Library mcertikos.mcslock.MMCSLockOp


This file defines the abstract data and the primitives for the PAbQueue layer, which will introduce abstraction of kernel context
Require Import Coqlib.
Require Import Maps.
Require Import ASTExtra.
Require Import Integers.
Require Import Floats.
Require Import Values.
Require Import Memory.
Require Import Events.
Require Import Stacklayout.
Require Import Globalenvs.
Require Import AsmX.
Require Import Smallstep.
Require Import AuxStateDataType.
Require Import Constant.
Require Import GlobIdent.
Require Import FlatMemory.
Require Import CommonTactic.
Require Import AuxLemma.
Require Import RealParams.
Require Import PrimSemantics.
Require Import LAsm.
Require Import LoadStoreSem1.
Require Import XOmega.

Require Import liblayers.logic.PTreeModules.
Require Import liblayers.logic.LayerLogicImpl.
Require Import liblayers.compat.CompatLayers.
Require Import liblayers.compat.CompatGenSem.

Require Import AbstractDataType.
Require Export MMCSLockAbsIntro.
Require Import ObjMCSLock.

Abstract Data and Primitives at this layer

Section WITHMEM.

  Local Open Scope Z_scope.

  Context `{real_params: RealParams}.
  Context `{mcs_oracle_prop: MCSOracleProp}.

  Context `{Hstencil: Stencil}.
  Context `{Hmem: Mem.MemoryModelX}.
  Context `{Hmwd: UseMemWithData mem}.
  Context `{fairness: WaitTime}.

Proofs that the primitives satisfies the invariants at this layer

  Section INV.

    Lemma CalMCS_RelWaitPreserveInv:
       cur_loop_index lock_index d pre_log res,
        ihost d = true
        ikern d = true
        0 lock_index < lock_range
        high_level_invariant d
        ZMap.get lock_index (multi_log d) = MultiDef pre_log
        CalMCS_RelWait cur_loop_index (CPU_ID d) pre_log
                       (ZMap.get lock_index (multi_oracle d)) = Some res
        valid_MCS_log res.
    Proof.
      induction cur_loop_index; intros.
      - Transparent CalMCS_RelWait.
        simpl in H4.
        inv H4.
      - simpl in H4.
        subdestruct.
        + assert (new_ikern:
                    ikern (d {multi_log:
                                ZMap.set lock_index
                                         (MultiDef
                                            (TEVENT (CPU_ID d) (TTICKET GET_NEXT)
                                                    :: ZMap.get lock_index
                                                    (multi_oracle d) (CPU_ID d) pre_log ++ pre_log))
                                         (multi_log d)}) = true).
          { simpl; auto. }
          eapply IHcur_loop_index in new_ikern; eauto;
          [ | simpl; rewrite ZMap.gss; auto].
          inv H2.
          econstructor; simpl; eauto.
          intros.
          unfold valid_MCS_log_pool.
          intros.
          simpl in new_ikern.
          unfold valid_MCS_log_pool in valid_multi_log_pool_mcs_inv.
          case_eq (zeq i lock_index); subst; intros.
          × subst; rewrite ZMap.gss in Hdef; inv Hdef.
            assert (valid_MCS_log pre_log).
            { eapply valid_multi_log_pool_mcs_inv; eauto. }
            unfold valid_multi_oracle_pool_mcs in valid_multi_oracle_pool_mcs_inv.
            unfold valid_multi_oracle_mcs in valid_multi_oracle_pool_mcs_inv.
            eapply valid_multi_oracle_pool_mcs_inv with (i := lock_index) (i0 := (CPU_ID d)) in H5;
              auto.
            unfold valid_MCS_log in H5; unfold valid_MCS_log.
            intros; simpl.
            unfold MCSCorrect_range in H5; unfold MCSCorrect_range.
            intros.
            Transparent CalMCSLock.
            simpl in H6; subdestruct.
            inv Hmcs; inv H6.
            eapply H5; eauto.
          × rewrite ZMap.gso in Hdef; eauto.
        + inv H4.
          assert (intermid_valid:
                    valid_MCS_log (TEVENT (CPU_ID d) (TTICKET GET_NEXT)
                                          :: ZMap.get lock_index (multi_oracle d) (CPU_ID d)
                                          pre_log ++ pre_log)).
          { inv H2.
            unfold valid_MCS_log_pool in valid_multi_log_pool_mcs_inv.
            assert (valid_MCS_log pre_log).
            { eapply valid_multi_log_pool_mcs_inv; eauto. }
            unfold valid_multi_oracle_pool_mcs in valid_multi_oracle_pool_mcs_inv.
            unfold valid_multi_oracle_mcs in valid_multi_oracle_pool_mcs_inv.
            eapply valid_multi_oracle_pool_mcs_inv with (i := lock_index) (i0 := (CPU_ID d)) in H2; auto.
            unfold valid_MCS_log in H2; unfold valid_MCS_log.
            intros.
            simpl in H4.
            subdestruct.
            subst.
            inv H4.
            eapply H2; eauto. }
          inv H2.
          unfold valid_multi_oracle_pool_mcs in valid_multi_oracle_pool_mcs_inv.
          unfold valid_multi_oracle_mcs in valid_multi_oracle_pool_mcs_inv.
          eapply valid_multi_oracle_pool_mcs_inv with (i := lock_index) (i0 := (CPU_ID d))
            in intermid_valid; auto.
          unfold valid_MCS_log in intermid_valid; unfold valid_MCS_log.
          unfold MCSCorrect_range in intermid_valid; unfold MCSCorrect_range.
          intros.
          simpl in H2; subdestruct.
          inv Hmcs; inv H2; inv Hdestruct3.
          assert (MCSLOCK tail0 lock_array0 bounds0 = MCSLOCK tail0 lock_array0 bounds0).
          { reflexivity. }
          eapply intermid_valid in H2; destruct H2; try eauto.
          split; try tauto.
          intros.
          case_eq (zeq i z1); intros.
          × subst. rewrite ZMap.gss; simpl; auto.
            eapply H4 in H5.
            rewrite Hdestruct8 in H5.
            simpl; trivial.
          × rewrite ZMap.gso; simpl; auto.
            Opaque CalMCS_RelWait CalMCSLock.
    Qed.

