Library compcert.common.Events
Observable events, execution traces, and semantics of external calls.
Require Import String.
Require Import Coqlib.
Require Intv.
Require Import AST.
Require Import Integers.
Require Import Floats.
Require Import Values.
Require Import Memory.
Require Import Globalenvs.
Events and traces
- A system call (e.g. an input/output operation), recording the
name of the system call, its parameters, and its result.
- A volatile load from a global memory location, recording the chunk
and address being read and the value just read.
- A volatile store to a global memory location, recording the chunk
and address being written and the value stored there.
- An annotation, recording the text of the annotation and the values
of the arguments.
Inductive eventval: Type :=
| EVint: int → eventval
| EVlong: int64 → eventval
| EVfloat: float → eventval
| EVsingle: float32 → eventval
| EVptr_global: ident → ptrofs → eventval.
Inductive event: Type :=
| Event_syscall: string → list eventval → eventval → event
| Event_vload: memory_chunk → ident → ptrofs → eventval → event
| Event_vstore: memory_chunk → ident → ptrofs → eventval → event
| Event_annot: string → list eventval → event.
The dynamic semantics for programs collect traces of events.
Traces are of two kinds: finite (type trace) or infinite (type traceinf).
Definition trace := list event.
Definition E0 : trace := nil.
Definition Eapp (t1 t2: trace) : trace := t1 ++ t2.
CoInductive traceinf : Type :=
| Econsinf: event → traceinf → traceinf.
Fixpoint Eappinf (t: trace) (T: traceinf) {struct t} : traceinf :=
match t with
| nil ⇒ T
| ev :: t' ⇒ Econsinf ev (Eappinf t' T)
end.
Concatenation of traces is written ** in the finite case
or *** in the infinite case.
Infix "**" := Eapp (at level 60, right associativity).
Infix "***" := Eappinf (at level 60, right associativity).
Lemma E0_left: ∀ t, E0 ** t = t.
Proof. auto. Qed.
Lemma E0_right: ∀ t, t ** E0 = t.
Proof. intros. unfold E0, Eapp. rewrite <- app_nil_end. auto. Qed.
Lemma Eapp_assoc: ∀ t1 t2 t3, (t1 ** t2) ** t3 = t1 ** (t2 ** t3).
Proof. intros. unfold Eapp, trace. apply app_ass. Qed.
Lemma Eapp_E0_inv: ∀ t1 t2, t1 ** t2 = E0 → t1 = E0 ∧ t2 = E0.
Proof (@app_eq_nil event).
Lemma E0_left_inf: ∀ T, E0 *** T = T.
Proof. auto. Qed.
Lemma Eappinf_assoc: ∀ t1 t2 T, (t1 ** t2) *** T = t1 *** (t2 *** T).
Proof.
induction t1; intros; simpl. auto. decEq; auto.
Qed.
Hint Rewrite E0_left E0_right Eapp_assoc
E0_left_inf Eappinf_assoc: trace_rewrite.
Opaque trace E0 Eapp Eappinf.
The following traceEq tactic proves equalities between traces
or infinite traces.
Ltac substTraceHyp :=
match goal with
| [ H: (@eq trace ?x ?y) |- _ ] ⇒
subst x || clear H
end.
Ltac decomposeTraceEq :=
match goal with
| [ |- (_ ** _) = (_ ** _) ] ⇒
apply (f_equal2 Eapp); auto; decomposeTraceEq
| _ ⇒
auto
end.
Ltac traceEq :=
repeat substTraceHyp; autorewrite with trace_rewrite; decomposeTraceEq.
Bisimilarity between infinite traces.
CoInductive traceinf_sim: traceinf → traceinf → Prop :=
| traceinf_sim_cons: ∀ e T1 T2,
traceinf_sim T1 T2 →
traceinf_sim (Econsinf e T1) (Econsinf e T2).
Lemma traceinf_sim_refl:
∀ T, traceinf_sim T T.
Proof.
cofix COINDHYP; intros.
destruct T. constructor. apply COINDHYP.
Qed.
Lemma traceinf_sim_sym:
∀ T1 T2, traceinf_sim T1 T2 → traceinf_sim T2 T1.
Proof.
cofix COINDHYP; intros. inv H; constructor; auto.
Qed.
Lemma traceinf_sim_trans:
∀ T1 T2 T3,
traceinf_sim T1 T2 → traceinf_sim T2 T3 → traceinf_sim T1 T3.
Proof.
cofix COINDHYP;intros. inv H; inv H0; constructor; eauto.
Qed.
CoInductive traceinf_sim': traceinf → traceinf → Prop :=
| traceinf_sim'_cons: ∀ t T1 T2,
t ≠ E0 → traceinf_sim' T1 T2 → traceinf_sim' (t *** T1) (t *** T2).
Lemma traceinf_sim'_sim:
∀ T1 T2, traceinf_sim' T1 T2 → traceinf_sim T1 T2.
Proof.
cofix COINDHYP; intros. inv H.
destruct t. elim H0; auto.
Transparent Eappinf.
Transparent E0.
simpl.
destruct t. simpl. constructor. apply COINDHYP; auto.
constructor. apply COINDHYP.
constructor. unfold E0; congruence. auto.
Qed.
An alternate presentation of infinite traces as
infinite concatenations of nonempty finite traces.
CoInductive traceinf': Type :=
| Econsinf': ∀ (t: trace) (T: traceinf'), t ≠ E0 → traceinf'.
Program Definition split_traceinf' (t: trace) (T: traceinf') (NE: t ≠ E0): event × traceinf' :=
match t with
| nil ⇒ _
| e :: nil ⇒ (e, T)
| e :: t' ⇒ (e, Econsinf' t' T _)
end.
Next Obligation.
elimtype False. elim NE. auto.
Qed.
Next Obligation.
red; intro. elim (H e). rewrite H0. auto.
Qed.
CoFixpoint traceinf_of_traceinf' (T': traceinf') : traceinf :=
match T' with
| Econsinf' t T'' NOTEMPTY ⇒
let (e, tl) := split_traceinf' t T'' NOTEMPTY in
Econsinf e (traceinf_of_traceinf' tl)
end.
Remark unroll_traceinf':
∀ T, T = match T with Econsinf' t T' NE ⇒ Econsinf' t T' NE end.
Proof.
intros. destruct T; auto.
Qed.
Remark unroll_traceinf:
∀ T, T = match T with Econsinf t T' ⇒ Econsinf t T' end.
Proof.
intros. destruct T; auto.
Qed.
Lemma traceinf_traceinf'_app:
∀ t T NE,
traceinf_of_traceinf' (Econsinf' t T NE) = t *** traceinf_of_traceinf' T.
Proof.
induction t.
intros. elim NE. auto.
intros. simpl.
rewrite (unroll_traceinf (traceinf_of_traceinf' (Econsinf' (a :: t) T NE))).
simpl. destruct t. auto.
Transparent Eappinf.
simpl. f_equal. apply IHt.
Qed.
Prefixes of traces.
Definition trace_prefix (t1 t2: trace) :=
∃ t3, t2 = t1 ** t3.
Definition traceinf_prefix (t1: trace) (T2: traceinf) :=
∃ T3, T2 = t1 *** T3.
Lemma trace_prefix_app:
∀ t1 t2 t,
trace_prefix t1 t2 →
trace_prefix (t ** t1) (t ** t2).
Proof.
intros. destruct H as [t3 EQ]. ∃ t3. traceEq.
Qed.
Lemma traceinf_prefix_app:
∀ t1 T2 t,
traceinf_prefix t1 T2 →
traceinf_prefix (t ** t1) (t *** T2).
Proof.
intros. destruct H as [T3 EQ]. ∃ T3. subst T2. traceEq.
Qed.
Symbol environment used to translate between global variable names and their block identifiers.
Translation between values and event values.
Inductive eventval_match: eventval → typ → val → Prop :=
| ev_match_int: ∀ i,
eventval_match (EVint i) Tint (Vint i)
| ev_match_long: ∀ i,
eventval_match (EVlong i) Tlong (Vlong i)
| ev_match_float: ∀ f,
eventval_match (EVfloat f) Tfloat (Vfloat f)
| ev_match_single: ∀ f,
eventval_match (EVsingle f) Tsingle (Vsingle f)
| ev_match_ptr: ∀ id b ofs,
Senv.public_symbol ge id = true →
Senv.find_symbol ge id = Some b →
eventval_match (EVptr_global id ofs) Tptr (Vptr b ofs).
Inductive eventval_list_match: list eventval → list typ → list val → Prop :=
| evl_match_nil:
eventval_list_match nil nil nil
| evl_match_cons:
∀ ev1 evl ty1 tyl v1 vl,
eventval_match ev1 ty1 v1 →
eventval_list_match evl tyl vl →
eventval_list_match (ev1::evl) (ty1::tyl) (v1::vl).
Some properties of these translation predicates.
Lemma eventval_match_type:
∀ ev ty v,
eventval_match ev ty v → Val.has_type v ty.
Proof.
intros. inv H; simpl; auto. unfold Tptr; destruct Archi.ptr64; auto.
Qed.
Lemma eventval_list_match_length:
∀ evl tyl vl, eventval_list_match evl tyl vl → List.length vl = List.length tyl.
Proof.
induction 1; simpl; eauto.
Qed.
Lemma eventval_match_lessdef:
∀ ev ty v1 v2,
eventval_match ev ty v1 → Val.lessdef v1 v2 → eventval_match ev ty v2.
Proof.
intros. inv H; inv H0; constructor; auto.
Qed.
Lemma eventval_list_match_lessdef:
∀ evl tyl vl1, eventval_list_match evl tyl vl1 →
∀ vl2, Val.lessdef_list vl1 vl2 → eventval_list_match evl tyl vl2.
