Library compcert.common.Memtype
This file defines the interface for the memory model that
is used in the dynamic semantics of all the languages used in the compiler.
It defines a type mem of memory states, the following 4 basic
operations over memory states, and their properties:
Require Import Coqlib.
Require Intv.
Require Import AST.
Require Import Integers.
Require Import Floats.
Require Import Values.
Require Import Memdata.
Memory states are accessed by addresses b, ofs: pairs of a block
identifier b and a byte offset ofs within that block.
Each address is associated to permissions, also known as access rights.
The following permissions are expressible:
The first four cases are represented by the following type of permissions.
Being empty is represented by the absence of any permission.
- Freeable (exclusive access): all operations permitted
- Writable: load, store and pointer comparison operations are permitted, but freeing is not.
- Readable: only load and pointer comparison operations are permitted.
- Nonempty: valid, but only pointer comparisons are permitted.
- Empty: not yet allocated or previously freed; no operation permitted.
Inductive permission: Type :=
| Freeable: permission
| Writable: permission
| Readable: permission
| Nonempty: permission.
In the list, each permission implies the other permissions further down the
list. We reflect this fact by the following order over permissions.
Inductive perm_order: permission → permission → Prop :=
| perm_refl: ∀ p, perm_order p p
| perm_F_any: ∀ p, perm_order Freeable p
| perm_W_R: perm_order Writable Readable
| perm_any_N: ∀ p, perm_order p Nonempty.
Hint Constructors perm_order: mem.
Lemma perm_order_trans:
∀ p1 p2 p3, perm_order p1 p2 → perm_order p2 p3 → perm_order p1 p3.
Proof.
intros. inv H; inv H0; constructor.
Qed.
Each address has not one, but two permissions associated
with it. The first is the current permission. It governs whether
operations (load, store, free, etc) over this address succeed or
not. The other is the maximal permission. It is always at least as
strong as the current permission. Once a block is allocated, the
maximal permission of an address within this block can only
decrease, as a result of free or drop_perm operations, or of
external calls. In contrast, the current permission of an address
can be temporarily lowered by an external call, then raised again by
another external call.
Inductive perm_kind: Type :=
| Max: perm_kind
| Cur: perm_kind.
Module Mem.
Definition locset := block → Z → Prop.
Class MemoryModelOps
The abstract type of memory states.
(mem: Type)
: Type
:=
{
: Type
:=
{
alloc m lo hi allocates a fresh block of size hi - lo bytes.
Valid offsets in this block are between lo included and hi excluded.
These offsets are writable in the returned memory state.
This block is not initialized: its contents are initially undefined.
Returns a pair (m', b) of the updated memory state m' and
the identifier b of the newly-allocated block.
Note that alloc never fails: we are modeling an infinite memory.
free m b lo hi frees (deallocates) the range of offsets from lo
included to hi excluded in block b. Returns the updated memory
state, or None if the freed addresses are not writable.
load chunk m b ofs reads a memory quantity chunk from
addresses b, ofs to b, ofs + size_chunk chunk - 1 in memory state
m. Returns the value read, or None if the accessed addresses
are not readable.
store chunk m b ofs v writes value v as memory quantity chunk
from addresses b, ofs to b, ofs + size_chunk chunk - 1 in memory state
m. Returns the updated memory state, or None if the accessed addresses
are not writable.
loadbytes m b ofs n reads and returns the byte-level representation of
the values contained at offsets ofs to ofs + n - 1 within block b
in memory state m.
None is returned if the accessed addresses are not readable.
storebytes m b ofs bytes stores the given list of bytes bytes
starting at location (b, ofs). Returns updated memory state
or None if the accessed locations are not writable.
drop_perm m b lo hi p sets the permissions of the byte range
(b, lo) ... (b, hi - 1) to p. These bytes must have Freeable permissions
in the initial memory state m.
Returns updated memory state, or None if insufficient permissions.
Permissions, block validity, access validity, and bounds
perm m b ofs k p holds if the address b, ofs in memory state m
has permission p: one of freeable, writable, readable, and nonempty.
If the address is empty, perm m b ofs p is false for all values of p.
k is the kind of permission we are interested in: either the current
permissions or the maximal permissions.
range_perm (m: mem) (b: block) (lo hi: Z) (k: perm_kind) (p: permission) : Prop :=
∀ ofs, lo ≤ ofs < hi → perm m b ofs k p;
∀ ofs, lo ≤ ofs < hi → perm m b ofs k p;
Relating two memory states.
Memory extensions
The magree predicate is a variant of extends where we
allow the contents of the two memory states to differ arbitrarily
on some locations. The predicate P is true on the locations whose
contents must be in the lessdef relation.
Needed by Deadcodeproof.
Memory injections
- if f b = None, the block b of m1 has no equivalent in m2;
- if f b = Some(b', ofs), the block b of m2 corresponds to a sub-block at offset ofs of the block b' in m2.
Memory states that inject into themselves.
Necessary to distinguish from unchanged_on, used as
postconditions to external function calls, whereas
strong_unchanged_on will be used for ordinary memory operations.
strong_unchanged_on: ∀ (P: block → Z → Prop) (m_before m_after: mem), Prop
}.
Section WITHMEMORYMODELOPS.
Context `{memory_model_ops: MemoryModelOps}.
loadv and storev are variants of load and store where
the address being accessed is passed as a value (of the Vptr kind).
Definition loadv (chunk: memory_chunk) (m: mem) (addr: val) : option val :=
match addr with
| Vptr b ofs ⇒ load chunk m b (Ptrofs.unsigned ofs)
| _ ⇒ None
end.
Definition storev (chunk: memory_chunk) (m: mem) (addr v: val) : option mem :=
match addr with
| Vptr b ofs ⇒ store chunk m b (Ptrofs.unsigned ofs) v
| _ ⇒ None
end.
free_list frees all the given (block, lo, hi) triples.
Fixpoint free_list (m: mem) (l: list (block × Z × Z)) {struct l}: option mem :=
match l with
| nil ⇒ Some m
| (b, lo, hi) :: l' ⇒
match free m b lo hi with
| None ⇒ None
| Some m' ⇒ free_list m' l'
end
end.
Definition valid_block (m: mem) (b: block) := Plt b (nextblock m).
match l with
| nil ⇒ Some m
| (b, lo, hi) :: l' ⇒
match free m b lo hi with
| None ⇒ None
| Some m' ⇒ free_list m' l'
end
end.
Definition valid_block (m: mem) (b: block) := Plt b (nextblock m).
An access to a memory quantity chunk at address b, ofs with
permission p is valid in m if the accessed addresses all have
current permission p and moreover the offset is properly aligned.
Definition valid_access (m: mem) (chunk: memory_chunk) (b: block) (ofs: Z) (p: permission): Prop :=
range_perm m b ofs (ofs + size_chunk chunk) Cur p
∧ (align_chunk chunk | ofs).
range_perm m b ofs (ofs + size_chunk chunk) Cur p
∧ (align_chunk chunk | ofs).
C allows pointers one past the last element of an array. These are not
valid according to the previously defined valid_pointer. The property
weak_valid_pointer m b ofs holds if address b, ofs is a valid pointer
in m, or a pointer one past a valid block in m.
Definition weak_valid_pointer (m: mem) (b: block) (ofs: Z) :=
valid_pointer m b ofs || valid_pointer m b (ofs - 1).
Integrity of pointer values.
Definition compat_pointer_chunks (chunk1 chunk2: memory_chunk) : Prop :=
match chunk1, chunk2 with
| (Mint32 | Many32), (Mint32 | Many32) ⇒ True
| (Mint64 | Many64), (Mint64 | Many64) ⇒ True
| _, _ ⇒ False
end.