    Lemma CalMCS_AcqWaitPreserveInv:
       cur_loop_index lock_index d pre_log res,
        ihost d = true
        ikern d = true
        0 lock_index < lock_range
        high_level_invariant d
        ZMap.get lock_index (multi_log d) = MultiDef pre_log
        CalMCS_AcqWait cur_loop_index (CPU_ID d) pre_log
                       (ZMap.get lock_index (multi_oracle d)) = Some res
        valid_MCS_log res.
    Proof.
      induction cur_loop_index; intros.
      - Transparent CalMCS_AcqWait.
        simpl in H4.
        inv H4.
      - simpl in H4.
        subdestruct.
        + assert (new_ikern:
                    ikern (d {multi_log:
                                ZMap.set lock_index
                                         (MultiDef
                                            (TEVENT (CPU_ID d) (TTICKET (GET_BUSY true))
                                                    :: ZMap.get lock_index
                                                    (multi_oracle d) (CPU_ID d) pre_log ++ pre_log))
                                         (multi_log d)}) = true).
          { simpl; auto. }
          eapply IHcur_loop_index in new_ikern; eauto;
          [ | simpl; rewrite ZMap.gss; auto].
          inv H2.
          econstructor; simpl; eauto.
          intros.
          unfold valid_MCS_log_pool.
          intros.
          simpl in new_ikern.
          unfold valid_MCS_log_pool in valid_multi_log_pool_mcs_inv.
          case_eq (zeq i lock_index); subst; intros.
          × subst; rewrite ZMap.gss in Hdef; inv Hdef.
            assert (valid_MCS_log pre_log).
            { eapply valid_multi_log_pool_mcs_inv; eauto. }
            unfold valid_multi_oracle_pool_mcs in valid_multi_oracle_pool_mcs_inv.
            unfold valid_multi_oracle_mcs in valid_multi_oracle_pool_mcs_inv.
            eapply valid_multi_oracle_pool_mcs_inv with (i := lock_index) (i0 := (CPU_ID d)) in H5;
              auto.
            unfold valid_MCS_log in H5; unfold valid_MCS_log.
            intros; simpl.
            unfold MCSCorrect_range in H5; unfold MCSCorrect_range.
            intros.
            Transparent CalMCSLock.
            simpl in H6; subdestruct.
            inv Hmcs; inv H6; inv Hdestruct.
            eapply H5; eauto.
          × rewrite ZMap.gso in Hdef; eauto.
        + inv H4.
          inv H2.
          unfold valid_MCS_log_pool in valid_multi_log_pool_mcs_inv.
          assert (valid_MCS_log pre_log).
          { eapply valid_multi_log_pool_mcs_inv; eauto. }
          unfold valid_multi_oracle_pool_mcs in valid_multi_oracle_pool_mcs_inv.
          unfold valid_multi_oracle_mcs in valid_multi_oracle_pool_mcs_inv.
          eapply valid_multi_oracle_pool_mcs_inv with (i := lock_index) (i0 := (CPU_ID d)) in H2; auto.
          unfold valid_MCS_log in H3; unfold valid_MCS_log.
          intros.
          simpl in H4.
          subdestruct.
          inv H4.
          eapply H2; eauto.
    Qed.