Proof.
induction 1; intros. inv H; constructor.
inv H1. constructor. eapply eventval_match_lessdef; eauto. eauto.
Qed.
Determinism
Lemma eventval_match_determ_1:
∀ ev ty v1 v2, eventval_match ev ty v1 → eventval_match ev ty v2 → v1 = v2.
Proof.
intros. inv H; inv H0; auto. congruence.
Qed.
Lemma eventval_match_determ_2:
∀ ev1 ev2 ty v, eventval_match ev1 ty v → eventval_match ev2 ty v → ev1 = ev2.
Proof.
intros. inv H; inv H0; auto.
decEq. eapply Senv.find_symbol_injective; eauto.
Qed.
Lemma eventval_list_match_determ_2:
∀ evl1 tyl vl, eventval_list_match evl1 tyl vl →
∀ evl2, eventval_list_match evl2 tyl vl → evl1 = evl2.
Proof.
induction 1; intros. inv H. auto. inv H1. f_equal; eauto.
eapply eventval_match_determ_2; eauto.
Qed.
Validity
Definition eventval_valid (ev: eventval) : Prop :=
match ev with
| EVint _ ⇒ True
| EVlong _ ⇒ True
| EVfloat _ ⇒ True
| EVsingle _ ⇒ True
| EVptr_global id ofs ⇒ Senv.public_symbol ge id = true
end.
Definition eventval_type (ev: eventval) : typ :=
match ev with
| EVint _ ⇒ Tint
| EVlong _ ⇒ Tlong
| EVfloat _ ⇒ Tfloat
| EVsingle _ ⇒ Tsingle
| EVptr_global id ofs ⇒ Tptr
end.
Lemma eventval_match_receptive:
∀ ev1 ty v1 ev2,
eventval_match ev1 ty v1 →
eventval_valid ev1 → eventval_valid ev2 → eventval_type ev1 = eventval_type ev2 →
∃ v2, eventval_match ev2 ty v2.
Proof.
intros. unfold eventval_type, Tptr in H2. remember Archi.ptr64 as ptr64.
inversion H; subst ev1 ty v1; clear H; destruct ev2; simpl in H2; inv H2.
- ∃ (Vint i0); constructor.
- simpl in H1; exploit Senv.public_symbol_exists; eauto. intros [b FS].
∃ (Vptr b i1); rewrite H3. constructor; auto.
- ∃ (Vlong i0); constructor.
- simpl in H1; exploit Senv.public_symbol_exists; eauto. intros [b FS].
∃ (Vptr b i1); rewrite H3; constructor; auto.
- ∃ (Vfloat f0); constructor.
- destruct Archi.ptr64; discriminate.
- ∃ (Vsingle f0); constructor; auto.
- destruct Archi.ptr64; discriminate.
- ∃ (Vint i); unfold Tptr; rewrite H5; constructor.
- ∃ (Vlong i); unfold Tptr; rewrite H5; constructor.
- destruct Archi.ptr64; discriminate.
- destruct Archi.ptr64; discriminate.
- exploit Senv.public_symbol_exists. eexact H1. intros [b' FS].
∃ (Vptr b' i0); constructor; auto.
Qed.
Lemma eventval_match_valid:
∀ ev ty v, eventval_match ev ty v → eventval_valid ev.
Proof.
destruct 1; simpl; auto.
Qed.
Lemma eventval_match_same_type:
∀ ev1 ty v1 ev2 v2,
eventval_match ev1 ty v1 → eventval_match ev2 ty v2 → eventval_type ev1 = eventval_type ev2.
Proof.
destruct 1; intros EV; inv EV; auto.
Qed.
End EVENTVAL.
Invariance under changes to the global environment
Section EVENTVAL_INV.
Variables ge1 ge2: Senv.t.
Hypothesis public_preserved:
∀ id, Senv.public_symbol ge2 id = Senv.public_symbol ge1 id.
Lemma eventval_valid_preserved:
∀ ev, eventval_valid ge1 ev → eventval_valid ge2 ev.
Proof.
intros. destruct ev; simpl in *; auto. rewrite <- H; auto.
Qed.
Hypothesis symbols_preserved:
∀ id, Senv.find_symbol ge2 id = Senv.find_symbol ge1 id.
Lemma eventval_match_preserved:
∀ ev ty v,
eventval_match ge1 ev ty v → eventval_match ge2 ev ty v.
Proof.
induction 1; constructor; auto.
rewrite public_preserved; auto.
rewrite symbols_preserved; auto.
Qed.
Lemma eventval_list_match_preserved:
∀ evl tyl vl,
eventval_list_match ge1 evl tyl vl → eventval_list_match ge2 evl tyl vl.
Proof.
induction 1; constructor; auto. eapply eventval_match_preserved; eauto.
Qed.
End EVENTVAL_INV.
Compatibility with memory injections
Section EVENTVAL_INJECT.
Variable f: block → option (block × Z).
Variable ge1 ge2: Senv.t.
Definition symbols_inject : Prop :=
(∀ id, Senv.public_symbol ge2 id = Senv.public_symbol ge1 id)
∧ (∀ id b1 b2 delta,
f b1 = Some(b2, delta) → Senv.find_symbol ge1 id = Some b1 →
delta = 0 ∧ Senv.find_symbol ge2 id = Some b2)
∧ (∀ id b1,
Senv.public_symbol ge1 id = true → Senv.find_symbol ge1 id = Some b1 →
∃ b2, f b1 = Some(b2, 0) ∧ Senv.find_symbol ge2 id = Some b2)
∧ (∀ b1 b2 delta,
f b1 = Some(b2, delta) →
Senv.block_is_volatile ge2 b2 = Senv.block_is_volatile ge1 b1).
Hypothesis symb_inj: symbols_inject.
Lemma eventval_match_inject:
∀ ev ty v1 v2,
eventval_match ge1 ev ty v1 → Val.inject f v1 v2 → eventval_match ge2 ev ty v2.
Proof.
intros. inv H; inv H0; try constructor; auto.
destruct symb_inj as (A & B & C & D). exploit C; eauto. intros [b3 [EQ FS]]. rewrite H4 in EQ; inv EQ.
rewrite Ptrofs.add_zero. constructor; auto. rewrite A; auto.
Qed.
Lemma eventval_match_inject_2:
∀ ev ty v1,
eventval_match ge1 ev ty v1 →
∃ v2, eventval_match ge2 ev ty v2 ∧ Val.inject f v1 v2.
Proof.
intros. inv H; try (econstructor; split; eauto; constructor; fail).
destruct symb_inj as (A & B & C & D). exploit C; eauto. intros [b2 [EQ FS]].
∃ (Vptr b2 ofs); split. econstructor; eauto.
econstructor; eauto. rewrite Ptrofs.add_zero; auto.
Qed.
Lemma eventval_list_match_inject:
∀ evl tyl vl1, eventval_list_match ge1 evl tyl vl1 →
∀ vl2, Val.inject_list f vl1 vl2 → eventval_list_match ge2 evl tyl vl2.
Proof.
induction 1; intros. inv H; constructor.
inv H1. constructor. eapply eventval_match_inject; eauto. eauto.
Qed.
End EVENTVAL_INJECT.
Matching between traces corresponding to single transitions.
Arguments (provided by the program) must be equal.
Results (provided by the outside world) can vary as long as they
can be converted safely to values.
Inductive match_traces: trace → trace → Prop :=
| match_traces_E0:
match_traces nil nil
| match_traces_syscall: ∀ id args res1 res2,
eventval_valid ge res1 → eventval_valid ge res2 → eventval_type res1 = eventval_type res2 →
match_traces (Event_syscall id args res1 :: nil) (Event_syscall id args res2 :: nil)
| match_traces_vload: ∀ chunk id ofs res1 res2,
eventval_valid ge res1 → eventval_valid ge res2 → eventval_type res1 = eventval_type res2 →
match_traces (Event_vload chunk id ofs res1 :: nil) (Event_vload chunk id ofs res2 :: nil)
| match_traces_vstore: ∀ chunk id ofs arg,
match_traces (Event_vstore chunk id ofs arg :: nil) (Event_vstore chunk id ofs arg :: nil)
| match_traces_annot: ∀ id args,
match_traces (Event_annot id args :: nil) (Event_annot id args :: nil).
End MATCH_TRACES.
Invariance by change of global environment
Section MATCH_TRACES_INV.
Variables ge1 ge2: Senv.t.
Hypothesis public_preserved:
∀ id, Senv.public_symbol ge2 id = Senv.public_symbol ge1 id.
Lemma match_traces_preserved:
∀ t1 t2, match_traces ge1 t1 t2 → match_traces ge2 t1 t2.
Proof.
induction 1; constructor; auto; eapply eventval_valid_preserved; eauto.
Qed.
End MATCH_TRACES_INV.
An output trace is a trace composed only of output events,
that is, events that do not take any result from the outside world.
Definition output_event (ev: event) : Prop :=
match ev with
| Event_syscall _ _ _ ⇒ False
| Event_vload _ _ _ _ ⇒ False
| Event_vstore _ _ _ _ ⇒ True
| Event_annot _ _ ⇒ True
end.
Fixpoint output_trace (t: trace) : Prop :=
match t with
| nil ⇒ True
| ev :: t' ⇒ output_event ev ∧ output_trace t'
end.
Section WITHMEMORYMODELOPS.
Context `{memory_model_ops: Mem.MemoryModelOps}.