Definition inj_offset_aligned (delta: Z) (size: Z) : Prop :=
∀ chunk, size_chunk chunk ≤ size → (align_chunk chunk | delta).
Definition flat_inj (thr: block) : meminj :=
fun (b: block) ⇒ if plt b thr then Some(b, 0) else None.
Definition meminj_no_overlap (f: meminj) (m: mem) : Prop :=
∀ b1 b1' delta1 b2 b2' delta2 ofs1 ofs2,
b1 ≠ b2 →
f b1 = Some (b1', delta1) →
f b2 = Some (b2', delta2) →
perm m b1 ofs1 Max Nonempty →
perm m b2 ofs2 Max Nonempty →
b1' ≠ b2' ∨ ofs1 + delta1 ≠ ofs2 + delta2.
End WITHMEMORYMODELOPS.
Class MemoryModel mem {memory_model_ops: MemoryModelOps mem}: Prop :=
{
valid_not_valid_diff:
∀ m b b', valid_block m b → ~(valid_block m b') → b ≠ b';
Logical implications between permissions
The current permission is always less than or equal to the maximal permission.
perm_cur_max:
∀ m b ofs p, perm m b ofs Cur p → perm m b ofs Max p;
perm_cur:
∀ m b ofs k p, perm m b ofs Cur p → perm m b ofs k p;
perm_max:
∀ m b ofs k p, perm m b ofs k p → perm m b ofs Max p;
Having a (nonempty) permission implies that the block is valid.
In other words, invalid blocks, not yet allocated, are all empty.
perm_valid_block:
∀ m b ofs k p, perm m b ofs k p → valid_block m b;
range_perm_implies:
∀ m b lo hi k p1 p2,
range_perm m b lo hi k p1 → perm_order p1 p2 → range_perm m b lo hi k p2;
range_perm_cur:
∀ m b lo hi k p,
range_perm m b lo hi Cur p → range_perm m b lo hi k p;
range_perm_max:
∀ m b lo hi k p,
range_perm m b lo hi k p → range_perm m b lo hi Max p;
valid_access_implies:
∀ m chunk b ofs p1 p2,
valid_access m chunk b ofs p1 → perm_order p1 p2 →
valid_access m chunk b ofs p2;
valid_access_valid_block:
∀ m chunk b ofs,
valid_access m chunk b ofs Nonempty →
valid_block m b;
valid_access_perm:
∀ m chunk b ofs k p,
valid_access m chunk b ofs p →
perm m b ofs k p;
valid_pointer_nonempty_perm:
∀ m b ofs,
valid_pointer m b ofs = true ↔ perm m b ofs Cur Nonempty;
valid_pointer_valid_access:
∀ m b ofs,
valid_pointer m b ofs = true ↔ valid_access m Mint8unsigned b ofs Nonempty;
weak_valid_pointer_spec:
∀ m b ofs,
weak_valid_pointer m b ofs = true ↔
valid_pointer m b ofs = true ∨ valid_pointer m b (ofs - 1) = true;
valid_pointer_implies:
∀ m b ofs,
valid_pointer m b ofs = true → weak_valid_pointer m b ofs = true;
∀ m b ofs k p, perm m b ofs k p → valid_block m b;
range_perm_implies:
∀ m b lo hi k p1 p2,
range_perm m b lo hi k p1 → perm_order p1 p2 → range_perm m b lo hi k p2;
range_perm_cur:
∀ m b lo hi k p,
range_perm m b lo hi Cur p → range_perm m b lo hi k p;
range_perm_max:
∀ m b lo hi k p,
range_perm m b lo hi k p → range_perm m b lo hi Max p;
valid_access_implies:
∀ m chunk b ofs p1 p2,
valid_access m chunk b ofs p1 → perm_order p1 p2 →
valid_access m chunk b ofs p2;
valid_access_valid_block:
∀ m chunk b ofs,
valid_access m chunk b ofs Nonempty →
valid_block m b;
valid_access_perm:
∀ m chunk b ofs k p,
valid_access m chunk b ofs p →
perm m b ofs k p;
valid_pointer_nonempty_perm:
∀ m b ofs,
valid_pointer m b ofs = true ↔ perm m b ofs Cur Nonempty;
valid_pointer_valid_access:
∀ m b ofs,
valid_pointer m b ofs = true ↔ valid_access m Mint8unsigned b ofs Nonempty;
weak_valid_pointer_spec:
∀ m b ofs,
weak_valid_pointer m b ofs = true ↔
valid_pointer m b ofs = true ∨ valid_pointer m b (ofs - 1) = true;
valid_pointer_implies:
∀ m b ofs,
valid_pointer m b ofs = true → weak_valid_pointer m b ofs = true;
nextblock_empty: nextblock empty = 1%positive;
perm_empty: ∀ b ofs k p, ¬perm empty b ofs k p;
valid_access_empty:
∀ chunk b ofs p, ¬valid_access empty chunk b ofs p;
valid_access_load:
∀ m chunk b ofs,
valid_access m chunk b ofs Readable →
∃ v, load chunk m b ofs = Some v;
load_valid_access:
∀ m chunk b ofs v,
load chunk m b ofs = Some v →
valid_access m chunk b ofs Readable;
∀ m chunk b ofs,
valid_access m chunk b ofs Readable →
∃ v, load chunk m b ofs = Some v;
load_valid_access:
∀ m chunk b ofs v,
load chunk m b ofs = Some v →
valid_access m chunk b ofs Readable;
The value returned by load belongs to the type of the memory quantity
accessed: Vundef, Vint or Vptr for an integer quantity,
Vundef or Vfloat for a float quantity.
For a small integer or float type, the value returned by load
is invariant under the corresponding cast.
load_cast:
∀ m chunk b ofs v,
load chunk m b ofs = Some v →
match chunk with
| Mint8signed ⇒ v = Val.sign_ext 8 v
| Mint8unsigned ⇒ v = Val.zero_ext 8 v
| Mint16signed ⇒ v = Val.sign_ext 16 v
| Mint16unsigned ⇒ v = Val.zero_ext 16 v
| _ ⇒ True
end;
load_int8_signed_unsigned:
∀ m b ofs,
load Mint8signed m b ofs = option_map (Val.sign_ext 8) (load Mint8unsigned m b ofs);
load_int16_signed_unsigned:
∀ m b ofs,
load Mint16signed m b ofs = option_map (Val.sign_ext 16) (load Mint16unsigned m b ofs);
loadv_int64_split:
∀ m a v,
loadv Mint64 m a = Some v → Archi.ptr64 = false →
∃ v1 v2,
loadv Mint32 m a = Some (if Archi.big_endian then v1 else v2)
∧ loadv Mint32 m (Val.add a (Vint (Int.repr 4))) = Some (if Archi.big_endian then v2 else v1)
∧ Val.lessdef v (Val.longofwords v1 v2);
∀ m chunk b ofs v,
load chunk m b ofs = Some v →
match chunk with
| Mint8signed ⇒ v = Val.sign_ext 8 v
| Mint8unsigned ⇒ v = Val.zero_ext 8 v
| Mint16signed ⇒ v = Val.sign_ext 16 v
| Mint16unsigned ⇒ v = Val.zero_ext 16 v
| _ ⇒ True
end;
load_int8_signed_unsigned:
∀ m b ofs,
load Mint8signed m b ofs = option_map (Val.sign_ext 8) (load Mint8unsigned m b ofs);
load_int16_signed_unsigned:
∀ m b ofs,
load Mint16signed m b ofs = option_map (Val.sign_ext 16) (load Mint16unsigned m b ofs);
loadv_int64_split:
∀ m a v,
loadv Mint64 m a = Some v → Archi.ptr64 = false →
∃ v1 v2,
loadv Mint32 m a = Some (if Archi.big_endian then v1 else v2)
∧ loadv Mint32 m (Val.add a (Vint (Int.repr 4))) = Some (if Archi.big_endian then v2 else v1)
∧ Val.lessdef v (Val.longofwords v1 v2);
Properties of loadbytes.
