHdefs; eauto.
  set (env1 := PTree.set id x env0) in ×.
  assert (env0!id = None).
  { unfold composite_of_def in EQ. destruct (env0!id). discriminate. auto. }
  assert ( id1 co1, env0!id1 = Some co1 env1!id1 = Some co1).
  { intros. unfold env1. rewrite PTree.gso; auto. congruence. }
  red; intros. apply composite_consistent_stable with env0; auto.
  unfold env1 in H2; rewrite PTree.gsspec in H2; destruct (peq id0 id).
+ subst id0. inversion H2; clear H2. subst co.
  eapply composite_of_def_consistent; eauto.
+ eapply H0; eauto.
Qed.

Moreover, every composite definition is reflected in the composite environment.

Theorem build_composite_env_charact:
   id su m a defs env,
  build_composite_env defs = OK env
  In (Composite id su m a) defs
   co, env!id = Some co co_members co = m co_attr co = a co_su co = su.
Proof.
  intros until defs. unfold build_composite_env. generalize (PTree.empty composite) as env0.
  revert defs. induction defs as [|d1 defs]; simpl; intros.
- contradiction.
- destruct d1; monadInv H.
  destruct H0; [idtac|eapply IHdefs;eauto]. inv H.
  unfold composite_of_def in EQ.
  destruct (env0!id) eqn:E; try discriminate.
  destruct (complete_members env0 m) eqn:C; simplify_eq EQ. clear EQ; intros EQ.
   x.
  split. eapply add_composite_definitions_incr; eauto. apply PTree.gss.
  subst x; auto.
Qed.

Theorem build_composite_env_domain:
   env defs id co,
  build_composite_env defs = OK env
  env!id = Some co
  In (Composite id (co_su co) (co_members co) (co_attr co)) defs.
Proof.
  intros env0 defs0 id co.
  assert (REC: l env env',
    add_composite_definitions env l = OK env'
    env'!id = Some co
    env!id = Some co In (Composite id (co_su co) (co_members co) (co_attr co)) l).
  { induction l; simpl; intros.
  - inv H; auto.
  - destruct a; monadInv H. exploit IHl; eauto.
    unfold composite_of_def in EQ. destruct (env!id0) eqn:E; try discriminate.
    destruct (complete_members env m) eqn:C; simplify_eq EQ. clear EQ; intros EQ.
    rewrite PTree.gsspec. intros [A|A]; auto.
    destruct (peq id id0); auto.
    inv A. rewrite <- H0; auto.
  }
  intros. exploit REC; eauto. rewrite PTree.gempty. intuition congruence.
Qed.

As a corollay, in a consistent environment, the rank of a composite type is strictly greater than the ranks of its member types.

Remark rank_type_members:
   ce id t m, In (id, t) m (rank_type ce t rank_members ce m)%nat.
Proof.
  induction m; simpl; intros; intuition auto.
  subst a. xomega.
  xomega.
Qed.

Lemma rank_struct_member:
   ce id a co id1 t1,
  composite_env_consistent ce
  ce!id = Some co
  In (id1, t1) (co_members co)
  (rank_type ce t1 < rank_type ce (Tstruct id a))%nat.
Proof.
  intros; simpl. rewrite H0.
  erewrite co_consistent_rank by eauto.
  exploit (rank_type_members ce); eauto.
  omega.
Qed.

Lemma rank_union_member:
   ce id a co id1 t1,
  composite_env_consistent ce
  ce!id = Some co
  In (id1, t1) (co_members co)
  (rank_type ce t1 < rank_type ce (Tunion id a))%nat.
Proof.
  intros; simpl. rewrite H0.
  erewrite co_consistent_rank by eauto.
  exploit (rank_type_members ce); eauto.
  omega.
Qed.

Programs and compilation units

The definitions in this section are parameterized over a type F of internal function definitions, so that they apply both to CompCert C and to Clight.

Set Implicit Arguments.

Section PROGRAMS.

Variable F: Type.

Functions can either be defined (Internal) or declared as external functions (External).
A program, or compilation unit, is composed of:
  • a list of definitions of functions and global variables;
  • the names of functions and global variables that are public (not static);
  • the name of the function that acts as entry point ("main" function).
  • a list of definitions for structure and union names
  • the corresponding composite environment
  • a proof that this environment is consistent with the definitions.

Record program : Type := {
  prog_defs: list (ident × option (globdef fundef type));
  prog_public: list ident;
  prog_main: ident;
  prog_types: list composite_definition;
  prog_comp_env: composite_env;
  prog_comp_env_eq: build_composite_env prog_types = OK prog_comp_env
}.