    Global Instance mcs_pass_lock_inv: PreservesInvariants mcs_pass_lock_spec.
    Proof.
      preserves_invariants_simpl_auto1.
      - assert (true = true) by reflexivity.
        assert (lock_range_val: 0 z < lock_range).
        { unfold index2Z in Hdestruct1.
          unfold lock_range. unfold ID_AT_range, ID_TCB_range, ID_SC_range.
          Opaque Z.add Z.mul.
          subdestruct.
          unfold index_range in Hdestruct4.
          inv Hdestruct1.
          subdestruct.
          - unfold index_incrange in Hdestruct7.
            inv Hdestruct7.
            unfold ID_AT_range in Hdestruct4; inv Hdestruct4.
            omega.
          - unfold ID_SC_range in Hdestruct4.
            inv Hdestruct4.
            unfold index_incrange in Hdestruct7.
            unfold lock_TCB_range in Hdestruct7; inv Hdestruct7.
            unfold ID_AT_range, ID_TCB_range; omega.
          - unfold ID_TCB_range in Hdestruct4; inv Hdestruct4.
            unfold index_incrange in Hdestruct7; inv Hdestruct7.
            unfold ID_AT_range; omega. }
        unfold valid_MCS_log_pool in valid_multi_log_pool_mcs_inv.
        generalize lock_range_val; intro lock_range_val´.
        eapply valid_multi_log_pool_mcs_inv in lock_range_val; eauto.
        unfold valid_multi_oracle_pool_mcs in valid_multi_oracle_pool_mcs_inv.
        unfold valid_multi_oracle_mcs in valid_multi_oracle_pool_mcs_inv.
        eapply valid_multi_oracle_pool_mcs_inv with (i := z) (i0 := CPU_ID d)
          in lock_range_val; eauto.
        unfold valid_MCS_log_pool.
        intros.
        case_eq (zeq i1 z); intros.
        + unfold valid_MCS_log.
          unfold valid_MCS_log in lock_range_val.
          intros.
          unfold MCSCorrect_range in ×.
          intros.
          subst.
          rewrite ZMap.gss in Hdef.
          inv Hdef.
          Transparent CalMCSLock.
          simpl in H1.
          subdestruct.
          inv H1.
          inv Hdestruct3.
          assert ((MCSLOCK (CPU_ID d) lock_array bounds) =
                  (MCSLOCK (CPU_ID d) lock_array bounds)) by reflexivity.
          eapply lock_range_val in H1; eauto.
          destruct H1.
          split; unfold NULL; eauto; omega.
        + rewrite ZMap.gso in Hdef; inv Hdef; eauto.
      - assert (lock_range_val: 0 z < lock_range).
        { unfold index2Z in Hdestruct1.
          unfold lock_range. unfold ID_AT_range, ID_TCB_range, ID_SC_range.
          Opaque Z.add Z.mul.
          subdestruct.
          unfold index_range in Hdestruct4.
          inv Hdestruct1.
          subdestruct.
          - unfold index_incrange in Hdestruct9.
            inv Hdestruct9.
            unfold ID_AT_range in Hdestruct4; inv Hdestruct4.
            omega.
          - unfold ID_SC_range in Hdestruct4.
            inv Hdestruct4.
            unfold index_incrange in Hdestruct9.
            unfold lock_TCB_range in Hdestruct9; inv Hdestruct9.