range_perm_loadbytes:
∀ m b ofs len,
range_perm m b ofs (ofs + len) Cur Readable →
∃ bytes, loadbytes m b ofs len = Some bytes;
loadbytes_range_perm:
∀ m b ofs len bytes,
loadbytes m b ofs len = Some bytes →
range_perm m b ofs (ofs + len) Cur Readable;
If loadbytes succeeds, the corresponding load succeeds and
returns a value that is determined by the
bytes read by loadbytes.
loadbytes_load:
∀ chunk m b ofs bytes,
loadbytes m b ofs (size_chunk chunk) = Some bytes →
(align_chunk chunk | ofs) →
load chunk m b ofs = Some(decode_val chunk bytes);
∀ chunk m b ofs bytes,
loadbytes m b ofs (size_chunk chunk) = Some bytes →
(align_chunk chunk | ofs) →
load chunk m b ofs = Some(decode_val chunk bytes);
Conversely, if load returns a value, the corresponding
loadbytes succeeds and returns a list of bytes which decodes into the
result of load.
load_loadbytes:
∀ chunk m b ofs v,
load chunk m b ofs = Some v →
∃ bytes, loadbytes m b ofs (size_chunk chunk) = Some bytes
∧ v = decode_val chunk bytes;
∀ chunk m b ofs v,
load chunk m b ofs = Some v →
∃ bytes, loadbytes m b ofs (size_chunk chunk) = Some bytes
∧ v = decode_val chunk bytes;
loadbytes_length:
∀ m b ofs n bytes,
loadbytes m b ofs n = Some bytes →
length bytes = nat_of_Z n;
loadbytes_empty:
∀ m b ofs n,
n ≤ 0 → loadbytes m b ofs n = Some nil;
∀ m b ofs n bytes,
loadbytes m b ofs n = Some bytes →
length bytes = nat_of_Z n;
loadbytes_empty:
∀ m b ofs n,
n ≤ 0 → loadbytes m b ofs n = Some nil;
Composing or decomposing loadbytes operations at adjacent addresses.
loadbytes_concat:
∀ m b ofs n1 n2 bytes1 bytes2,
loadbytes m b ofs n1 = Some bytes1 →
loadbytes m b (ofs + n1) n2 = Some bytes2 →
n1 ≥ 0 → n2 ≥ 0 →
loadbytes m b ofs (n1 + n2) = Some(bytes1 ++ bytes2);
loadbytes_split:
∀ m b ofs n1 n2 bytes,
loadbytes m b ofs (n1 + n2) = Some bytes →
n1 ≥ 0 → n2 ≥ 0 →
∃ bytes1, ∃ bytes2,
loadbytes m b ofs n1 = Some bytes1
∧ loadbytes m b (ofs + n1) n2 = Some bytes2
∧ bytes = bytes1 ++ bytes2;
∀ m b ofs n1 n2 bytes1 bytes2,
loadbytes m b ofs n1 = Some bytes1 →
loadbytes m b (ofs + n1) n2 = Some bytes2 →
n1 ≥ 0 → n2 ≥ 0 →
loadbytes m b ofs (n1 + n2) = Some(bytes1 ++ bytes2);
loadbytes_split:
∀ m b ofs n1 n2 bytes,
loadbytes m b ofs (n1 + n2) = Some bytes →
n1 ≥ 0 → n2 ≥ 0 →
∃ bytes1, ∃ bytes2,
loadbytes m b ofs n1 = Some bytes1
∧ loadbytes m b (ofs + n1) n2 = Some bytes2
∧ bytes = bytes1 ++ bytes2;
Properties of store.
nextblock_store:
∀ chunk m1 b ofs v m2, store chunk m1 b ofs v = Some m2 →
nextblock m2 = nextblock m1;
store_valid_block_1:
∀ chunk m1 b ofs v m2, store chunk m1 b ofs v = Some m2 →
∀ b', valid_block m1 b' → valid_block m2 b';
store_valid_block_2:
∀ chunk m1 b ofs v m2, store chunk m1 b ofs v = Some m2 →
∀ b', valid_block m2 b' → valid_block m1 b';
perm_store_1:
∀ chunk m1 b ofs v m2, store chunk m1 b ofs v = Some m2 →
∀ b' ofs' k p, perm m1 b' ofs' k p → perm m2 b' ofs' k p;
perm_store_2:
∀ chunk m1 b ofs v m2, store chunk m1 b ofs v = Some m2 →
∀ b' ofs' k p, perm m2 b' ofs' k p → perm m1 b' ofs' k p;
valid_access_store':
∀ m1 chunk b ofs v,
valid_access m1 chunk b ofs Writable →
∃ m2: mem, store chunk m1 b ofs v = Some m2;
store_valid_access_1:
∀ chunk m1 b ofs v m2, store chunk m1 b ofs v = Some m2 →
∀ chunk' b' ofs' p,
valid_access m1 chunk' b' ofs' p → valid_access m2 chunk' b' ofs' p;
store_valid_access_2:
∀ chunk m1 b ofs v m2, store chunk m1 b ofs v = Some m2 →
∀ chunk' b' ofs' p,
valid_access m2 chunk' b' ofs' p → valid_access m1 chunk' b' ofs' p;
store_valid_access_3:
∀ chunk m1 b ofs v m2, store chunk m1 b ofs v = Some m2 →
valid_access m1 chunk b ofs Writable;
Load-store properties.
load_store_similar:
∀ chunk m1 b ofs v m2, store chunk m1 b ofs v = Some m2 →
∀ chunk',
size_chunk chunk' = size_chunk chunk →
align_chunk chunk' ≤ align_chunk chunk →
∃ v', load chunk' m2 b ofs = Some v' ∧ decode_encode_val v chunk chunk' v';
load_store_similar_2:
∀ chunk m1 b ofs v m2, store chunk m1 b ofs v = Some m2 →
∀ chunk',
size_chunk chunk' = size_chunk chunk →
align_chunk chunk' ≤ align_chunk chunk →
type_of_chunk chunk' = type_of_chunk chunk →
load chunk' m2 b ofs = Some (Val.load_result chunk' v);
load_store_same:
∀ chunk m1 b ofs v m2, store chunk m1 b ofs v = Some m2 →
load chunk m2 b ofs = Some (Val.load_result chunk v);
load_store_other:
∀ chunk m1 b ofs v m2, store chunk m1 b ofs v = Some m2 →
∀ chunk' b' ofs',
b' ≠ b
∨ ofs' + size_chunk chunk' ≤ ofs
∨ ofs + size_chunk chunk ≤ ofs' →
load chunk' m2 b' ofs' = load chunk' m1 b' ofs';
load_store_pointer_overlap:
∀ chunk m1 b ofs v_b v_o m2 chunk' ofs' v,
store chunk m1 b ofs (Vptr v_b v_o) = Some m2 →
load chunk' m2 b ofs' = Some v →
ofs' ≠ ofs →
ofs' + size_chunk chunk' > ofs →
ofs + size_chunk chunk > ofs' →
v = Vundef;
load_store_pointer_mismatch:
∀ chunk m1 b ofs v_b v_o m2 chunk' v,
store chunk m1 b ofs (Vptr v_b v_o) = Some m2 →
load chunk' m2 b ofs = Some v →
¬compat_pointer_chunks chunk chunk' →
v = Vundef;
load_pointer_store:
∀ chunk m1 b ofs v m2 chunk' b' ofs' v_b v_o,
store chunk m1 b ofs v = Some m2 →
load chunk' m2 b' ofs' = Some(Vptr v_b v_o) →
(v = Vptr v_b v_o ∧ compat_pointer_chunks chunk chunk' ∧ b' = b ∧ ofs' = ofs)
∨ (b' ≠ b ∨ ofs' + size_chunk chunk' ≤ ofs ∨ ofs + size_chunk chunk ≤ ofs');
Load-store properties for loadbytes.