Definition program_of_program (p: program) : AST.program fundef type :=
  {| AST.prog_defs := p.(prog_defs);
     AST.prog_public := p.(prog_public);
     AST.prog_main := p.(prog_main) |}.

Coercion program_of_program: program >-> AST.program.

Program Definition make_program (types: list composite_definition)
                                (defs: list (ident × option (globdef fundef type)))
                                (public: list ident)
                                (main: ident) : res program :=
  match build_composite_env types with
  | Error eError e
  | OK ce
      OK {| prog_defs := defs;
            prog_public := public;
            prog_main := main;
            prog_types := types;
            prog_comp_env := ce;
            prog_comp_env_eq := _ |}
  end.

End PROGRAMS.

Arguments External {F} _ _ _ _.

Unset Implicit Arguments.

Separate compilation and linking

Linking types


Instance Linker_types : Linker type := {
  link := fun t1 t2if type_eq t1 t2 then Some t1 else None;
  linkorder := fun t1 t2t1 = t2
}.
Proof.
  auto.
  intros; congruence.
  intros. destruct (type_eq x y); inv H. auto.
Defined.

Global Opaque Linker_types.

Linking composite definitions


Definition check_compat_composite (l: list composite_definition) (cd: composite_definition) : bool :=
  List.forallb
    (fun cd'
      if ident_eq (name_composite_def cd') (name_composite_def cd) then composite_def_eq cd cd' else true)
    l.

Definition filter_redefs (l1 l2: list composite_definition) :=
  let names1 := map name_composite_def l1 in
  List.filter (fun cdnegb (In_dec ident_eq (name_composite_def cd) names1)) l2.

Definition link_composite_defs (l1 l2: list composite_definition): option (list composite_definition) :=
  if List.forallb (check_compat_composite l2) l1
  then Some (l1 ++ filter_redefs l1 l2)
  else None.

Lemma link_composite_def_inv:
   l1 l2 l,
  link_composite_defs l1 l2 = Some l
     ( cd1 cd2, In cd1 l1 In cd2 l2 name_composite_def cd2 = name_composite_def cd1 cd2 = cd1)
   l = l1 ++ filter_redefs l1 l2
   ( x, In x l In x l1 In x l2).
Proof.
  unfold link_composite_defs; intros.
  destruct (forallb (check_compat_composite l2) l1) eqn:C; inv H.
  assert (A:
     cd1 cd2, In cd1 l1 In cd2 l2 name_composite_def cd2 = name_composite_def cd1 cd2 = cd1).
  { rewrite forallb_forall in C. intros.
    apply C in H. unfold check_compat_composite in H. rewrite forallb_forall in H.
    apply H in H0. rewrite H1, dec_eq_true in H0. symmetry; eapply proj_sumbool_true; eauto. }
  split. auto. split. auto.
  unfold filter_redefs; intros.
  rewrite in_app_iff. rewrite filter_In. intuition auto.
  destruct (in_dec ident_eq (name_composite_def x) (map name_composite_def l1)); simpl; auto.
  exploit list_in_map_inv; eauto. intros (y & P & Q).
  assert (x = y) by eauto. subst y. auto.
Qed.

Instance Linker_composite_defs : Linker (list composite_definition) := {
  link := link_composite_defs;
  linkorder := @List.incl composite_definition
}.
Proof.
- intros; apply incl_refl.
- intros; red; intros; eauto.
- intros. apply link_composite_def_inv in H; destruct H as (A & B & C).
  split; red; intros; apply C; auto.
Defined.

Connections with build_composite_env.

Lemma add_composite_definitions_append:
   l1 l2 env env'',
  add_composite_definitions env (l1 ++ l2) = OK env''
   env', add_composite_definitions env l1 = OK env' add_composite_definitions env' l2 = OK env''.
Proof.
  induction l1; simpl; intros.
- split; intros. env; auto. destruct H as (env' & A & B). congruence.
- destruct a; simpl. destruct (composite_of_def env id su m a); simpl.
  apply IHl1.
  split; intros. discriminate. destruct H as (env' & A & B); discriminate.
Qed.