            unfold ID_AT_range, ID_TCB_range; omega.
          - unfold ID_TCB_range in Hdestruct4; inv Hdestruct4.
            unfold index_incrange in Hdestruct9; inv Hdestruct9.
            unfold ID_AT_range; omega. }
        assert (high_level_invariant
                  (d {multi_log :
                        ZMap.set z
                                 (MultiDef
                                    (TEVENT (CPU_ID d) (TTICKET (CAS_TAIL false))
                                            :: ZMap.get z (multi_oracle d) (CPU_ID d) l ++ l))
                                 (multi_log d)})).
        { econstructor; simpl; try auto.
          intros.
          unfold valid_MCS_log_pool in valid_multi_log_pool_mcs_inv.
          unfold valid_multi_oracle_pool_mcs in valid_multi_oracle_pool_mcs_inv.
          unfold valid_multi_oracle_mcs in valid_multi_oracle_pool_mcs_inv.
          assert (valid_MCS_log l).
          eapply valid_multi_log_pool_mcs_inv; eauto.
          eapply valid_multi_oracle_pool_mcs_inv with (i := z) (i0 := (CPU_ID d)) in H; auto.
          unfold valid_MCS_log in H; unfold valid_MCS_log_pool.
          intros.
          case_eq (zeq i1 z); intros; subst.
          + rewrite ZMap.gss in Hdef; auto.
            inv Hdef.
            unfold MCSCorrect_range in H.
            unfold valid_MCS_log.
            intros.
            unfold MCSCorrect_range.
            intros.
            simpl in H1.
            subdestruct.
            inv Hmcs; inv H1.
            inv Hdestruct3.
            assert (MCSLOCK tail lock_array bounds = MCSLOCK tail lock_array bounds) by reflexivity.
            eapply H in H1; eauto.
          + rewrite ZMap.gso in Hdef; auto.
            eapply valid_multi_log_pool_mcs_inv with (i := i1); auto. }
        assert (ZMap.get z
                         (multi_log
                            d
                            {multi_log
                             : ZMap.set z
                                        (MultiDef
                                           (TEVENT (CPU_ID d) (TTICKET (CAS_TAIL false))
                                                   :: ZMap.get z (multi_oracle d) (CPU_ID d) l ++ l))
                                        (multi_log d)}) =
                MultiDef
                  (TEVENT (CPU_ID d) (TTICKET (CAS_TAIL false))
                          :: ZMap.get z (multi_oracle d) (CPU_ID d) l ++ l)).
        { simpl.
          rewrite ZMap.gss; auto. }
        eapply CalMCS_RelWaitPreserveInv in H0; eauto.
        unfold valid_MCS_log_pool.
        intros.
        case_eq (zeq i1 z); intros; subst.
        + rewrite ZMap.gss in Hdef; auto.
          inv Hdef; auto.
        + rewrite ZMap.gso in Hdef; auto.
          unfold valid_MCS_log_pool in valid_multi_log_pool_mcs_inv.
          eapply valid_multi_log_pool_mcs_inv with (i := i1); auto.
    Qed.