loadbytes_store_same:
∀ chunk m1 b ofs v m2, store chunk m1 b ofs v = Some m2 →
loadbytes m2 b ofs (size_chunk chunk) = Some(encode_val chunk v);
loadbytes_store_other:
∀ chunk m1 b ofs v m2, store chunk m1 b ofs v = Some m2 →
∀ b' ofs' n,
b' ≠ b ∨ n ≤ 0 ∨ ofs' + n ≤ ofs ∨ ofs + size_chunk chunk ≤ ofs' →
loadbytes m2 b' ofs' n = loadbytes m1 b' ofs' n;
store is insensitive to the signedness or the high bits of
small integer quantities.
store_signed_unsigned_8:
∀ m b ofs v,
store Mint8signed m b ofs v = store Mint8unsigned m b ofs v;
store_signed_unsigned_16:
∀ m b ofs v,
store Mint16signed m b ofs v = store Mint16unsigned m b ofs v;
store_int8_zero_ext:
∀ m b ofs n,
store Mint8unsigned m b ofs (Vint (Int.zero_ext 8 n)) =
store Mint8unsigned m b ofs (Vint n);
store_int8_sign_ext:
∀ m b ofs n,
store Mint8signed m b ofs (Vint (Int.sign_ext 8 n)) =
store Mint8signed m b ofs (Vint n);
store_int16_zero_ext:
∀ m b ofs n,
store Mint16unsigned m b ofs (Vint (Int.zero_ext 16 n)) =
store Mint16unsigned m b ofs (Vint n);
store_int16_sign_ext:
∀ m b ofs n,
store Mint16signed m b ofs (Vint (Int.sign_ext 16 n)) =
store Mint16signed m b ofs (Vint n);
storev_int64_split:
∀ m a v m',
storev Mint64 m a v = Some m' → Archi.ptr64 = false →
∃ m1,
storev Mint32 m a (if Archi.big_endian then Val.hiword v else Val.loword v) = Some m1
∧ storev Mint32 m1 (Val.add a (Vint (Int.repr 4))) (if Archi.big_endian then Val.loword v else Val.hiword v) = Some m';
Properties of storebytes.
range_perm_storebytes' :
∀ m1 b ofs bytes,
range_perm m1 b ofs (ofs + Z_of_nat (length bytes)) Cur Writable →
∃ m2 : mem, storebytes m1 b ofs bytes = Some m2;
storebytes_range_perm:
∀ m1 b ofs bytes m2, storebytes m1 b ofs bytes = Some m2 →
range_perm m1 b ofs (ofs + Z_of_nat (length bytes)) Cur Writable;
perm_storebytes_1:
∀ m1 b ofs bytes m2, storebytes m1 b ofs bytes = Some m2 →
∀ b' ofs' k p, perm m1 b' ofs' k p → perm m2 b' ofs' k p;
perm_storebytes_2:
∀ m1 b ofs bytes m2, storebytes m1 b ofs bytes = Some m2 →
∀ b' ofs' k p, perm m2 b' ofs' k p → perm m1 b' ofs' k p;
storebytes_valid_access_1:
∀ m1 b ofs bytes m2, storebytes m1 b ofs bytes = Some m2 →
∀ chunk' b' ofs' p,
valid_access m1 chunk' b' ofs' p → valid_access m2 chunk' b' ofs' p;
storebytes_valid_access_2:
∀ m1 b ofs bytes m2, storebytes m1 b ofs bytes = Some m2 →
∀ chunk' b' ofs' p,
valid_access m2 chunk' b' ofs' p → valid_access m1 chunk' b' ofs' p;
nextblock_storebytes:
∀ m1 b ofs bytes m2, storebytes m1 b ofs bytes = Some m2 →
nextblock m2 = nextblock m1;
storebytes_valid_block_1:
∀ m1 b ofs bytes m2, storebytes m1 b ofs bytes = Some m2 →
∀ b', valid_block m1 b' → valid_block m2 b';
storebytes_valid_block_2:
∀ m1 b ofs bytes m2, storebytes m1 b ofs bytes = Some m2 →
∀ b', valid_block m2 b' → valid_block m1 b';
Connections between store and storebytes.
storebytes_store:
∀ m1 b ofs chunk v m2,
storebytes m1 b ofs (encode_val chunk v) = Some m2 →
(align_chunk chunk | ofs) →
store chunk m1 b ofs v = Some m2;
store_storebytes:
∀ m1 b ofs chunk v m2,
store chunk m1 b ofs v = Some m2 →
storebytes m1 b ofs (encode_val chunk v) = Some m2;
Load-store properties.
loadbytes_storebytes_same:
∀ m1 b ofs bytes m2, storebytes m1 b ofs bytes = Some m2 →
loadbytes m2 b ofs (Z_of_nat (length bytes)) = Some bytes;
loadbytes_storebytes_disjoint:
∀ m1 b ofs bytes m2, storebytes m1 b ofs bytes = Some m2 →
∀ b' ofs' len,
len ≥ 0 →
b' ≠ b ∨ Intv.disjoint (ofs', ofs' + len) (ofs, ofs + Z_of_nat (length bytes)) →
loadbytes m2 b' ofs' len = loadbytes m1 b' ofs' len;
loadbytes_storebytes_other:
∀ m1 b ofs bytes m2, storebytes m1 b ofs bytes = Some m2 →
∀ b' ofs' len,
len ≥ 0 →
b' ≠ b
∨ ofs' + len ≤ ofs
∨ ofs + Z_of_nat (length bytes) ≤ ofs' →
loadbytes m2 b' ofs' len = loadbytes m1 b' ofs' len;
load_storebytes_other:
∀ m1 b ofs bytes m2, storebytes m1 b ofs bytes = Some m2 →
∀ chunk b' ofs',
b' ≠ b
∨ ofs' + size_chunk chunk ≤ ofs
∨ ofs + Z_of_nat (length bytes) ≤ ofs' →
load chunk m2 b' ofs' = load chunk m1 b' ofs';
Composing or decomposing storebytes operations at adjacent addresses.
storebytes_concat:
∀ m b ofs bytes1 m1 bytes2 m2,
storebytes m b ofs bytes1 = Some m1 →
storebytes m1 b (ofs + Z_of_nat(length bytes1)) bytes2 = Some m2 →
storebytes m b ofs (bytes1 ++ bytes2) = Some m2;
storebytes_split:
∀ m b ofs bytes1 bytes2 m2,
storebytes m b ofs (bytes1 ++ bytes2) = Some m2 →
∃ m1,
storebytes m b ofs bytes1 = Some m1
∧ storebytes m1 b (ofs + Z_of_nat(length bytes1)) bytes2 = Some m2;
Properties of alloc.