Inductive volatile_load (ge: Senv.t):
memory_chunk → mem → block → ptrofs → trace → val → Prop :=
| volatile_load_vol: ∀ chunk m b ofs id ev v,
Senv.block_is_volatile ge b = Some true →
Senv.find_symbol ge id = Some b →
eventval_match ge ev (type_of_chunk chunk) v →
volatile_load ge chunk m b ofs
(Event_vload chunk id ofs ev :: nil)
(Val.load_result chunk v)
| volatile_load_nonvol: ∀ chunk m b ofs v,
Senv.block_is_volatile ge b = Some false →
Mem.load chunk m b (Ptrofs.unsigned ofs) = Some v →
volatile_load ge chunk m b ofs E0 v.
Inductive volatile_store (ge: Senv.t):
memory_chunk → mem → block → ptrofs → val → trace → mem → Prop :=
| volatile_store_vol: ∀ chunk m b ofs id ev v,
Senv.block_is_volatile ge b = Some true →
Senv.find_symbol ge id = Some b →
eventval_match ge ev (type_of_chunk chunk) (Val.load_result chunk v) →
volatile_store ge chunk m b ofs v
(Event_vstore chunk id ofs ev :: nil)
m
| volatile_store_nonvol: ∀ chunk m b ofs v m',
Senv.block_is_volatile ge b = Some false →
Mem.store chunk m b (Ptrofs.unsigned ofs) v = Some m' →
volatile_store ge chunk m b ofs v E0 m'.
End WITHMEMORYMODELOPS.
Semantics of external functions
- the global symbol environment
- the values of the arguments passed to this function
- the memory state before the call
- the result value of the call
- the memory state after the call
- the trace generated by the call (can be empty).
Definition extcall_sem `{memory_model_ops: Mem.MemoryModelOps} : Type :=
Senv.t → list val → mem → trace → val → mem → Prop.
We now specify the expected properties of this predicate.
Section WITHMEMORYMODEL.
Context `{memory_model_prf: Mem.MemoryModel}.
Definition loc_out_of_bounds (m: mem) (b: block) (ofs: Z) : Prop :=
¬Mem.perm m b ofs Max Nonempty.
Definition loc_not_writable (m: mem) (b: block) (ofs: Z) : Prop :=
¬Mem.perm m b ofs Max Writable.
Definition loc_unmapped (f: meminj) (b: block) (ofs: Z): Prop :=
f b = None.
Definition loc_out_of_reach (f: meminj) (m: mem) (b: block) (ofs: Z): Prop :=
∀ b0 delta,
f b0 = Some(b, delta) → ¬Mem.perm m b0 (ofs - delta) Max Nonempty.
Definition inject_separated (f f': meminj) (m1 m2: mem): Prop :=
∀ b1 b2 delta,
f b1 = None → f' b1 = Some(b2, delta) →
¬Mem.valid_block m1 b1 ∧ ¬Mem.valid_block m2 b2.
Definition meminj_preserves_globals' (ge: Senv.t) (f: block → option (block × Z)) : Prop :=
(∀ id b, Senv.find_symbol ge id = Some b → f b = Some(b, 0)) ∧
(∀ b1 b2 delta, f b1 = Some (b2, delta) → Senv.block_is_volatile ge b2 = Senv.block_is_volatile ge b1).
Lemma meminj_preserves_globals'_symbols_inject (ge: Senv.t) (f: block → option (block × Z)):
meminj_preserves_globals' ge f →
symbols_inject f ge ge.
Proof.
unfold meminj_preserves_globals'.
intros (A & B).
repeat split; intros.
+ simpl in H0. exploit A; eauto. intros EQ; rewrite EQ in H; inv H. auto.
+ simpl in H0. exploit A; eauto. intros EQ; rewrite EQ in H; inv H. auto.
+ simpl in H0. ∃ b1; split; eauto.
+ eauto.
Qed.
Class SymbolsInject: Type :=
{
symbols_inject' (f: block → option (block × Z)) (ge1 ge2: Senv.t):
Prop;
meminj_preserves_globals'_symbols_inject' ge f:
meminj_preserves_globals' ge f →
symbols_inject' f ge ge;
symbols_inject'_symbols_inject f ge1 ge2:
symbols_inject' f ge1 ge2 →
symbols_inject f ge1 ge2
}.
Program Definition meminj_preserves_globals'_instance:
SymbolsInject :=
{|
symbols_inject' f ge1 ge2 :=
meminj_preserves_globals' ge1 f ∧ ge1 = ge2
|}.
Next Obligation.
apply meminj_preserves_globals'_symbols_inject.
assumption.
Qed.
Program Definition symbols_inject_instance:
SymbolsInject :=
{|
symbols_inject' := symbols_inject
|}.
Next Obligation.
apply meminj_preserves_globals'_symbols_inject.
assumption.
Qed.
Context `{symbols_inject'_instance: SymbolsInject}.
Record extcall_properties (sem: extcall_sem) (sg: signature) : Prop :=
mk_extcall_properties {
The return value of an external call must agree with its signature.
ec_well_typed:
∀ ge vargs m1 t vres m2,
sem ge vargs m1 t vres m2 →
Val.has_type vres (proj_sig_res sg);
∀ ge vargs m1 t vres m2,
sem ge vargs m1 t vres m2 →
Val.has_type vres (proj_sig_res sg);
The semantics is invariant under change of global environment that preserves symbols.
ec_symbols_preserved:
∀ ge1 ge2 vargs m1 t vres m2,
Senv.equiv ge1 ge2 →
sem ge1 vargs m1 t vres m2 →
sem ge2 vargs m1 t vres m2;
∀ ge1 ge2 vargs m1 t vres m2,
Senv.equiv ge1 ge2 →
sem ge1 vargs m1 t vres m2 →
sem ge2 vargs m1 t vres m2;
External calls cannot invalidate memory blocks. (Remember that
freeing a block does not invalidate its block identifier.)
ec_valid_block:
∀ ge vargs m1 t vres m2 b,
sem ge vargs m1 t vres m2 →
Mem.valid_block m1 b → Mem.valid_block m2 b;
∀ ge vargs m1 t vres m2 b,
sem ge vargs m1 t vres m2 →
Mem.valid_block m1 b → Mem.valid_block m2 b;
External calls cannot increase the max permissions of a valid block.
They can decrease the max permissions, e.g. by freeing.
ec_max_perm:
∀ ge vargs m1 t vres m2 b ofs p,
sem ge vargs m1 t vres m2 →
Mem.valid_block m1 b → Mem.perm m2 b ofs Max p → Mem.perm m1 b ofs Max p;
∀ ge vargs m1 t vres m2 b ofs p,
sem ge vargs m1 t vres m2 →
Mem.valid_block m1 b → Mem.perm m2 b ofs Max p → Mem.perm m1 b ofs Max p;
ec_readonly:
∀ ge vargs m1 t vres m2,
sem ge vargs m1 t vres m2 →
Mem.unchanged_on (loc_not_writable m1) m1 m2;
∀ ge vargs m1 t vres m2,
sem ge vargs m1 t vres m2 →
Mem.unchanged_on (loc_not_writable m1) m1 m2;
External calls must commute with memory extensions, in the
following sense.
ec_mem_extends:
∀ ge vargs m1 t vres m2 m1' vargs',
sem ge vargs m1 t vres m2 →
Mem.extends m1 m1' →
Val.lessdef_list vargs vargs' →
∃ vres', ∃ m2',
sem ge vargs' m1' t vres' m2'
∧ Val.lessdef vres vres'
∧ Mem.extends m2 m2'
∧ Mem.unchanged_on (loc_out_of_bounds m1) m1' m2';
∀ ge vargs m1 t vres m2 m1' vargs',
sem ge vargs m1 t vres m2 →
Mem.extends m1 m1' →
Val.lessdef_list vargs vargs' →
∃ vres', ∃ m2',
sem ge vargs' m1' t vres' m2'
∧ Val.lessdef vres vres'
∧ Mem.extends m2 m2'
∧ Mem.unchanged_on (loc_out_of_bounds m1) m1' m2';
External calls must commute with memory injections,
in the following sense.
ec_mem_inject:
∀ ge1 ge2 vargs m1 t vres m2 f m1' vargs',
symbols_inject' f ge1 ge2 →
sem ge1 vargs m1 t vres m2 →
Mem.inject f m1 m1' →
Val.inject_list f vargs vargs' →
∃ f', ∃ vres', ∃ m2',
sem ge2 vargs' m1' t vres' m2'
∧ Val.inject f' vres vres'
∧ Mem.inject f' m2 m2'
∧ Mem.unchanged_on (loc_unmapped f) m1 m2
∧ Mem.unchanged_on (loc_out_of_reach f m1) m1' m2'
∧ inject_incr f f'
∧ inject_separated f f' m1 m1';
∀ ge1 ge2 vargs m1 t vres m2 f m1' vargs',
symbols_inject' f ge1 ge2 →
sem ge1 vargs m1 t vres m2 →
Mem.inject f m1 m1' →
Val.inject_list f vargs vargs' →
∃ f', ∃ vres', ∃ m2',
sem ge2 vargs' m1' t vres' m2'
∧ Val.inject f' vres vres'
∧ Mem.inject f' m2 m2'
∧ Mem.unchanged_on (loc_unmapped f) m1 m2
∧ Mem.unchanged_on (loc_out_of_reach f m1) m1' m2'
∧ inject_incr f f'
∧ inject_separated f f' m1 m1';
External calls produce at most one event.