    Global Instance mcs_wait_lock_inv : PreservesInvariants mcs_wait_lock_spec.
    Proof.
      preserves_invariants_simpl_auto1.
      - assert (lock_range_val: 0 z < lock_range).
        { unfold index2Z in Hdestruct1.
          unfold lock_range. unfold ID_AT_range, ID_TCB_range, ID_SC_range.
          Opaque Z.add Z.mul.
          subdestruct.
          unfold index_range in Hdestruct4.
          inv Hdestruct1.
          subdestruct.
          - unfold index_incrange in Hdestruct7.
            inv Hdestruct7.
            unfold ID_AT_range in Hdestruct4; inv Hdestruct4.
            omega.
          - unfold ID_SC_range in Hdestruct4.
            inv Hdestruct4.
            unfold index_incrange in Hdestruct7.
            unfold lock_TCB_range in Hdestruct7; inv Hdestruct7.
            unfold ID_AT_range, ID_TCB_range; omega.
          - unfold ID_TCB_range in Hdestruct4; inv Hdestruct4.
            unfold index_incrange in Hdestruct7; inv Hdestruct7.
            unfold ID_AT_range; omega. }
        unfold valid_MCS_log_pool in valid_multi_log_pool_mcs_inv.
        generalize lock_range_val; intro lock_range_val´.
        eapply valid_multi_log_pool_mcs_inv in lock_range_val; eauto.
        unfold valid_multi_oracle_pool_mcs in valid_multi_oracle_pool_mcs_inv.
        unfold valid_multi_oracle_mcs in valid_multi_oracle_pool_mcs_inv.
        eapply valid_multi_oracle_pool_mcs_inv with (i := z) (i0 := CPU_ID d)
          in lock_range_val; eauto.
        unfold valid_MCS_log_pool.
        intros.
        case_eq (zeq i2 z); intros.
        + unfold valid_MCS_log.
          unfold valid_MCS_log in lock_range_val.
          intros.
          unfold MCSCorrect_range in ×.
          intros.
          subst.
          rewrite ZMap.gss in Hdef.
          inv Hdef.
          Transparent CalMCSLock.
          simpl in H0.
          subdestruct.
          inv H0.
          inv Hdestruct3.
          assert ((MCSLOCK NULL lock_array bounds) =
                  (MCSLOCK NULL lock_array bounds)) by reflexivity.
          eapply lock_range_val in H0; eauto.
          destruct H0.
          split; unfold NULL; eauto; try omega.
          intros.
          case_eq (zeq i2 (CPU_ID d)); intros.
          × subst.
            rewrite ZMap.gss; auto.
          × rewrite ZMap.gso; auto.
        + rewrite ZMap.gso in Hdef; inv Hdef; eauto.
      - assert (lock_range_val: 0 z < lock_range).
        { unfold index2Z in Hdestruct1.
          unfold lock_range. unfold ID_AT_range, ID_TCB_range, ID_SC_range.
          Opaque Z.add Z.mul.
          subdestruct.
          unfold index_range in Hdestruct4.
          inv Hdestruct1.
          subdestruct.
          - unfold index_incrange in Hdestruct8.
            inv Hdestruct8.
            unfold ID_AT_range in Hdestruct4; inv Hdestruct4.
            omega.
          - unfold ID_SC_range in Hdestruct4.
            inv Hdestruct4.
            unfold index_incrange in Hdestruct8.
            unfold lock_TCB_range in Hdestruct8; inv Hdestruct8.
            unfold ID_AT_range, ID_TCB_range; omega.
          - unfold ID_TCB_range in Hdestruct4; inv Hdestruct4.
            unfold index_incrange in Hdestruct8; inv Hdestruct8.
            unfold ID_AT_range; omega. }
                assert (high_level_invariant
                  (d {multi_log :
                        ZMap.set z
                                 (MultiDef
                                    (TEVENT (CPU_ID d) (TTICKET (SET_NEXT tail))
                                            :: ZMap.get z (multi_oracle d) (CPU_ID d)
                                            (TEVENT (CPU_ID d)
                                                    (TTICKET
                                                       (SWAP_TAIL (nat_of_Z (Int.unsigned i)) false))
                                                    :: ZMap.get z (multi_oracle d) (CPU_ID d) l ++ l)
                                            ++
                                            TEVENT (CPU_ID d)
                                            (TTICKET
                                               (SWAP_TAIL (nat_of_Z (Int.unsigned i)) false))
                                            :: ZMap.get z (multi_oracle d) (CPU_ID d) l ++ l))
                                    (multi_log d)})).
        { econstructor; simpl; try auto.
          intros.
          unfold valid_MCS_log_pool in valid_multi_log_pool_mcs_inv.
          unfold valid_multi_oracle_pool_mcs in valid_multi_oracle_pool_mcs_inv.
          unfold valid_multi_oracle_mcs in valid_multi_oracle_pool_mcs_inv.