Effect of alloc on block validity.
nextblock_alloc:
∀ m1 lo hi m2 b, alloc m1 lo hi = (m2, b) →
nextblock m2 = Psucc (nextblock m1);
valid_block_alloc:
∀ m1 lo hi m2 b, alloc m1 lo hi = (m2, b) →
∀ b', valid_block m1 b' → valid_block m2 b';
fresh_block_alloc:
∀ m1 lo hi m2 b, alloc m1 lo hi = (m2, b) →
~(valid_block m1 b);
valid_new_block:
∀ m1 lo hi m2 b, alloc m1 lo hi = (m2, b) →
valid_block m2 b;
valid_block_alloc_inv:
∀ m1 lo hi m2 b, alloc m1 lo hi = (m2, b) →
∀ b', valid_block m2 b' → b' = b ∨ valid_block m1 b';
Effect of alloc on permissions.
perm_alloc_1:
∀ m1 lo hi m2 b, alloc m1 lo hi = (m2, b) →
∀ b' ofs k p, perm m1 b' ofs k p → perm m2 b' ofs k p;
perm_alloc_2:
∀ m1 lo hi m2 b, alloc m1 lo hi = (m2, b) →
∀ ofs k, lo ≤ ofs < hi → perm m2 b ofs k Freeable;
perm_alloc_3:
∀ m1 lo hi m2 b, alloc m1 lo hi = (m2, b) →
∀ ofs k p, perm m2 b ofs k p → lo ≤ ofs < hi;
perm_alloc_4:
∀ m1 lo hi m2 b, alloc m1 lo hi = (m2, b) →
∀ b' ofs k p, perm m2 b' ofs k p → b' ≠ b → perm m1 b' ofs k p;
perm_alloc_inv:
∀ m1 lo hi m2 b, alloc m1 lo hi = (m2, b) →
∀ b' ofs k p,
perm m2 b' ofs k p →
if eq_block b' b then lo ≤ ofs < hi else perm m1 b' ofs k p;
Effect of alloc on access validity.
valid_access_alloc_other:
∀ m1 lo hi m2 b, alloc m1 lo hi = (m2, b) →
∀ chunk b' ofs p,
valid_access m1 chunk b' ofs p →
valid_access m2 chunk b' ofs p;
valid_access_alloc_same:
∀ m1 lo hi m2 b, alloc m1 lo hi = (m2, b) →
∀ chunk ofs,
lo ≤ ofs → ofs + size_chunk chunk ≤ hi → (align_chunk chunk | ofs) →
valid_access m2 chunk b ofs Freeable;
valid_access_alloc_inv:
∀ m1 lo hi m2 b, alloc m1 lo hi = (m2, b) →
∀ chunk b' ofs p,
valid_access m2 chunk b' ofs p →
if eq_block b' b
then lo ≤ ofs ∧ ofs + size_chunk chunk ≤ hi ∧ (align_chunk chunk | ofs)
else valid_access m1 chunk b' ofs p;
Load-alloc properties.
load_alloc_unchanged:
∀ m1 lo hi m2 b, alloc m1 lo hi = (m2, b) →
∀ chunk b' ofs,
valid_block m1 b' →
load chunk m2 b' ofs = load chunk m1 b' ofs;
load_alloc_other:
∀ m1 lo hi m2 b, alloc m1 lo hi = (m2, b) →
∀ chunk b' ofs v,
load chunk m1 b' ofs = Some v →
load chunk m2 b' ofs = Some v;
load_alloc_same:
∀ m1 lo hi m2 b, alloc m1 lo hi = (m2, b) →
∀ chunk ofs v,
load chunk m2 b ofs = Some v →
v = Vundef;
load_alloc_same':
∀ m1 lo hi m2 b, alloc m1 lo hi = (m2, b) →
∀ chunk ofs,
lo ≤ ofs → ofs + size_chunk chunk ≤ hi → (align_chunk chunk | ofs) →
load chunk m2 b ofs = Some Vundef;
loadbytes_alloc_unchanged:
∀ m1 lo hi m2 b, alloc m1 lo hi = (m2, b) →
∀ b' ofs n,
valid_block m1 b' →
loadbytes m2 b' ofs n = loadbytes m1 b' ofs n;
loadbytes_alloc_same:
∀ m1 lo hi m2 b, alloc m1 lo hi = (m2, b) →
∀ n ofs bytes byte,
loadbytes m2 b ofs n = Some bytes →
In byte bytes → byte = Undef;
Properties of free.
range_perm_free' :
∀ m1 b lo hi,
range_perm m1 b lo hi Cur Freeable →
∃ m2: mem, free m1 b lo hi = Some m2;
free_range_perm:
∀ m1 bf lo hi m2, free m1 bf lo hi = Some m2 →
range_perm m1 bf lo hi Cur Freeable;
Block validity is preserved by free.
nextblock_free:
∀ m1 bf lo hi m2, free m1 bf lo hi = Some m2 →
nextblock m2 = nextblock m1;
valid_block_free_1:
∀ m1 bf lo hi m2, free m1 bf lo hi = Some m2 →
∀ b, valid_block m1 b → valid_block m2 b;
valid_block_free_2:
∀ m1 bf lo hi m2, free m1 bf lo hi = Some m2 →
∀ b, valid_block m2 b → valid_block m1 b;
Effect of free on permissions.
perm_free_1:
∀ m1 bf lo hi m2, free m1 bf lo hi = Some m2 →
∀ b ofs k p,
b ≠ bf ∨ ofs < lo ∨ hi ≤ ofs →
perm m1 b ofs k p →
perm m2 b ofs k p;
perm_free_2:
∀ m1 bf lo hi m2, free m1 bf lo hi = Some m2 →
∀ ofs k p, lo ≤ ofs < hi → ¬ perm m2 bf ofs k p;
perm_free_3:
∀ m1 bf lo hi m2, free m1 bf lo hi = Some m2 →
∀ b ofs k p,
perm m2 b ofs k p → perm m1 b ofs k p;
Effect of free on access validity.
valid_access_free_1:
∀ m1 bf lo hi m2, free m1 bf lo hi = Some m2 →
∀ chunk b ofs p,
valid_access m1 chunk b ofs p →
b ≠ bf ∨ lo ≥ hi ∨ ofs + size_chunk chunk ≤ lo ∨ hi ≤ ofs →
valid_access m2 chunk b ofs p;
valid_access_free_2:
∀ m1 bf lo hi m2, free m1 bf lo hi = Some m2 →
∀ chunk ofs p,
lo < hi → ofs + size_chunk chunk > lo → ofs < hi →
~(valid_access m2 chunk bf ofs p);
valid_access_free_inv_1:
∀ m1 bf lo hi m2, free m1 bf lo hi = Some m2 →
∀ chunk b ofs p,
valid_access m2 chunk b ofs p →
valid_access m1 chunk b ofs p;
valid_access_free_inv_2:
∀ m1 bf lo hi m2, free m1 bf lo hi = Some m2 →
∀ chunk ofs p,
valid_access m2 chunk bf ofs p →
lo ≥ hi ∨ ofs + size_chunk chunk ≤ lo ∨ hi ≤ ofs;
Load-free properties
load_free:
∀ m1 bf lo hi m2, free m1 bf lo hi = Some m2 →
∀ chunk b ofs,
b ≠ bf ∨ lo ≥ hi ∨ ofs + size_chunk chunk ≤ lo ∨ hi ≤ ofs →
load chunk m2 b ofs = load chunk m1 b ofs;
loadbytes_free_2:
∀ m1 bf lo hi m2, free m1 bf lo hi = Some m2 →
∀ b ofs n bytes,
loadbytes m2 b ofs n = Some bytes → loadbytes m1 b ofs n = Some bytes;
Properties of drop_perm.