Lemma composite_eq:
   su1 m1 a1 sz1 al1 r1 pos1 al2p1 szal1
         su2 m2 a2 sz2 al2 r2 pos2 al2p2 szal2,
  su1 = su2 m1 = m2 a1 = a2 sz1 = sz2 al1 = al2 r1 = r2
  Build_composite su1 m1 a1 sz1 al1 r1 pos1 al2p1 szal1 = Build_composite su2 m2 a2 sz2 al2 r2 pos2 al2p2 szal2.
Proof.
  intros. subst.
  assert (pos1 = pos2) by apply proof_irr.
  assert (al2p1 = al2p2) by apply proof_irr.
  assert (szal1 = szal2) by apply proof_irr.
  subst. reflexivity.
Qed.

Lemma composite_of_def_eq:
   env id co,
  composite_consistent env co
  env!id = None
  composite_of_def env id (co_su co) (co_members co) (co_attr co) = OK co.
Proof.
  intros. destruct H as [A B C D]. unfold composite_of_def. rewrite H0, A.
  destruct co; simpl in ×. f_equal. apply composite_eq; auto. rewrite C, B; auto.
Qed.

Lemma composite_consistent_unique:
   env co1 co2,
  composite_consistent env co1
  composite_consistent env co2
  co_su co1 = co_su co2
  co_members co1 = co_members co2
  co_attr co1 = co_attr co2
  co1 = co2.
Proof.
  intros. destruct H, H0. destruct co1, co2; simpl in ×. apply composite_eq; congruence.
Qed.

Lemma composite_of_def_stable:
   (env env': composite_env)
         (EXTENDS: id co, env!id = Some co env'!id = Some co)
         id su m a co,
  env'!id = None
  composite_of_def env id su m a = OK co
  composite_of_def env' id su m a = OK co.
Proof.
  intros.
  unfold composite_of_def in H0.
  destruct (env!id) eqn:E; try discriminate.
  destruct (complete_members env m) eqn:CM; try discriminate.
  transitivity (composite_of_def env' id (co_su co) (co_members co) (co_attr co)).
  inv H0; auto.
  apply composite_of_def_eq; auto.
  apply composite_consistent_stable with env; auto.
  inv H0; constructor; auto.
Qed.

Lemma link_add_composite_definitions:
   l0 env0,
  build_composite_env l0 = OK env0
   l env1 env1' env2,
  add_composite_definitions env1 l = OK env1'
  ( id co, env1!id = Some co env2!id = Some co)
  ( id co, env0!id = Some co env2!id = Some co)
  ( id, env2!id = if In_dec ident_eq id (map name_composite_def l0) then env0!id else env1!id)
  (( cd1 cd2, In cd1 l0 In cd2 l name_composite_def cd2 = name_composite_def cd1 cd2 = cd1))
  { env2' |
      add_composite_definitions env2 (filter_redefs l0 l) = OK env2'
   ( id co, env1'!id = Some co env2'!id = Some co)
   ( id co, env0!id = Some co env2'!id = Some co) }.
Proof.
  induction l; simpl; intros until env2; intros ACD AGREE1 AGREE0 AGREE2 UNIQUE.
- inv ACD. env2; auto.
- destruct a. destruct (composite_of_def env1 id su m a) as [x|e] eqn:EQ; try discriminate.
  simpl in ACD.
  generalize EQ. unfold composite_of_def at 1.
  destruct (env1!id) eqn:E1; try congruence.
  destruct (complete_members env1 m) eqn:CM1; try congruence.
  intros EQ1.
  simpl. destruct (in_dec ident_eq id (map name_composite_def l0)); simpl.
+ eapply IHl; eauto.
× intros. rewrite PTree.gsspec in H0. destruct (peq id0 id); auto.
  inv H0.
  exploit list_in_map_inv; eauto. intros ([id' su' m' a'] & P & Q).
  assert (X: Composite id su m a = Composite id' su' m' a').
  { eapply UNIQUE. auto. auto. rewrite <- P; auto. }
  inv X.
  exploit build_composite_env_charact; eauto. intros (co' & U & V & W & X).
  assert (co' = co).
  { apply composite_consistent_unique with env2.
    apply composite_consistent_stable with env0; auto.
    eapply build_composite_env_consistent; eauto.
    apply composite_consistent_stable with env1; auto.
    inversion EQ1; constructor; auto.
    inversion EQ1; auto.
    inversion EQ1; auto.
    inversion EQ1; auto. }
  subst co'. apply AGREE0; auto.
× intros. rewrite AGREE2. destruct (in_dec ident_eq id0 (map name_composite_def l0)); auto.
  rewrite PTree.gsspec. destruct (peq id0 id); auto. subst id0. contradiction.
+ assert (E2: env2!id = None).
  { rewrite AGREE2. rewrite pred_dec_false by auto. auto. }
  assert (E3: composite_of_def env2 id su m a = OK x).
  { eapply composite_of_def_stable. eexact AGREE1. eauto. eauto. }
  rewrite E3. simpl. eapply IHl; eauto.
× intros until co; rewrite ! PTree.gsspec. destruct (peq id0 id); auto.
× intros until co; rewrite ! PTree.gsspec. intros. destruct (peq id0 id); auto.
  subst id0. apply AGREE0 in H0. congruence.
× intros. rewrite ! PTree.gsspec. destruct (peq id0 id); auto. subst id0.
  rewrite pred_dec_false by auto. auto.
Qed.