          assert (valid_MCS_log l).
          eapply valid_multi_log_pool_mcs_inv; eauto.
          eapply valid_multi_oracle_pool_mcs_inv with (i := z) (i0 := (CPU_ID d)) in H; auto.
          assert (valid_MCS_log
                    (TEVENT (CPU_ID d)
                    (TTICKET (SWAP_TAIL (nat_of_Z (Int.unsigned i)) false))
                    :: ZMap.get z (multi_oracle d) (CPU_ID d) l ++ l)).
          { simpl.
            unfold valid_MCS_log; intros.
            unfold valid_MCS_log in H.
            unfold MCSCorrect_range in H; unfold MCSCorrect_range.
            simpl in H0; subdestruct.
            inv H0.
            inv Hdestruct3.
            assert (MCSLOCK tail lock_array bounds = MCSLOCK tail lock_array bounds) by reflexivity.
            eapply H in H0; eauto.
            intros.
            inv Hmcs.
            split; try omega.
            intros.
            case_eq (zeq i2 (CPU_ID d)); intros; subst.
            + rewrite ZMap.gss; simpl; unfold NULL; omega.
            + rewrite ZMap.gso; auto.
              destruct H0.
              apply H3 in H1; simpl in H3; auto. }
          eapply valid_multi_oracle_pool_mcs_inv with (i := z) (i0 := (CPU_ID d)) in H0; auto.
          unfold valid_MCS_log in H0; unfold valid_MCS_log_pool.
          intros.
          case_eq (zeq i2 z); intros; subst.
          + rewrite ZMap.gss in Hdef; auto.
            inv Hdef.
            unfold MCSCorrect_range in H0.
            unfold valid_MCS_log.
            intros.
            unfold MCSCorrect_range.
            intros.
            simpl in H2.
            subdestruct.
            inv Hmcs; inv H2.
            assert (MCSLOCK tl lock_array0 bnd = MCSLOCK tl lock_array0 bnd) by reflexivity.
            eapply H0 in H2; eauto.
            destruct H2.
            split; auto.
            intros.
            case_eq (zeq i2 tail).
            × intros; subst.
              rewrite ZMap.gss.
              simpl; omega.
            × intros.
              rewrite ZMap.gso; auto.
          + rewrite ZMap.gso in Hdef; auto.
            eapply valid_multi_log_pool_mcs_inv with (i := i2); auto. }
        assert (ZMap.get z
                         (multi_log
                            d {multi_log
                               : ZMap.set z
                                        (MultiDef
                                           (TEVENT (CPU_ID d) (TTICKET (SET_NEXT tail))
                                                   :: ZMap.get z (multi_oracle d) (CPU_ID d)
                                                   (TEVENT (CPU_ID d)
                                                           (TTICKET
                                                              (SWAP_TAIL (nat_of_Z (Int.unsigned i))
                                                                         false))
                                                           :: ZMap.get z (multi_oracle d) (CPU_ID d)
                                                           l ++ l) ++
                                                   TEVENT (CPU_ID d)
                                                   (TTICKET
                                                      (SWAP_TAIL (nat_of_Z (Int.unsigned i)) false))
                                                   :: ZMap.get z (multi_oracle d) (CPU_ID d) l ++ l))
                                        (multi_log d)}) =
                (MultiDef
                   (TEVENT (CPU_ID d) (TTICKET (SET_NEXT tail))
                           :: ZMap.get z (multi_oracle d) (CPU_ID d)
                           (TEVENT (CPU_ID d)
                                   (TTICKET
                                      (SWAP_TAIL (nat_of_Z (Int.unsigned i))
                                                 false))
                                   :: ZMap.get z (multi_oracle d) (CPU_ID d)
                                   l ++ l) ++
                           TEVENT (CPU_ID d)
                           (TTICKET
                              (SWAP_TAIL (nat_of_Z (Int.unsigned i)) false))
                           :: ZMap.get z (multi_oracle d) (CPU_ID d) l ++ l))).
        { simpl.
          rewrite ZMap.gss; auto. }
        eapply CalMCS_AcqWaitPreserveInv in H0; eauto.
        unfold valid_MCS_log_pool.
        intros.
        case_eq (zeq i2 z); intros; subst.
        + rewrite ZMap.gss in Hdef; auto.
          inv Hdef; auto.
        + rewrite ZMap.gso in Hdef; auto.
          unfold valid_MCS_log_pool in valid_multi_log_pool_mcs_inv.
          eapply valid_multi_log_pool_mcs_inv with (i := i2); auto.
    Qed.