External calls must be receptive to changes of traces by another, matching trace.
ec_receptive:
∀ ge vargs m t1 vres1 m1 t2,
sem ge vargs m t1 vres1 m1 → match_traces ge t1 t2 →
∃ vres2, ∃ m2, sem ge vargs m t2 vres2 m2;
∀ ge vargs m t1 vres1 m1 t2,
sem ge vargs m t1 vres1 m1 → match_traces ge t1 t2 →
∃ vres2, ∃ m2, sem ge vargs m t2 vres2 m2;
External calls must be deterministic up to matching between traces.
ec_determ:
∀ ge vargs m t1 vres1 m1 t2 vres2 m2,
sem ge vargs m t1 vres1 m1 → sem ge vargs m t2 vres2 m2 →
match_traces ge t1 t2 ∧ (t1 = t2 → vres1 = vres2 ∧ m1 = m2)
}.
∀ ge vargs m t1 vres1 m1 t2 vres2 m2,
sem ge vargs m t1 vres1 m1 → sem ge vargs m t2 vres2 m2 →
match_traces ge t1 t2 ∧ (t1 = t2 → vres1 = vres2 ∧ m1 = m2)
}.
Inductive volatile_load_sem (chunk: memory_chunk) (ge: Senv.t):
list val → mem → trace → val → mem → Prop :=
| volatile_load_sem_intro: ∀ b ofs m t v,
volatile_load ge chunk m b ofs t v →
volatile_load_sem chunk ge (Vptr b ofs :: nil) m t v m.
Lemma volatile_load_preserved:
∀ ge1 ge2 chunk m b ofs t v,
Senv.equiv ge1 ge2 →
volatile_load ge1 chunk m b ofs t v →
volatile_load ge2 chunk m b ofs t v.
Proof.
intros. destruct H as (_ & A & B & C). inv H0; constructor; auto.
rewrite C; auto.
rewrite A; auto.
eapply eventval_match_preserved; eauto.
rewrite C; auto.
Qed.
Lemma volatile_load_extends:
∀ ge chunk m b ofs t v m',
volatile_load ge chunk m b ofs t v →
Mem.extends m m' →
∃ v', volatile_load ge chunk m' b ofs t v' ∧ Val.lessdef v v'.
Proof.
intros. inv H.
econstructor; split; eauto. econstructor; eauto.
exploit Mem.load_extends; eauto. intros [v' [A B]]. ∃ v'; split; auto. constructor; auto.
Qed.
Lemma volatile_load_inject:
∀ ge1 ge2 f chunk m b ofs t v b' ofs' m',
symbols_inject f ge1 ge2 →
volatile_load ge1 chunk m b ofs t v →
Val.inject f (Vptr b ofs) (Vptr b' ofs') →
Mem.inject f m m' →
∃ v', volatile_load ge2 chunk m' b' ofs' t v' ∧ Val.inject f v v'.
Proof.
intros until m'; intros SI VL VI MI. generalize SI; intros (A & B & C & D).
inv VL.
-
inv VI. exploit B; eauto. intros [U V]. subst delta.
exploit eventval_match_inject_2; eauto. intros (v2 & X & Y).
rewrite Ptrofs.add_zero. ∃ (Val.load_result chunk v2); split.
constructor; auto.
erewrite D; eauto.
apply Val.load_result_inject. auto.
-
exploit Mem.loadv_inject; eauto. simpl; eauto. simpl; intros (v2 & X & Y).
∃ v2; split; auto.
constructor; auto.
inv VI. erewrite D; eauto.
Qed.
Lemma volatile_load_receptive:
∀ ge chunk m b ofs t1 t2 v1,
volatile_load ge chunk m b ofs t1 v1 → match_traces ge t1 t2 →
∃ v2, volatile_load ge chunk m b ofs t2 v2.
Proof.
intros. inv H; inv H0.
exploit eventval_match_receptive; eauto. intros [v' EM].
∃ (Val.load_result chunk v'). constructor; auto.
∃ v1; constructor; auto.
Qed.
Lemma volatile_load_ok:
∀ chunk,
extcall_properties (volatile_load_sem chunk)
(mksignature (Tptr :: nil) (Some (type_of_chunk chunk)) cc_default).
Proof.
intros; constructor; intros.
- unfold proj_sig_res; simpl. inv H. inv H0. apply Val.load_result_type.
eapply Mem.load_type; eauto.
- inv H0. constructor. eapply volatile_load_preserved; eauto.
- inv H; auto.
- inv H; auto.
- inv H. apply Mem.unchanged_on_refl.
- inv H. inv H1. inv H6. inv H4.
exploit volatile_load_extends; eauto. intros [v' [A B]].
∃ v'; ∃ m1'; intuition. constructor; auto.
- apply symbols_inject'_symbols_inject in H.
inv H0. inv H2. inv H7. inversion H5; subst.
exploit volatile_load_inject; eauto. intros [v' [A B]].
∃ f; ∃ v'; ∃ m1'; intuition. constructor; auto.
red; intros. congruence.
- inv H; inv H0; simpl; omega.
- inv H. exploit volatile_load_receptive; eauto. intros [v2 A].
∃ v2; ∃ m1; constructor; auto.
- inv H; inv H0. inv H1; inv H7; try congruence.
assert (id = id0) by (eapply Senv.find_symbol_injective; eauto). subst id0.
split. constructor.
eapply eventval_match_valid; eauto.
eapply eventval_match_valid; eauto.
eapply eventval_match_same_type; eauto.
intros EQ; inv EQ.
assert (v = v0) by (eapply eventval_match_determ_1; eauto). subst v0.
auto.
split. constructor. intuition congruence.
Qed.
Inductive volatile_store_sem (chunk: memory_chunk) (ge: Senv.t):
list val → mem → trace → val → mem → Prop :=
| volatile_store_sem_intro: ∀ b ofs m1 v t m2,
volatile_store ge chunk m1 b ofs v t m2 →
volatile_store_sem chunk ge (Vptr b ofs :: v :: nil) m1 t Vundef m2.
Lemma volatile_store_preserved:
∀ ge1 ge2 chunk m1 b ofs v t m2,
Senv.equiv ge1 ge2 →
volatile_store ge1 chunk m1 b ofs v t m2 →
volatile_store ge2 chunk m1 b ofs v t m2.
Proof.
intros. destruct H as (_ & A & B & C). inv H0; constructor; auto.
rewrite C; auto.
rewrite A; auto.
eapply eventval_match_preserved; eauto.
rewrite C; auto.
Qed.
Lemma volatile_store_readonly:
∀ ge chunk1 m1 b1 ofs1 v t m2,
volatile_store ge chunk1 m1 b1 ofs1 v t m2 →
Mem.unchanged_on (loc_not_writable m1) m1 m2.
Proof.
intros. inv H.
apply Mem.unchanged_on_refl.
eapply Mem.store_unchanged_on; eauto.
exploit Mem.store_valid_access_3; eauto. intros [P Q].
intros. unfold loc_not_writable. red; intros. elim H2.
apply Mem.perm_cur_max. apply P. auto.
Qed.
Lemma volatile_store_extends:
∀ ge chunk m1 b ofs v t m2 m1' v',
volatile_store ge chunk m1 b ofs v t m2 →
Mem.extends m1 m1' →
Val.lessdef v v' →
∃ m2',
volatile_store ge chunk m1' b ofs v' t m2'
∧ Mem.extends m2 m2'
∧ Mem.unchanged_on (loc_out_of_bounds m1) m1' m2'.
Proof.
intros. inv H.
- econstructor; split. econstructor; eauto.
eapply eventval_match_lessdef; eauto. apply Val.load_result_lessdef; auto.
auto with mem.
- exploit Mem.store_within_extends; eauto. intros [m2' [A B]].
∃ m2'; repeat (split; auto).
+ econstructor; eauto.
+ eapply Mem.store_unchanged_on; eauto.
unfold loc_out_of_bounds; intros.
assert (Mem.perm m1 b i Max Nonempty).
{ apply Mem.perm_cur_max. apply Mem.perm_implies with Writable; auto with mem.
exploit Mem.store_valid_access_3. eexact H3. intros [P Q]. eauto. }
tauto.
Qed.
Lemma volatile_store_inject:
∀ ge1 ge2 f chunk m1 b ofs v t m2 m1' b' ofs' v',
symbols_inject f ge1 ge2 →
volatile_store ge1 chunk m1 b ofs v t m2 →
Val.inject f (Vptr b ofs) (Vptr b' ofs') →
Val.inject f v v' →
Mem.inject f m1 m1' →
∃ m2',
volatile_store ge2 chunk m1' b' ofs' v' t m2'
∧ Mem.inject f m2 m2'
∧ Mem.unchanged_on (loc_unmapped f) m1 m2
∧ Mem.unchanged_on (loc_out_of_reach f m1) m1' m2'.
Proof.
intros until v'; intros SI VS AI VI MI.
generalize SI; intros (P & Q & R & S).
inv VS.
-
inv AI. exploit Q; eauto. intros [A B]. subst delta.
rewrite Ptrofs.add_zero. ∃ m1'; split.
constructor; auto. erewrite S; eauto.
eapply eventval_match_inject; eauto. apply Val.load_result_inject. auto.
intuition auto with mem.
-
inversion AI; subst.
assert (Mem.storev chunk m1 (Vptr b ofs) v = Some m2). simpl; auto.
exploit Mem.storev_mapped_inject; eauto. intros [m2' [A B]].
∃ m2'; repeat (split; auto).
+ constructor; auto. erewrite S; eauto.
+ eapply Mem.store_unchanged_on; eauto.
unfold loc_unmapped; intros. inv AI; congruence.
+ eapply Mem.store_unchanged_on; eauto.
unfold loc_out_of_reach; intros. red; intros. simpl in A.
assert (EQ: Ptrofs.unsigned (Ptrofs.add ofs (Ptrofs.repr delta)) = Ptrofs.unsigned ofs + delta)
by (eapply Mem.address_inject; eauto with mem).
rewrite EQ in ×.
eelim H3; eauto.
exploit Mem.store_valid_access_3. eexact H0. intros [X Y].
apply Mem.perm_cur_max. apply Mem.perm_implies with Writable; auto with mem.
apply X. omega.