nextblock_drop:
∀ m b lo hi p m', drop_perm m b lo hi p = Some m' →
nextblock m' = nextblock m;
drop_perm_valid_block_1:
∀ m b lo hi p m', drop_perm m b lo hi p = Some m' →
∀ b', valid_block m b' → valid_block m' b';
drop_perm_valid_block_2:
∀ m b lo hi p m', drop_perm m b lo hi p = Some m' →
∀ b', valid_block m' b' → valid_block m b';
range_perm_drop_1:
∀ m b lo hi p m', drop_perm m b lo hi p = Some m' →
range_perm m b lo hi Cur Freeable;
range_perm_drop_2' :
∀ m b lo hi p,
range_perm m b lo hi Cur Freeable → ∃ m', drop_perm m b lo hi p = Some m';
perm_drop_1:
∀ m b lo hi p m', drop_perm m b lo hi p = Some m' →
∀ ofs k, lo ≤ ofs < hi → perm m' b ofs k p;
perm_drop_2:
∀ m b lo hi p m', drop_perm m b lo hi p = Some m' →
∀ ofs k p', lo ≤ ofs < hi → perm m' b ofs k p' → perm_order p p';
perm_drop_3:
∀ m b lo hi p m', drop_perm m b lo hi p = Some m' →
∀ b' ofs k p', b' ≠ b ∨ ofs < lo ∨ hi ≤ ofs → perm m b' ofs k p' → perm m' b' ofs k p';
perm_drop_4:
∀ m b lo hi p m', drop_perm m b lo hi p = Some m' →
∀ b' ofs k p', perm m' b' ofs k p' → perm m b' ofs k p';
loadbytes_drop:
∀ m b lo hi p m', drop_perm m b lo hi p = Some m' →
∀ b' ofs n,
b' ≠ b ∨ ofs + n ≤ lo ∨ hi ≤ ofs ∨ perm_order p Readable →
loadbytes m' b' ofs n = loadbytes m b' ofs n;
load_drop:
∀ m b lo hi p m', drop_perm m b lo hi p = Some m' →
∀ chunk b' ofs,
b' ≠ b ∨ ofs + size_chunk chunk ≤ lo ∨ hi ≤ ofs ∨ perm_order p Readable →
load chunk m' b' ofs = load chunk m b' ofs;
Properties of extends.
extends_refl:
∀ m, extends m m;
load_extends:
∀ chunk m1 m2 b ofs v1,
extends m1 m2 →
load chunk m1 b ofs = Some v1 →
∃ v2, load chunk m2 b ofs = Some v2 ∧ Val.lessdef v1 v2;
loadv_extends:
∀ chunk m1 m2 addr1 addr2 v1,
extends m1 m2 →
loadv chunk m1 addr1 = Some v1 →
Val.lessdef addr1 addr2 →
∃ v2, loadv chunk m2 addr2 = Some v2 ∧ Val.lessdef v1 v2;
loadbytes_extends:
∀ m1 m2 b ofs len bytes1,
extends m1 m2 →
loadbytes m1 b ofs len = Some bytes1 →
∃ bytes2, loadbytes m2 b ofs len = Some bytes2
∧ list_forall2 memval_lessdef bytes1 bytes2;
store_within_extends:
∀ chunk m1 m2 b ofs v1 m1' v2,
extends m1 m2 →
store chunk m1 b ofs v1 = Some m1' →
Val.lessdef v1 v2 →
∃ m2',
store chunk m2 b ofs v2 = Some m2'
∧ extends m1' m2';
store_outside_extends:
∀ chunk m1 m2 b ofs v m2',
extends m1 m2 →
store chunk m2 b ofs v = Some m2' →
(∀ ofs', perm m1 b ofs' Cur Readable → ofs ≤ ofs' < ofs + size_chunk chunk → False) →
extends m1 m2';
storev_extends:
∀ chunk m1 m2 addr1 v1 m1' addr2 v2,
extends m1 m2 →
storev chunk m1 addr1 v1 = Some m1' →
Val.lessdef addr1 addr2 →
Val.lessdef v1 v2 →
∃ m2',
storev chunk m2 addr2 v2 = Some m2'
∧ extends m1' m2';
storebytes_within_extends:
∀ m1 m2 b ofs bytes1 m1' bytes2,
extends m1 m2 →
storebytes m1 b ofs bytes1 = Some m1' →
list_forall2 memval_lessdef bytes1 bytes2 →
∃ m2',
storebytes m2 b ofs bytes2 = Some m2'
∧ extends m1' m2';
storebytes_outside_extends:
∀ m1 m2 b ofs bytes2 m2',
extends m1 m2 →
storebytes m2 b ofs bytes2 = Some m2' →
(∀ ofs', perm m1 b ofs' Cur Readable → ofs ≤ ofs' < ofs + Z_of_nat (length bytes2) → False) →
extends m1 m2';
alloc_extends:
∀ m1 m2 lo1 hi1 b m1' lo2 hi2,
extends m1 m2 →
alloc m1 lo1 hi1 = (m1', b) →
lo2 ≤ lo1 → hi1 ≤ hi2 →
∃ m2',
alloc m2 lo2 hi2 = (m2', b)
∧ extends m1' m2';
free_left_extends:
∀ m1 m2 b lo hi m1',
extends m1 m2 →
free m1 b lo hi = Some m1' →
extends m1' m2;
free_right_extends:
∀ m1 m2 b lo hi m2',
extends m1 m2 →
free m2 b lo hi = Some m2' →
(∀ ofs k p, perm m1 b ofs k p → lo ≤ ofs < hi → False) →
extends m1 m2';
free_parallel_extends:
∀ m1 m2 b lo hi m1',
extends m1 m2 →
free m1 b lo hi = Some m1' →
∃ m2',
free m2 b lo hi = Some m2'
∧ extends m1' m2';
valid_block_extends:
∀ m1 m2 b,
extends m1 m2 →
(valid_block m1 b ↔ valid_block m2 b);
perm_extends:
∀ m1 m2 b ofs k p,
extends m1 m2 → perm m1 b ofs k p → perm m2 b ofs k p;
valid_access_extends:
∀ m1 m2 chunk b ofs p,
extends m1 m2 → valid_access m1 chunk b ofs p → valid_access m2 chunk b ofs p;
valid_pointer_extends:
∀ m1 m2 b ofs,
extends m1 m2 → valid_pointer m1 b ofs = true → valid_pointer m2 b ofs = true;
weak_valid_pointer_extends:
∀ m1 m2 b ofs,
extends m1 m2 →
weak_valid_pointer m1 b ofs = true → weak_valid_pointer m2 b ofs = true;
Properties of magree.