Theorem link_build_composite_env:
   l1 l2 l env1 env2,
  build_composite_env l1 = OK env1
  build_composite_env l2 = OK env2
  link l1 l2 = Some l
  { env |
     build_composite_env l = OK env
   ( id co, env1!id = Some co env!id = Some co)
   ( id co, env2!id = Some co env!id = Some co) }.
Proof.
  intros. edestruct link_composite_def_inv as (A & B & C); eauto.
  edestruct link_add_composite_definitions as (env & P & Q & R).
  eexact H.
  eexact H0.
  instantiate (1 := env1). intros. rewrite PTree.gempty in H2; discriminate.
  auto.
  intros. destruct (in_dec ident_eq id (map name_composite_def l1)); auto.
  rewrite PTree.gempty. destruct (env1!id) eqn:E1; auto.
  exploit build_composite_env_domain. eexact H. eauto.
  intros. apply (in_map name_composite_def) in H2. elim n; auto.
  auto.
   env; split; auto. subst l. apply add_composite_definitions_append. env1; auto.
Qed.

Linking function definitions


Definition link_fundef {F: Type} (fd1 fd2: fundef F) :=
  match fd1, fd2 with
  | Internal _, Internal _None
  | External ef1 targs1 tres1 cc1, External ef2 targs2 tres2 cc2
      if external_function_eq ef1 ef2
      && typelist_eq targs1 targs2
      && type_eq tres1 tres2
      && calling_convention_eq cc1 cc2
      then Some (External ef1 targs1 tres1 cc1)
      else None
  | Internal f, External ef targs tres cc
      match ef with EF_external id sgSome (Internal f) | _None end
  | External ef targs tres cc, Internal f
      match ef with EF_external id sgSome (Internal f) | _None end
  end.

Inductive linkorder_fundef {F: Type}: fundef F fundef F Prop :=
  | linkorder_fundef_refl: fd,
      linkorder_fundef fd fd
  | linkorder_fundef_ext_int: f id sg targs tres cc,
      linkorder_fundef (External (EF_external id sg) targs tres cc) (Internal f).

Instance Linker_fundef (F: Type): Linker (fundef F) := {
  link := link_fundef;
  linkorder := linkorder_fundef
}.
Proof.
- intros; constructor.
- intros. inv H; inv H0; constructor.
- intros x y z EQ. destruct x, y; simpl in EQ.
+ discriminate.
+ destruct e; inv EQ. split; constructor.
+ destruct e; inv EQ. split; constructor.
+ destruct (external_function_eq e e0 && typelist_eq t t1 && type_eq t0 t2 && calling_convention_eq c c0) eqn:A; inv EQ.
  InvBooleans. subst. split; constructor.
Defined.

Remark link_fundef_either:
   (F: Type) (f1 f2 f: fundef F), link f1 f2 = Some f f = f1 f = f2.
Proof.
  simpl; intros. unfold link_fundef in H. destruct f1, f2; try discriminate.
- destruct e; inv H. auto.
- destruct e; inv H. auto.
- destruct (external_function_eq e e0 && typelist_eq t t1 && type_eq t0 t2 && calling_convention_eq c c0); inv H; auto.
Qed.

Global Opaque Linker_fundef.

Linking programs


Definition lift_option {A: Type} (opt: option A) : { x | opt = Some x } + { opt = None }.
Proof.
  destruct opt. left; a; auto. right; auto.
Defined.

Definition link_program {F:Type} (p1 p2: program F): option (program F) :=
  match link (program_of_program p1) (program_of_program p2) with
  | NoneNone
  | Some p
      match lift_option (link p1.(prog_types) p2.(prog_types)) with
      | inright _None
      | inleft (exist typs EQ) ⇒
          match link_build_composite_env
                   p1.(prog_types) p2.(prog_types) typs
                   p1.(prog_comp_env) p2.(prog_comp_env)
                   p1.(prog_comp_env_eq) p2.(prog_comp_env_eq) EQ with
          | exist env (conj P Q) ⇒
              Some {| prog_defs := p.(AST.prog_defs);
                      prog_public := p.(AST.prog_public);
                      prog_main := p.(AST.prog_main);
                      prog_types := typs;
                      prog_comp_env := env;
                      prog_comp_env_eq := P |}
          end
      end
  end.