Qed.
Lemma volatile_store_receptive:
∀ ge chunk m b ofs v t1 m1 t2,
volatile_store ge chunk m b ofs v t1 m1 → match_traces ge t1 t2 → t1 = t2.
Proof.
intros. inv H; inv H0; auto.
Qed.
Lemma volatile_store_ok:
∀ chunk,
extcall_properties (volatile_store_sem chunk)
(mksignature (Tptr :: type_of_chunk chunk :: nil) None cc_default).
Proof.
intros; constructor; intros.
- unfold proj_sig_res; simpl. inv H; constructor.
- inv H0. constructor. eapply volatile_store_preserved; eauto.
- inv H. inv H1. auto. eauto with mem.
- inv H. inv H2. auto. eauto with mem.
- inv H. eapply volatile_store_readonly; eauto.
- inv H. inv H1. inv H6. inv H7. inv H4.
exploit volatile_store_extends; eauto. intros [m2' [A [B C]]].
∃ Vundef; ∃ m2'; intuition. constructor; auto.
- apply symbols_inject'_symbols_inject in H.
inv H0. inv H2. inv H7. inv H8. inversion H5; subst.
exploit volatile_store_inject; eauto. intros [m2' [A [B [C D]]]].
∃ f; ∃ Vundef; ∃ m2'; intuition. constructor; auto. red; intros; congruence.
- inv H; inv H0; simpl; omega.
- assert (t1 = t2). inv H. eapply volatile_store_receptive; eauto.
subst t2; ∃ vres1; ∃ m1; auto.
- inv H; inv H0. inv H1; inv H8; try congruence.
assert (id = id0) by (eapply Senv.find_symbol_injective; eauto). subst id0.
assert (ev = ev0) by (eapply eventval_match_determ_2; eauto). subst ev0.
split. constructor. auto.
split. constructor. intuition congruence.
Qed.
Inductive extcall_malloc_sem (ge: Senv.t):
list val → mem → trace → val → mem → Prop :=
| extcall_malloc_sem_intro: ∀ sz m m' b m'',
Mem.alloc m (- size_chunk Mptr) (Ptrofs.unsigned sz) = (m', b) →
Mem.store Mptr m' b (- size_chunk Mptr) (Vptrofs sz) = Some m'' →
extcall_malloc_sem ge (Vptrofs sz :: nil) m E0 (Vptr b Ptrofs.zero) m''.
Lemma extcall_malloc_ok:
extcall_properties extcall_malloc_sem
(mksignature (Tptr :: nil) (Some Tptr) cc_default).
Proof.
assert (UNCHANGED:
∀ (P: block → Z → Prop) m lo hi v m' b m'',
Mem.alloc m lo hi = (m', b) →
Mem.store Mptr m' b lo v = Some m'' →
Mem.unchanged_on P m m'').
{
intros.
apply Mem.unchanged_on_implies with (fun b1 ofs1 ⇒ b1 ≠ b).
apply Mem.unchanged_on_trans with m'.
eapply Mem.alloc_unchanged_on; eauto.
eapply Mem.store_unchanged_on; eauto.
intros. eapply Mem.valid_not_valid_diff; eauto with mem.
}
constructor; intros.
- inv H. unfold proj_sig_res, Tptr; simpl. destruct Archi.ptr64; auto.
- inv H0; econstructor; eauto.
- inv H. eauto with mem.
- inv H. exploit Mem.perm_alloc_inv. eauto. eapply Mem.perm_store_2; eauto.
rewrite dec_eq_false. auto.
apply Mem.valid_not_valid_diff with m1; eauto with mem.
- inv H. eapply UNCHANGED; eauto.
- inv H. inv H1. inv H7.
assert (SZ: v2 = Vptrofs sz).
{ unfold Vptrofs in ×. destruct Archi.ptr64; inv H5; auto. }
subst v2.
exploit Mem.alloc_extends; eauto. apply Zle_refl. apply Zle_refl.
intros [m3' [A B]].
exploit Mem.store_within_extends. eexact B. eauto. eauto.
intros [m2' [C D]].
∃ (Vptr b Ptrofs.zero); ∃ m2'; intuition.
econstructor; eauto.
eapply UNCHANGED; eauto.
- inv H0. inv H2. inv H8.
assert (SZ: v' = Vptrofs sz).
{ unfold Vptrofs in ×. destruct Archi.ptr64; inv H6; auto. }
subst v'.
exploit Mem.alloc_parallel_inject; eauto. apply Zle_refl. apply Zle_refl.
intros [f' [m3' [b' [ALLOC [A [B [C D]]]]]]].
exploit Mem.store_mapped_inject. eexact A. eauto. eauto.
instantiate (1 := Vptrofs sz). unfold Vptrofs; destruct Archi.ptr64; constructor.
rewrite Zplus_0_r. intros [m2' [E G]].
∃ f'; ∃ (Vptr b' Ptrofs.zero); ∃ m2'; intuition auto.
econstructor; eauto.
econstructor. eauto. auto.
eapply UNCHANGED; eauto.
eapply UNCHANGED; eauto.
red; intros. destruct (eq_block b1 b).
subst b1. rewrite C in H2. inv H2. eauto with mem.
rewrite D in H2 by auto. congruence.
- inv H; simpl; omega.
- assert (t1 = t2). inv H; inv H0; auto. subst t2.
∃ vres1; ∃ m1; auto.
- inv H. simple inversion H0.
assert (EQ2: sz0 = sz).
{ unfold Vptrofs in H4; destruct Archi.ptr64 eqn:SF.
rewrite <- (Ptrofs.of_int64_to_int64 SF sz0), <- (Ptrofs.of_int64_to_int64 SF sz). congruence.
rewrite <- (Ptrofs.of_int_to_int SF sz0), <- (Ptrofs.of_int_to_int SF sz). congruence.
}
subst.
split. constructor. intuition congruence.
Qed.
Inductive extcall_free_sem (ge: Senv.t):
list val → mem → trace → val → mem → Prop :=
| extcall_free_sem_intro: ∀ b lo sz m m',
Mem.load Mptr m b (Ptrofs.unsigned lo - size_chunk Mptr) = Some (Vptrofs sz) →
Ptrofs.unsigned sz > 0 →
Mem.free m b (Ptrofs.unsigned lo - size_chunk Mptr) (Ptrofs.unsigned lo + Ptrofs.unsigned sz) = Some m' →
extcall_free_sem ge (Vptr b lo :: nil) m E0 Vundef m'.
Lemma extcall_free_ok:
extcall_properties extcall_free_sem
(mksignature (Tptr :: nil) None cc_default).
Proof.
constructor; intros.
- inv H. unfold proj_sig_res. simpl. auto.
- inv H0; econstructor; eauto.
- inv H. eauto with mem.
- inv H. eapply Mem.perm_free_3; eauto.
- inv H. eapply Mem.free_unchanged_on; eauto.
intros. red; intros. elim H3.
apply Mem.perm_cur_max. apply Mem.perm_implies with Freeable; auto with mem.
eapply Mem.free_range_perm; eauto.
- inv H. inv H1. inv H8. inv H6.
exploit Mem.load_extends; eauto. intros [v' [A B]].
assert (v' = Vptrofs sz).
{ unfold Vptrofs in *; destruct Archi.ptr64; inv B; auto. }
subst v'.
exploit Mem.free_parallel_extends; eauto. intros [m2' [C D]].
∃ Vundef; ∃ m2'.
repeat
match goal with
|- _ ∧ _ ⇒
split; try now auto
end.
econstructor; eauto.
eapply Mem.free_unchanged_on; eauto.
unfold loc_out_of_bounds; intros.
assert (Mem.perm m1 b i Max Nonempty).
{ apply Mem.perm_cur_max. apply Mem.perm_implies with Freeable; auto with mem.
eapply Mem.free_range_perm. eexact H4. eauto. }
tauto.
- inv H0. inv H2. inv H7. inv H9.
exploit Mem.load_inject; eauto. intros [v' [A B]].
assert (v' = Vptrofs sz).
{ unfold Vptrofs in *; destruct Archi.ptr64; inv B; auto. }
subst v'.
assert (P: Mem.range_perm m1 b (Ptrofs.unsigned lo - size_chunk Mptr) (Ptrofs.unsigned lo + Ptrofs.unsigned sz) Cur Freeable).
eapply Mem.free_range_perm; eauto.
exploit Mem.address_inject; eauto.
apply Mem.perm_implies with Freeable; auto with mem.
apply P. instantiate (1 := lo).
generalize (size_chunk_pos Mptr); omega.
intro EQ.
exploit Mem.free_parallel_inject; eauto. intros (m2' & C & D).
∃ f, Vundef, m2'; split.
apply extcall_free_sem_intro with (sz := sz) (m' := m2').
rewrite EQ. rewrite <- A. f_equal. omega.
auto. auto.
rewrite ! EQ. rewrite <- C. f_equal; omega.
eauto.
split. auto.
split. auto.
split. eapply Mem.free_unchanged_on; eauto. unfold loc_unmapped. intros; congruence.
split. eapply Mem.free_unchanged_on; eauto. unfold loc_out_of_reach.
intros. red; intros. eelim H2; eauto.
apply Mem.perm_cur_max. apply Mem.perm_implies with Freeable; auto with mem.
apply P. omega.
split. auto.
red; intros. congruence.
- inv H; simpl; omega.
- assert (t1 = t2). inv H; inv H0; auto. subst t2.