  End INV.

Layer Definition

  Definition mmcslockop_fresh : compatlayer (cdata RData) :=
    pass_lock gensem mcs_pass_lock_spec
               wait_lock gensem mcs_wait_lock_spec.

  Definition mmcslockop_passthrough : compatlayer (cdata RData) :=
    fload gensem fload´_spec
           fstore gensem fstore´_spec
          
           page_copy gensem page_copy´´´_spec
           page_copy_back gensem page_copy_back´_spec
           vmxinfo_get gensem vmxinfo_get_spec
           set_pg gensem setPG_spec
           set_cr3 setCR3_compatsem setCR3_spec
           get_size gensem MMSize
           is_usable gensem is_mm_usable_spec
           get_mms gensem get_mm_s_spec
           get_mml gensem get_mm_l_spec
           get_CPU_ID gensem get_CPU_ID_spec
           release_shared primcall_release_lock_compatsem release_shared release_shared0_spec0
           acquire_shared primcall_acquire_shared_compatsem acquire_shared0_spec0
           get_curid gensem get_curid_spec
           set_curid gensem set_curid_spec
           set_curid_init gensem set_curid_init_spec

          
           ticket_lock_init gensem ticket_lock_init_spec
          

           trap_in primcall_general_compatsem trapin_spec
           trap_out primcall_general_compatsem trapout´_spec
           host_in primcall_general_compatsem hostin_spec
           host_out primcall_general_compatsem hostout´_spec
           proc_create_postinit gensem proc_create_postinit_spec
           trap_get primcall_trap_info_get_compatsem trap_info_get_spec
           trap_set primcall_trap_info_ret_compatsem trap_info_ret_spec
           serial_irq_check gensem serial_irq_check_spec
           iret gensem iret_spec
           cli gensem cli_spec
           sti gensem sti_spec
           serial_irq_current gensem serial_irq_current_spec
           ic_intr gensem ic_intr_spec
           save_context primcall_save_context_compatsem save_context_spec
           restore_context primcall_restore_context_compatsem restore_context_spec
           local_irq_save gensem local_irq_save_spec
           local_irq_restore gensem local_irq_restore_spec
           serial_in gensem serial_in_spec
serial device
           serial_out gensem serial_out_spec
serial device
           serial_hw_intr gensem serial_hw_intr_spec
serial device
           ioapic_read gensem ioapic_read_spec
ioapic device
           ioapic_write gensem ioapic_write_spec
ioapic device
           lapic_read gensem lapic_read_spec
lapic device
           lapic_write gensem lapic_write_spec
lapic device
           accessors {| exec_load := (@exec_loadex _ _ _ _ _ _ _ _ Hmwd);
                           exec_store := (@exec_storeex _ _ _ _ _ _ _ _ Hmwd) |}.

  Definition mmcslockop : compatlayer (cdata RData) := mmcslockop_fresh mmcslockop_passthrough.

End WITHMEM.