Definition linkorder_program {F: Type} (p1 p2: program F) : Prop :=
     linkorder (program_of_program p1) (program_of_program p2)
   ( id co, p1.(prog_comp_env)!id = Some co p2.(prog_comp_env)!id = Some co).

Instance Linker_program (F: Type): Linker (program F) := {
  link := link_program;
  linkorder := linkorder_program
}.
Proof.
- intros; split. apply linkorder_refl. auto.
- intros. destruct H, H0. split. eapply linkorder_trans; eauto.
  intros; auto.
- intros until z. unfold link_program.
  destruct (link (program_of_program x) (program_of_program y)) as [p|] eqn:LP; try discriminate.
  destruct (lift_option (link (prog_types x) (prog_types y))) as [[typs EQ]|EQ]; try discriminate.
  destruct (link_build_composite_env (prog_types x) (prog_types y) typs
       (prog_comp_env x) (prog_comp_env y) (prog_comp_env_eq x)
       (prog_comp_env_eq y) EQ) as (env & P & Q & R).
  destruct (link_linkorder _ _ _ LP).
  intros X; inv X.
  split; split; auto.
Defined.

Global Opaque Linker_program.

Commutation between linking and program transformations


Section LINK_MATCH_PROGRAM.

Context {F G: Type}.
Variable match_fundef: fundef F fundef G Prop.

Hypothesis link_match_fundef:
   f1 tf1 f2 tf2 f,
  link f1 f2 = Some f
  match_fundef f1 tf1 match_fundef f2 tf2
   tf, link tf1 tf2 = Some tf match_fundef f tf.

Let match_program (p: program F) (tp: program G) : Prop :=
    Linking.match_program (fun ctx f tfmatch_fundef f tf) eq p tp
  prog_types tp = prog_types p.

Theorem link_match_program:
   p1 p2 tp1 tp2 p,
  link p1 p2 = Some p match_program p1 tp1 match_program p2 tp2
   tp, link tp1 tp2 = Some tp match_program p tp.
Proof.
  intros. destruct H0, H1.
Local Transparent Linker_program.
  simpl in H; unfold link_program in H.
  destruct (link (program_of_program p1) (program_of_program p2)) as [pp|] eqn:LP; try discriminate.
  assert (A: tpp,
               link (program_of_program tp1) (program_of_program tp2) = Some tpp
              Linking.match_program (fun ctx f tfmatch_fundef f tf) eq pp tpp).
  { eapply Linking.link_match_program.
  - intros. exploit link_match_fundef; eauto. intros (tf & A & B). tf; auto.
  - intros.
    Local Transparent Linker_types.
    simpl in ×. destruct (type_eq v1 v2); inv H4. v; rewrite dec_eq_true; auto.
  - eauto.
  - eauto.
  - eauto.
  - apply (link_linkorder _ _ _ LP).
  - apply (link_linkorder _ _ _ LP). }
  destruct A as (tpp & TLP & MP).
  simpl; unfold link_program. rewrite TLP.
  destruct (lift_option (link (prog_types p1) (prog_types p2))) as [[typs EQ]|EQ]; try discriminate.
  destruct (link_build_composite_env (prog_types p1) (prog_types p2) typs
           (prog_comp_env p1) (prog_comp_env p2) (prog_comp_env_eq p1)
           (prog_comp_env_eq p2) EQ) as (env & P & Q).
  rewrite <- H2, <- H3 in EQ.
  destruct (lift_option (link (prog_types tp1) (prog_types tp2))) as [[ttyps EQ']|EQ']; try congruence.
  assert (ttyps = typs) by congruence. subst ttyps.
  destruct (link_build_composite_env (prog_types tp1) (prog_types tp2) typs
         (prog_comp_env tp1) (prog_comp_env tp2) (prog_comp_env_eq tp1)
         (prog_comp_env_eq tp2) EQ') as (tenv & R & S).
  assert (tenv = env) by congruence. subst tenv.
  econstructor; split; eauto. inv H. split; auto.
  unfold program_of_program; simpl. destruct pp, tpp; exact MP.
Qed.

End LINK_MATCH_PROGRAM.