∃ vres1; ∃ m1; auto.
- inv H; inv H0.
assert (EQ1: Vptrofs sz0 = Vptrofs sz) by congruence.
assert (EQ2: sz0 = sz).
{ unfold Vptrofs in EQ1; destruct Archi.ptr64 eqn:SF.
rewrite <- (Ptrofs.of_int64_to_int64 SF sz0), <- (Ptrofs.of_int64_to_int64 SF sz). congruence.
rewrite <- (Ptrofs.of_int_to_int SF sz0), <- (Ptrofs.of_int_to_int SF sz). congruence.
}
subst sz0.
split. constructor. intuition congruence.
Qed.
Inductive extcall_memcpy_sem (sz al: Z) (ge: Senv.t):
list val → mem → trace → val → mem → Prop :=
| extcall_memcpy_sem_intro: ∀ bdst odst bsrc osrc m bytes m',
al = 1 ∨ al = 2 ∨ al = 4 ∨ al = 8 → sz ≥ 0 → (al | sz) →
(sz > 0 → (al | Ptrofs.unsigned osrc)) →
(sz > 0 → (al | Ptrofs.unsigned odst)) →
bsrc ≠ bdst ∨ Ptrofs.unsigned osrc = Ptrofs.unsigned odst
∨ Ptrofs.unsigned osrc + sz ≤ Ptrofs.unsigned odst
∨ Ptrofs.unsigned odst + sz ≤ Ptrofs.unsigned osrc →
Mem.loadbytes m bsrc (Ptrofs.unsigned osrc) sz = Some bytes →
Mem.storebytes m bdst (Ptrofs.unsigned odst) bytes = Some m' →
extcall_memcpy_sem sz al ge (Vptr bdst odst :: Vptr bsrc osrc :: nil) m E0 Vundef m'.
Lemma extcall_memcpy_ok:
∀ sz al,
extcall_properties (extcall_memcpy_sem sz al)
(mksignature (Tptr :: Tptr :: nil) None cc_default).
Proof.
intros. constructor.
-
intros. inv H. constructor.
-
intros. inv H0. econstructor; eauto.
-
intros. inv H. eauto with mem.
-
intros. inv H. eapply Mem.perm_storebytes_2; eauto.
-
intros. inv H. eapply Mem.storebytes_unchanged_on; eauto.
intros; red; intros. elim H8.
apply Mem.perm_cur_max. eapply Mem.storebytes_range_perm; eauto.
-
intros. inv H.
inv H1. inv H13. inv H14. inv H10. inv H11.
exploit Mem.loadbytes_length; eauto. intros LEN.
exploit Mem.loadbytes_extends; eauto. intros [bytes2 [A B]].
exploit Mem.storebytes_within_extends; eauto. intros [m2' [C D]].
∃ Vundef; ∃ m2'.
split. econstructor; eauto.
split. constructor.
split. auto.
eapply Mem.storebytes_unchanged_on; eauto. unfold loc_out_of_bounds; intros.
assert (Mem.perm m1 bdst i Max Nonempty).
apply Mem.perm_cur_max. apply Mem.perm_implies with Writable; auto with mem.
eapply Mem.storebytes_range_perm; eauto.
erewrite list_forall2_length; eauto.
tauto.
-
intros until 1.
apply symbols_inject'_symbols_inject in H.
intros. inv H0. inv H2. inv H14. inv H15. inv H11. inv H12.
destruct (zeq sz 0).
+
assert (bytes = nil).
{ exploit (Mem.loadbytes_empty m1 bsrc (Ptrofs.unsigned osrc) sz). omega. congruence. }
subst.
destruct (Mem.range_perm_storebytes m1' b0 (Ptrofs.unsigned (Ptrofs.add odst (Ptrofs.repr delta0))) nil)
as [m2' SB].
simpl. red; intros; omegaContradiction.
∃ f, Vundef, m2'.
split. econstructor; eauto.
intros; omegaContradiction.
intros; omegaContradiction.
right; omega.
apply Mem.loadbytes_empty. omega.
split. auto.
split. eapply Mem.storebytes_empty_inject; eauto.
split. eapply Mem.storebytes_unchanged_on; eauto. unfold loc_unmapped; intros.
congruence.
split. eapply Mem.storebytes_unchanged_on; eauto.
simpl; intros; omegaContradiction.
split. apply inject_incr_refl.
red; intros; congruence.
+
exploit Mem.loadbytes_length; eauto. intros LEN.
assert (RPSRC: Mem.range_perm m1 bsrc (Ptrofs.unsigned osrc) (Ptrofs.unsigned osrc + sz) Cur Nonempty).
eapply Mem.range_perm_implies. eapply Mem.loadbytes_range_perm; eauto. auto with mem.
assert (RPDST: Mem.range_perm m1 bdst (Ptrofs.unsigned odst) (Ptrofs.unsigned odst + sz) Cur Nonempty).
replace sz with (Z_of_nat (length bytes)).
eapply Mem.range_perm_implies. eapply Mem.storebytes_range_perm; eauto. auto with mem.
rewrite LEN. apply nat_of_Z_eq. omega.
assert (PSRC: Mem.perm m1 bsrc (Ptrofs.unsigned osrc) Cur Nonempty).
apply RPSRC. omega.
assert (PDST: Mem.perm m1 bdst (Ptrofs.unsigned odst) Cur Nonempty).
apply RPDST. omega.
exploit Mem.address_inject. eauto. eexact PSRC. eauto. intros EQ1.
exploit Mem.address_inject. eauto. eexact PDST. eauto. intros EQ2.
exploit Mem.loadbytes_inject; eauto. intros [bytes2 [A B]].
exploit Mem.storebytes_mapped_inject; eauto. intros [m2' [C D]].
∃ f; ∃ Vundef; ∃ m2'.
split. econstructor; try rewrite EQ1; try rewrite EQ2; eauto.
intros; eapply Mem.aligned_area_inject with (m := m1); eauto.
intros; eapply Mem.aligned_area_inject with (m := m1); eauto.
eapply Mem.disjoint_or_equal_inject with (m := m1); eauto.
apply Mem.range_perm_max with Cur; auto.
apply Mem.range_perm_max with Cur; auto. omega.
split. constructor.
split. auto.
split. eapply Mem.storebytes_unchanged_on; eauto. unfold loc_unmapped; intros.
congruence.
split. eapply Mem.storebytes_unchanged_on; eauto. unfold loc_out_of_reach; intros. red; intros.
eelim H2; eauto.
apply Mem.perm_cur_max. apply Mem.perm_implies with Writable; auto with mem.
eapply Mem.storebytes_range_perm; eauto.
erewrite list_forall2_length; eauto.
omega.
split. apply inject_incr_refl.
red; intros; congruence.
-
intros; inv H. simpl; omega.
-
intros.
assert (t1 = t2). inv H; inv H0; auto. subst t2.
∃ vres1; ∃ m1; auto.
-
intros; inv H; inv H0. split. constructor. intros; split; congruence.
Qed.
Inductive extcall_annot_sem (text: string) (targs: list typ) (ge: Senv.t):
list val → mem → trace → val → mem → Prop :=
| extcall_annot_sem_intro: ∀ vargs m args,
eventval_list_match ge args targs vargs →
extcall_annot_sem text targs ge vargs m (Event_annot text args :: E0) Vundef m.
Lemma extcall_annot_ok:
∀ text targs,
extcall_properties (extcall_annot_sem text targs)
(mksignature targs None cc_default).
Proof.
intros; constructor; intros.
- inv H. simpl. auto.
- destruct H as (_ & A & B & C). inv H0. econstructor; eauto.
eapply eventval_list_match_preserved; eauto.
- inv H; auto.
- inv H; auto.
- inv H. apply Mem.unchanged_on_refl.
- inv H.
∃ Vundef; ∃ m1'; intuition.
econstructor; eauto.
eapply eventval_list_match_lessdef; eauto.
- apply symbols_inject'_symbols_inject in H.
inv H0.
∃ f; ∃ Vundef; ∃ m1'; intuition.
econstructor; eauto.
eapply eventval_list_match_inject; eauto.
red; intros; congruence.
- inv H; simpl; omega.
- assert (t1 = t2). inv H; inv H0; auto.
∃ vres1; ∃ m1; congruence.
- inv H; inv H0.
assert (args = args0). eapply eventval_list_match_determ_2; eauto. subst args0.
split. constructor. auto.
Qed.
Inductive extcall_annot_val_sem (text: string) (targ: typ) (ge: Senv.t):
list val → mem → trace → val → mem → Prop :=
| extcall_annot_val_sem_intro: ∀ varg m arg,
eventval_match ge arg targ varg →
extcall_annot_val_sem text targ ge (varg :: nil) m (Event_annot text (arg :: nil) :: E0) varg m.
Lemma extcall_annot_val_ok:
∀ text targ,
extcall_properties (extcall_annot_val_sem text targ)
(mksignature (targ :: nil) (Some targ) cc_default).
Proof.
intros; constructor; intros.
- inv H. unfold proj_sig_res; simpl. eapply eventval_match_type; eauto.
- destruct H as (_ & A & B & C). inv H0. econstructor; eauto.
eapply eventval_match_preserved; eauto.
- inv H; auto.
- inv H; auto.
- inv H. apply Mem.unchanged_on_refl.
- inv H. inv H1. inv H6.
∃ v2; ∃ m1'; intuition.
econstructor; eauto.
eapply eventval_match_lessdef; eauto.
- apply symbols_inject'_symbols_inject in H.
inv H0. inv H2. inv H7.
∃ f; ∃ v'; ∃ m1'; intuition.
econstructor; eauto.
eapply eventval_match_inject; eauto.
red; intros; congruence.
- inv H; simpl; omega.
- assert (t1 = t2). inv H; inv H0; auto. subst t2.
∃ vres1; ∃ m1; auto.
- inv H; inv H0.
assert (arg = arg0). eapply eventval_match_determ_2; eauto. subst arg0.
split. constructor. auto.
Qed.
Inductive extcall_debug_sem (ge: Senv.t):
list val → mem → trace → val → mem → Prop :=
| extcall_debug_sem_intro: ∀ vargs m,
extcall_debug_sem ge vargs m E0 Vundef m.
Lemma extcall_debug_ok:
∀ targs,
extcall_properties extcall_debug_sem
(mksignature targs None cc_default).
Proof.
intros; constructor; intros.
- inv H. simpl. auto.
- inv H0. econstructor; eauto.
- inv H; auto.
- inv H; auto.
- inv H. apply Mem.unchanged_on_refl.
- inv H.
∃ Vundef; ∃ m1'; intuition.
econstructor; eauto.
- apply symbols_inject'_symbols_inject in H.
inv H0.
∃ f; ∃ Vundef; ∃ m1'; intuition.
econstructor; eauto.
red; intros; congruence.
- inv H; simpl; omega.
- inv H; inv H0. ∃ Vundef, m1; constructor.
- inv H; inv H0.
split. constructor. auto.
Qed.
End WITHMEMORYMODEL.
Semantics of external functions.
Class ExternalCallsOps (mem: Type) {memory_model_ops: Mem.MemoryModelOps mem}: Type :=
{
external_functions_sem: String.string → signature → extcall_sem;
builtin_functions_sem: String.string → signature → extcall_sem;
runtime_functions_sem: String.string → signature → extcall_sem;
inline_assembly_sem: String.string → signature → extcall_sem
}.
Global Arguments ExternalCallsOps _ {_}.
Class ExternalCallsProps mem `{external_calls_ops: ExternalCallsOps mem}
{symbols_inject'_instance: SymbolsInject}
{memory_model_prf: Mem.MemoryModel mem}
: Prop :=
{
external_functions_properties:
∀ id sg, extcall_properties (external_functions_sem id sg) sg;
builtin_functions_properties:
∀ id sg, extcall_properties (builtin_functions_sem id sg) sg;
runtime_functions_properties:
∀ id sg, extcall_properties (runtime_functions_sem id sg) sg;
We treat inline assembly similarly.
inline_assembly_properties:
∀ id sg, extcall_properties (inline_assembly_sem id sg) sg
}.
Global Arguments ExternalCallsProps _ {_ _ _ _}.
Class EnableBuiltins mem `{ExternalCallsOps mem}: Type :=
{
cc_enable_external_as_builtin: bool
}.
Global Arguments EnableBuiltins _ { _ _ }.
Definition builtin_enabled `{enable_builtin_instance: EnableBuiltins} (ec: external_function): Prop :=
match ec with
| EF_external _ _ ⇒ if cc_enable_external_as_builtin then True else False
| _ ⇒ True
end.
Hint Unfold builtin_enabled.
Class ExternalCalls mem `{external_calls_ops: ExternalCallsOps mem}
`{enable_builtins_instance: !EnableBuiltins mem}
`{symbols_inject_instance: SymbolsInject}
`{memory_model_prf: !Mem.MemoryModel mem}
`{external_calls_props: !ExternalCallsProps mem}
: Type :=
{
}.
Global Arguments ExternalCalls mem { memory_model_ops external_calls_ops enable_builtins_instance symbols_inject_instance memory_model_prf external_calls_props }.
Combined semantics of external calls
- the external function being invoked
- the values of the arguments passed to this function
- the memory state before the call
- the result value of the call
- the memory state after the call
- the trace generated by the call (can be empty).
Section WITHEXTERNALCALLS.
Context `{external_calls_prf: ExternalCalls}.
Definition external_call (ef: external_function): extcall_sem :=
match ef with
| EF_external name sg ⇒ external_functions_sem name sg
| EF_builtin name sg ⇒ builtin_functions_sem name sg
| EF_runtime name sg ⇒ runtime_functions_sem name sg
| EF_vload chunk ⇒ volatile_load_sem chunk
| EF_vstore chunk ⇒ volatile_store_sem chunk
| EF_malloc ⇒ extcall_malloc_sem
| EF_free ⇒ extcall_free_sem
| EF_memcpy sz al ⇒ extcall_memcpy_sem sz al
| EF_annot txt targs ⇒ extcall_annot_sem txt targs
| EF_annot_val txt targ ⇒ extcall_annot_val_sem txt targ
| EF_inline_asm txt sg clb ⇒ inline_assembly_sem txt sg
| EF_debug kind txt targs ⇒ extcall_debug_sem
end.
Theorem external_call_spec:
∀ ef,
extcall_properties (external_call ef) (ef_sig ef).
Proof.
intros. unfold external_call, ef_sig; destruct ef.
apply external_functions_properties.
apply builtin_functions_properties.
apply runtime_functions_properties.
apply volatile_load_ok.
apply volatile_store_ok.
apply extcall_malloc_ok.
apply extcall_free_ok.
apply extcall_memcpy_ok.
apply extcall_annot_ok.
apply extcall_annot_val_ok.
apply inline_assembly_properties.
apply extcall_debug_ok.
Qed.
Definition external_call_well_typed ef := ec_well_typed (external_call_spec ef).
Definition external_call_symbols_preserved ef := ec_symbols_preserved (external_call_spec ef).
Definition external_call_valid_block ef := ec_valid_block (external_call_spec ef).
Definition external_call_max_perm ef := ec_max_perm (external_call_spec ef).
Definition external_call_readonly ef := ec_readonly (external_call_spec ef).
Definition external_call_mem_extends ef := ec_mem_extends (external_call_spec ef).
Definition external_call_mem_inject_gen ef := ec_mem_inject (external_call_spec ef).
Definition external_call_trace_length ef := ec_trace_length (external_call_spec ef).
Definition external_call_receptive ef := ec_receptive (external_call_spec ef).
Definition external_call_determ ef := ec_determ (external_call_spec ef).
Corollary of external_call_valid_block.
Lemma external_call_nextblock:
∀ ef ge vargs m1 t vres m2,
external_call ef ge vargs m1 t vres m2 →
Ple (Mem.nextblock m1) (Mem.nextblock m2).
Proof.
intros. destruct (plt (Mem.nextblock m2) (Mem.nextblock m1)).
exploit external_call_valid_block; eauto. intros.
eelim Plt_strict; eauto.
unfold Plt, Ple in *; zify; omega.
Qed.
Special case of external_call_mem_inject_gen (for backward compatibility)
Definition meminj_preserves_globals (F V: Type) (ge: Genv.t F V) (f: block → option (block × Z)) : Prop :=
(∀ id b, Genv.find_symbol ge id = Some b → f b = Some(b, 0))
∧ (∀ b gv, Genv.find_var_info ge b = Some gv → f b = Some(b, 0))
∧ (∀ b1 b2 delta gv, Genv.find_var_info ge b2 = Some gv → f b1 = Some(b2, delta) → b2 = b1).
Lemma meminj_preserves_globals_symbols_inject'
(F V: Type) (ge: Genv.t F V) (f: block → option (block × Z)):
meminj_preserves_globals ge f →
symbols_inject' f ge ge.
Proof.
intros H.
apply meminj_preserves_globals'_symbols_inject'.
destruct H as (A & B & C).
split; auto.
simpl; unfold Genv.block_is_volatile.
intros b1 b2 delta H.
destruct (Genv.find_var_info ge b1) as [gv1|] eqn:V1.
× exploit B; eauto. intros EQ; rewrite EQ in H; inv H. rewrite V1; auto.
× destruct (Genv.find_var_info ge b2) as [gv2|] eqn:V2; auto.
exploit C; eauto. intros EQ; subst b2. congruence.
Qed.
Lemma external_call_mem_inject:
∀ ef F V (ge: Genv.t F V) vargs m1 t vres m2 f m1' vargs',
meminj_preserves_globals ge f →
external_call ef ge vargs m1 t vres m2 →
Mem.inject f m1 m1' →
Val.inject_list f vargs vargs' →
∃ f', ∃ vres', ∃ m2',
external_call ef ge vargs' m1' t vres' m2'
∧ Val.inject f' vres vres'
∧ Mem.inject f' m2 m2'
∧ Mem.unchanged_on (loc_unmapped f) m1 m2
∧ Mem.unchanged_on (loc_out_of_reach f m1) m1' m2'
∧ inject_incr f f'
∧ inject_separated f f' m1 m1'.
Proof.
intros. eapply external_call_mem_inject_gen with (ge1 := ge); eauto.
eapply meminj_preserves_globals_symbols_inject' ; eauto.
Qed.
Corollaries of external_call_determ.
Lemma external_call_match_traces:
∀ ef ge vargs m t1 vres1 m1 t2 vres2 m2,
external_call ef ge vargs m t1 vres1 m1 →
external_call ef ge vargs m t2 vres2 m2 →
match_traces ge t1 t2.
Proof.
intros. exploit external_call_determ. eexact H. eexact H0. tauto.
Qed.
Lemma external_call_deterministic:
∀ ef ge vargs m t vres1 m1 vres2 m2,
external_call ef ge vargs m t vres1 m1 →
external_call ef ge vargs m t vres2 m2 →
vres1 = vres2 ∧ m1 = m2.
Proof.
intros. exploit external_call_determ. eexact H. eexact H0. intuition.
Qed.
Section EVAL_BUILTIN_ARG.
Variable A: Type.
Variable ge: Senv.t.
Variable e: A → val.
Variable sp: val.
Variable m: mem.
Inductive eval_builtin_arg: builtin_arg A → val → Prop :=
| eval_BA: ∀ x,
eval_builtin_arg (BA x) (e x)
| eval_BA_int: ∀ n,
eval_builtin_arg (BA_int n) (Vint n)
| eval_BA_long: ∀ n,
eval_builtin_arg (BA_long n) (Vlong n)
| eval_BA_float: ∀ n,
eval_builtin_arg (BA_float n) (Vfloat n)
| eval_BA_single: ∀ n,
eval_builtin_arg (BA_single n) (Vsingle n)
| eval_BA_loadstack: ∀ chunk ofs v,
Mem.loadv chunk m (Val.offset_ptr sp ofs) = Some v →
eval_builtin_arg (BA_loadstack chunk ofs) v
| eval_BA_addrstack: ∀ ofs,
eval_builtin_arg (BA_addrstack ofs) (Val.offset_ptr sp ofs)
| eval_BA_loadglobal: ∀ chunk id ofs v,
Mem.loadv chunk m (Senv.symbol_address ge id ofs) = Some v →
eval_builtin_arg (BA_loadglobal chunk id ofs) v
| eval_BA_addrglobal: ∀ id ofs,
eval_builtin_arg (BA_addrglobal id ofs) (Senv.symbol_address ge id ofs)
| eval_BA_splitlong: ∀ hi lo vhi vlo,
eval_builtin_arg hi vhi → eval_builtin_arg lo vlo →
eval_builtin_arg (BA_splitlong hi lo) (Val.longofwords vhi vlo).
Definition eval_builtin_args (al: list (builtin_arg A)) (vl: list val) : Prop :=
list_forall2 eval_builtin_arg al vl.
Lemma eval_builtin_arg_determ:
∀ a v, eval_builtin_arg a v → ∀ v', eval_builtin_arg a v' → v' = v.
Proof.
induction 1; intros v' EV; inv EV; try congruence.
f_equal; eauto.
Qed.
Lemma eval_builtin_args_determ:
∀ al vl, eval_builtin_args al vl → ∀ vl', eval_builtin_args al vl' → vl' = vl.
Proof.
induction 1; intros v' EV; inv EV; f_equal; eauto using eval_builtin_arg_determ.
Qed.
End EVAL_BUILTIN_ARG.
Hint Constructors eval_builtin_arg: barg.
Invariance by change of global environment.
Section EVAL_BUILTIN_ARG_PRESERVED.
Variables A F1 V1 F2 V2: Type.
Variable ge1: Genv.t F1 V1.
Variable ge2: Genv.t F2 V2.
Variable e: A → val.
Variable sp: val.
Variable m: mem.
Hypothesis symbols_preserved:
∀ id, Genv.find_symbol ge2 id = Genv.find_symbol ge1 id.
Lemma eval_builtin_arg_preserved:
∀ a v, eval_builtin_arg ge1 e sp m a v → eval_builtin_arg ge2 e sp m a v.
Proof.
assert (EQ: ∀ id ofs, Senv.symbol_address ge2 id ofs = Senv.symbol_address ge1 id ofs).
{ unfold Senv.symbol_address; simpl; intros. rewrite symbols_preserved; auto. }
induction 1; eauto with barg. rewrite <- EQ in H; eauto with barg. rewrite <- EQ; eauto with barg.
Qed.
Lemma eval_builtin_args_preserved:
∀ al vl, eval_builtin_args ge1 e sp m al vl → eval_builtin_args ge2 e sp m al vl.
Proof.
induction 1; constructor; auto; eapply eval_builtin_arg_preserved; eauto.
Qed.
End EVAL_BUILTIN_ARG_PRESERVED.
Compatibility with the "is less defined than" relation.
Section EVAL_BUILTIN_ARG_LESSDEF.
Variable A: Type.
Variable ge: Senv.t.
Variables e1 e2: A → val.
Variable sp: val.
Variables m1 m2: mem.
Hypothesis env_lessdef: ∀ x, Val.lessdef (e1 x) (e2 x).
Hypothesis mem_extends: Mem.extends m1 m2.
Lemma eval_builtin_arg_lessdef:
∀ a v1, eval_builtin_arg ge e1 sp m1 a v1 →
∃ v2, eval_builtin_arg ge e2 sp m2 a v2 ∧ Val.lessdef v1 v2.
Proof.
induction 1.
- ∃ (e2 x); auto with barg.
- econstructor; eauto with barg.
- econstructor; eauto with barg.
- econstructor; eauto with barg.
- econstructor; eauto with barg.
- exploit Mem.loadv_extends; eauto. intros (v' & P & Q). ∃ v'; eauto with barg.
- econstructor; eauto with barg.
- exploit Mem.loadv_extends; eauto. intros (v' & P & Q). ∃ v'; eauto with barg.
- econstructor; eauto with barg.
- destruct IHeval_builtin_arg1 as (vhi' & P & Q).
destruct IHeval_builtin_arg2 as (vlo' & R & S).
econstructor; split; eauto with barg. apply Val.longofwords_lessdef; auto.
Qed.
Lemma eval_builtin_args_lessdef:
∀ al vl1, eval_builtin_args ge e1 sp m1 al vl1 →
∃ vl2, eval_builtin_args ge e2 sp m2 al vl2 ∧ Val.lessdef_list vl1 vl2.
Proof.
induction 1.
- econstructor; split. constructor. auto.
- exploit eval_builtin_arg_lessdef; eauto. intros (v1' & P & Q).
destruct IHlist_forall2 as (vl' & U & V).
∃ (v1'::vl'); split; constructor; auto.
Qed.
End EVAL_BUILTIN_ARG_LESSDEF.
Section EVAL_BUILTIN_ARG_LESSDEF'.
Variable A : Type.
Variable ge : Senv.t.
Variables rs1 rs2 : A → val.
Hypothesis rs_lessdef: ∀ a, Val.lessdef (rs1 a) (rs2 a).
Variables sp sp' : val.
Hypothesis sp_lessdef: Val.lessdef sp sp'.
Variable m : mem.
Lemma eval_builtin_arg_lessdef':
∀ arg v v'
(EBA: eval_builtin_arg ge rs1 sp m arg v)
(EBA': eval_builtin_arg ge rs2 sp' m arg v'),
Val.lessdef v v'.
Proof.
induction arg; intros; inv EBA; inv EBA'; subst; auto.
- intros. exploit Mem.loadv_extends. apply Mem.extends_refl. apply H2.
2: rewrite H3.
apply Val.offset_ptr_lessdef; auto.
intros (v2 & B & C). inv B. auto.
- intros; apply Val.offset_ptr_lessdef; auto.
- intros. exploit Mem.loadv_extends. apply Mem.extends_refl. apply H3.
2: rewrite H4. auto. intros (v2 & B & C). inv B. auto.
- apply Val.longofwords_lessdef. eauto. eauto.
Qed.
Lemma eval_builtin_args_lessdef':
∀ args vl vl'
(EBA: eval_builtin_args ge rs1 sp m args vl)
(EBA': eval_builtin_args ge rs2 sp' m args vl'),
Val.lessdef_list vl vl'.
Proof.
induction args; simpl; intros. inv EBA; inv EBA'. constructor.
inv EBA; inv EBA'. constructor; auto.
eapply eval_builtin_arg_lessdef'; eauto.
Qed.
End EVAL_BUILTIN_ARG_LESSDEF'.
Section EVAL_BUILTIN_ARG_LESSDEF''.
Variable A : Type.
Variable ge : Senv.t.
Variables rs1 rs2 : A → val.
Hypothesis rs_lessdef: ∀ a, Val.lessdef (rs1 a) (rs2 a).
Variables sp sp' : val.
Hypothesis sp_lessdef: Val.lessdef sp sp'.
Variables m m' : mem.
Hypotheses MEXT: Mem.extends m m'.
Lemma eval_builtin_arg_lessdef'':
∀ arg v
(EBA: eval_builtin_arg ge rs1 sp m arg v),
∃ v', eval_builtin_arg ge rs2 sp' m' arg v' ∧
Val.lessdef v v'.
Proof.
induction arg; intros; inv EBA; subst; auto;
try now (eexists; split; [ constructor | auto ]).
- exploit Mem.loadv_extends. eauto. eauto. apply Val.offset_ptr_lessdef; try eassumption. eauto.
intros (v2 & B & C).
eexists; split. constructor. eauto. eauto.
- eexists; split; [ constructor; eauto | eauto ]. intros; apply Val.offset_ptr_lessdef; auto.
- exploit Mem.loadv_extends. eauto. eauto. auto.
intros (v2 & B & C).
eexists; split. constructor. eauto. eauto.
- apply IHarg1 in H1. apply IHarg2 in H3.
decompose [ex and] H1.
decompose [ex and] H3.
eexists; split; [ constructor; eauto | eauto ].
apply Val.longofwords_lessdef. eauto. eauto.
Qed.
Lemma eval_builtin_args_lessdef'':
∀ args vl
(EBA: eval_builtin_args ge rs1 sp m args vl),
∃ vl',
eval_builtin_args ge rs2 sp' m' args vl' ∧
Val.lessdef_list vl vl'.
Proof.
induction args; simpl; intros. inv EBA. eexists; split; eauto. constructor.
inv EBA.
exploit IHargs; eauto. intros (vl' & EBA & LD).
exploit eval_builtin_arg_lessdef''; eauto.
intros (v' & EBA1 & L).
eexists; split.
constructor; eauto. eauto.
Qed.
End EVAL_BUILTIN_ARG_LESSDEF''.
End WITHEXTERNALCALLS.
Hint Constructors eval_builtin_arg: barg.