ma_perm:
∀ m1 m2 (P: locset),
magree m1 m2 P →
∀ b ofs k p,
perm m1 b ofs k p →
perm m2 b ofs k p;
magree_monotone:
∀ m1 m2 (P Q: locset),
magree m1 m2 P →
(∀ b ofs, Q b ofs → P b ofs) →
magree m1 m2 Q;
mextends_agree:
∀ m1 m2 P, extends m1 m2 → magree m1 m2 P;
magree_extends:
∀ m1 m2 (P: locset),
(∀ b ofs, P b ofs) →
magree m1 m2 P → extends m1 m2;
magree_loadbytes:
∀ m1 m2 P b ofs n bytes,
magree m1 m2 P →
loadbytes m1 b ofs n = Some bytes →
(∀ i, ofs ≤ i < ofs + n → P b i) →
∃ bytes', loadbytes m2 b ofs n = Some bytes' ∧ list_forall2 memval_lessdef bytes bytes';
magree_load:
∀ m1 m2 P chunk b ofs v,
magree m1 m2 P →
load chunk m1 b ofs = Some v →
(∀ i, ofs ≤ i < ofs + size_chunk chunk → P b i) →
∃ v', load chunk m2 b ofs = Some v' ∧ Val.lessdef v v';
magree_storebytes_parallel:
∀ m1 m2 (P Q: locset) b ofs bytes1 m1' bytes2,
magree m1 m2 P →
storebytes m1 b ofs bytes1 = Some m1' →
(∀ b' i, Q b' i →
b' ≠ b ∨ i < ofs ∨ ofs + Z_of_nat (length bytes1) ≤ i →
P b' i) →
list_forall2 memval_lessdef bytes1 bytes2 →
∃ m2', storebytes m2 b ofs bytes2 = Some m2' ∧ magree m1' m2' Q;
magree_storebytes_left:
∀ m1 m2 P b ofs bytes1 m1',
magree m1 m2 P →
storebytes m1 b ofs bytes1 = Some m1' →
(∀ i, ofs ≤ i < ofs + Z_of_nat (length bytes1) → ~(P b i)) →
magree m1' m2 P;
magree_store_left:
∀ m1 m2 P chunk b ofs v1 m1',
magree m1 m2 P →
store chunk m1 b ofs v1 = Some m1' →
(∀ i, ofs ≤ i < ofs + size_chunk chunk → ~(P b i)) →
magree m1' m2 P;
magree_free:
∀ m1 m2 (P Q: locset) b lo hi m1',
magree m1 m2 P →
free m1 b lo hi = Some m1' →
(∀ b' i, Q b' i →
b' ≠ b ∨ ~(lo ≤ i < hi) →
P b' i) →
∃ m2', free m2 b lo hi = Some m2' ∧ magree m1' m2' Q;
magree_valid_access:
∀ m1 m2 (P: locset) chunk b ofs p,
magree m1 m2 P →
valid_access m1 chunk b ofs p →
valid_access m2 chunk b ofs p;
∀ m1 m2 (P: locset),
magree m1 m2 P →
∀ b ofs k p,
perm m1 b ofs k p →
perm m2 b ofs k p;
magree_monotone:
∀ m1 m2 (P Q: locset),
magree m1 m2 P →
(∀ b ofs, Q b ofs → P b ofs) →
magree m1 m2 Q;
mextends_agree:
∀ m1 m2 P, extends m1 m2 → magree m1 m2 P;
magree_extends:
∀ m1 m2 (P: locset),
(∀ b ofs, P b ofs) →
magree m1 m2 P → extends m1 m2;
magree_loadbytes:
∀ m1 m2 P b ofs n bytes,
magree m1 m2 P →
loadbytes m1 b ofs n = Some bytes →
(∀ i, ofs ≤ i < ofs + n → P b i) →
∃ bytes', loadbytes m2 b ofs n = Some bytes' ∧ list_forall2 memval_lessdef bytes bytes';
magree_load:
∀ m1 m2 P chunk b ofs v,
magree m1 m2 P →
load chunk m1 b ofs = Some v →
(∀ i, ofs ≤ i < ofs + size_chunk chunk → P b i) →
∃ v', load chunk m2 b ofs = Some v' ∧ Val.lessdef v v';
magree_storebytes_parallel:
∀ m1 m2 (P Q: locset) b ofs bytes1 m1' bytes2,
magree m1 m2 P →
storebytes m1 b ofs bytes1 = Some m1' →
(∀ b' i, Q b' i →
b' ≠ b ∨ i < ofs ∨ ofs + Z_of_nat (length bytes1) ≤ i →
P b' i) →
list_forall2 memval_lessdef bytes1 bytes2 →
∃ m2', storebytes m2 b ofs bytes2 = Some m2' ∧ magree m1' m2' Q;
magree_storebytes_left:
∀ m1 m2 P b ofs bytes1 m1',
magree m1 m2 P →
storebytes m1 b ofs bytes1 = Some m1' →
(∀ i, ofs ≤ i < ofs + Z_of_nat (length bytes1) → ~(P b i)) →
magree m1' m2 P;
magree_store_left:
∀ m1 m2 P chunk b ofs v1 m1',
magree m1 m2 P →
store chunk m1 b ofs v1 = Some m1' →
(∀ i, ofs ≤ i < ofs + size_chunk chunk → ~(P b i)) →
magree m1' m2 P;
magree_free:
∀ m1 m2 (P Q: locset) b lo hi m1',
magree m1 m2 P →
free m1 b lo hi = Some m1' →
(∀ b' i, Q b' i →
b' ≠ b ∨ ~(lo ≤ i < hi) →
P b' i) →
∃ m2', free m2 b lo hi = Some m2' ∧ magree m1' m2' Q;
magree_valid_access:
∀ m1 m2 (P: locset) chunk b ofs p,
magree m1 m2 P →
valid_access m1 chunk b ofs p →
valid_access m2 chunk b ofs p;
Properties of inject.
mi_no_overlap:
∀ f m1 m2,
inject f m1 m2 →
meminj_no_overlap f m1;
valid_block_inject_1:
∀ f m1 m2 b1 b2 delta,
f b1 = Some(b2, delta) →
inject f m1 m2 →
valid_block m1 b1;
valid_block_inject_2:
∀ f m1 m2 b1 b2 delta,
f b1 = Some(b2, delta) →
inject f m1 m2 →
valid_block m2 b2;
perm_inject:
∀ f m1 m2 b1 b2 delta ofs k p,
f b1 = Some(b2, delta) →
inject f m1 m2 →
perm m1 b1 ofs k p → perm m2 b2 (ofs + delta) k p;
range_perm_inject:
∀ f m1 m2 b1 b2 delta lo hi k p,
f b1 = Some(b2, delta) →
inject f m1 m2 →
range_perm m1 b1 lo hi k p → range_perm m2 b2 (lo + delta) (hi + delta) k p;
valid_access_inject:
∀ f m1 m2 chunk b1 ofs b2 delta p,
f b1 = Some(b2, delta) →
inject f m1 m2 →
valid_access m1 chunk b1 ofs p →
valid_access m2 chunk b2 (ofs + delta) p;
valid_pointer_inject:
∀ f m1 m2 b1 ofs b2 delta,
f b1 = Some(b2, delta) →
inject f m1 m2 →
valid_pointer m1 b1 ofs = true →
valid_pointer m2 b2 (ofs + delta) = true;
weak_valid_pointer_inject:
∀ f m1 m2 b1 ofs b2 delta,
f b1 = Some(b2, delta) →
inject f m1 m2 →
weak_valid_pointer m1 b1 ofs = true →
weak_valid_pointer m2 b2 (ofs + delta) = true;
address_inject:
∀ f m1 m2 b1 ofs1 b2 delta p,
inject f m1 m2 →
perm m1 b1 (Ptrofs.unsigned ofs1) Cur p →
f b1 = Some (b2, delta) →
Ptrofs.unsigned (Ptrofs.add ofs1 (Ptrofs.repr delta)) = Ptrofs.unsigned ofs1 + delta;
∀ f m1 m2,
inject f m1 m2 →
meminj_no_overlap f m1;
valid_block_inject_1:
∀ f m1 m2 b1 b2 delta,
f b1 = Some(b2, delta) →
inject f m1 m2 →
valid_block m1 b1;
valid_block_inject_2:
∀ f m1 m2 b1 b2 delta,
f b1 = Some(b2, delta) →
inject f m1 m2 →
valid_block m2 b2;
perm_inject:
∀ f m1 m2 b1 b2 delta ofs k p,
f b1 = Some(b2, delta) →
inject f m1 m2 →
perm m1 b1 ofs k p → perm m2 b2 (ofs + delta) k p;
range_perm_inject:
∀ f m1 m2 b1 b2 delta lo hi k p,
f b1 = Some(b2, delta) →
inject f m1 m2 →
range_perm m1 b1 lo hi k p → range_perm m2 b2 (lo + delta) (hi + delta) k p;
valid_access_inject:
∀ f m1 m2 chunk b1 ofs b2 delta p,
f b1 = Some(b2, delta) →
inject f m1 m2 →
valid_access m1 chunk b1 ofs p →
valid_access m2 chunk b2 (ofs + delta) p;
valid_pointer_inject:
∀ f m1 m2 b1 ofs b2 delta,
f b1 = Some(b2, delta) →
inject f m1 m2 →
valid_pointer m1 b1 ofs = true →
valid_pointer m2 b2 (ofs + delta) = true;
weak_valid_pointer_inject:
∀ f m1 m2 b1 ofs b2 delta,
f b1 = Some(b2, delta) →
inject f m1 m2 →
weak_valid_pointer m1 b1 ofs = true →
weak_valid_pointer m2 b2 (ofs + delta) = true;
address_inject:
∀ f m1 m2 b1 ofs1 b2 delta p,
inject f m1 m2 →
perm m1 b1 (Ptrofs.unsigned ofs1) Cur p →
f b1 = Some (b2, delta) →
Ptrofs.unsigned (Ptrofs.add ofs1 (Ptrofs.repr delta)) = Ptrofs.unsigned ofs1 + delta;
The following is needed by Separation, to prove storev_parallel_rule
address_inject':
∀ f m1 m2 chunk b1 ofs1 b2 delta,
inject f m1 m2 →
valid_access m1 chunk b1 (Ptrofs.unsigned ofs1) Nonempty →
f b1 = Some (b2, delta) →
Ptrofs.unsigned (Ptrofs.add ofs1 (Ptrofs.repr delta)) = Ptrofs.unsigned ofs1 + delta;
valid_pointer_inject_no_overflow:
∀ f m1 m2 b ofs b' delta,
inject f m1 m2 →
valid_pointer m1 b (Ptrofs.unsigned ofs) = true →
f b = Some(b', delta) →
0 ≤ Ptrofs.unsigned ofs + Ptrofs.unsigned (Ptrofs.repr delta) ≤ Ptrofs.max_unsigned;
weak_valid_pointer_inject_no_overflow:
∀ f m1 m2 b ofs b' delta,
inject f m1 m2 →
weak_valid_pointer m1 b (Ptrofs.unsigned ofs) = true →
f b = Some(b', delta) →
0 ≤ Ptrofs.unsigned ofs + Ptrofs.unsigned (Ptrofs.repr delta) ≤ Ptrofs.max_unsigned;
valid_pointer_inject_val:
∀ f m1 m2 b ofs b' ofs',
inject f m1 m2 →
valid_pointer m1 b (Ptrofs.unsigned ofs) = true →
Val.inject f (Vptr b ofs) (Vptr b' ofs') →
valid_pointer m2 b' (Ptrofs.unsigned ofs') = true;
weak_valid_pointer_inject_val:
∀ f m1 m2 b ofs b' ofs',
inject f m1 m2 →
weak_valid_pointer m1 b (Ptrofs.unsigned ofs) = true →
Val.inject f (Vptr b ofs) (Vptr b' ofs') →
weak_valid_pointer m2 b' (Ptrofs.unsigned ofs') = true;
inject_no_overlap:
∀ f m1 m2 b1 b2 b1' b2' delta1 delta2 ofs1 ofs2,
inject f m1 m2 →
b1 ≠ b2 →
f b1 = Some (b1', delta1) →
f b2 = Some (b2', delta2) →
perm m1 b1 ofs1 Max Nonempty →
perm m1 b2 ofs2 Max Nonempty →
b1' ≠ b2' ∨ ofs1 + delta1 ≠ ofs2 + delta2;
different_pointers_inject:
∀ f m m' b1 ofs1 b2 ofs2 b1' delta1 b2' delta2,
inject f m m' →
b1 ≠ b2 →
valid_pointer m b1 (Ptrofs.unsigned ofs1) = true →
valid_pointer m b2 (Ptrofs.unsigned ofs2) = true →
f b1 = Some (b1', delta1) →
f b2 = Some (b2', delta2) →
b1' ≠ b2' ∨
Ptrofs.unsigned (Ptrofs.add ofs1 (Ptrofs.repr delta1)) ≠
Ptrofs.unsigned (Ptrofs.add ofs2 (Ptrofs.repr delta2));
disjoint_or_equal_inject:
∀ f m m' b1 b1' delta1 b2 b2' delta2 ofs1 ofs2 sz,
inject f m m' →
f b1 = Some(b1', delta1) →
f b2 = Some(b2', delta2) →
range_perm m b1 ofs1 (ofs1 + sz) Max Nonempty →
range_perm m b2 ofs2 (ofs2 + sz) Max Nonempty →
sz > 0 →
b1 ≠ b2 ∨ ofs1 = ofs2 ∨ ofs1 + sz ≤ ofs2 ∨ ofs2 + sz ≤ ofs1 →
b1' ≠ b2' ∨ ofs1 + delta1 = ofs2 + delta2
∨ ofs1 + delta1 + sz ≤ ofs2 + delta2
∨ ofs2 + delta2 + sz ≤ ofs1 + delta1;
aligned_area_inject:
∀ f m m' b ofs al sz b' delta,
inject f m m' →
al = 1 ∨ al = 2 ∨ al = 4 ∨ al = 8 → sz > 0 →
(al | sz) →
range_perm m b ofs (ofs + sz) Cur Nonempty →
(al | ofs) →
f b = Some(b', delta) →
(al | ofs + delta);
load_inject:
∀ f m1 m2 chunk b1 ofs b2 delta v1,
inject f m1 m2 →
load chunk m1 b1 ofs = Some v1 →
f b1 = Some (b2, delta) →
∃ v2, load chunk m2 b2 (ofs + delta) = Some v2 ∧ Val.inject f v1 v2;
loadv_inject:
∀ f m1 m2 chunk a1 a2 v1,
inject f m1 m2 →
loadv chunk m1 a1 = Some v1 →
Val.inject f a1 a2 →
∃ v2, loadv chunk m2 a2 = Some v2 ∧ Val.inject f v1 v2;
loadbytes_inject:
∀ f m1 m2 b1 ofs len b2 delta bytes1,
inject f m1 m2 →
loadbytes m1 b1 ofs len = Some bytes1 →
f b1 = Some (b2, delta) →
∃ bytes2, loadbytes m2 b2 (ofs + delta) len = Some bytes2
∧ list_forall2 (memval_inject f) bytes1 bytes2;
store_mapped_inject:
∀ f chunk m1 b1 ofs v1 n1 m2 b2 delta v2,
inject f m1 m2 →
store chunk m1 b1 ofs v1 = Some n1 →
f b1 = Some (b2, delta) →
Val.inject f v1 v2 →
∃ n2,
store chunk m2 b2 (ofs + delta) v2 = Some n2
∧ inject f n1 n2;
store_unmapped_inject:
∀ f chunk m1 b1 ofs v1 n1 m2,
inject f m1 m2 →
store chunk m1 b1 ofs v1 = Some n1 →
f b1 = None →
inject f n1 m2;
store_outside_inject:
∀ f m1 m2 chunk b ofs v m2',
inject f m1 m2 →
(∀ b' delta ofs',
f b' = Some(b, delta) →
perm m1 b' ofs' Cur Readable →
ofs ≤ ofs' + delta < ofs + size_chunk chunk → False) →
store chunk m2 b ofs v = Some m2' →
inject f m1 m2';
storev_mapped_inject:
∀ f chunk m1 a1 v1 n1 m2 a2 v2,
inject f m1 m2 →
storev chunk m1 a1 v1 = Some n1 →
Val.inject f a1 a2 →
Val.inject f v1 v2 →
∃ n2,
storev chunk m2 a2 v2 = Some n2 ∧ inject f n1 n2;
storebytes_mapped_inject:
∀ f m1 b1 ofs bytes1 n1 m2 b2 delta bytes2,
inject f m1 m2 →
storebytes m1 b1 ofs bytes1 = Some n1 →
f b1 = Some (b2, delta) →
list_forall2 (memval_inject f) bytes1 bytes2 →
∃ n2,
storebytes m2 b2 (ofs + delta) bytes2 = Some n2
∧ inject f n1 n2;
storebytes_unmapped_inject:
∀ f m1 b1 ofs bytes1 n1 m2,
inject f m1 m2 →
storebytes m1 b1 ofs bytes1 = Some n1 →
f b1 = None →
inject f n1 m2;
storebytes_outside_inject:
∀ f m1 m2 b ofs bytes2 m2',
inject f m1 m2 →
(∀ b' delta ofs',
f b' = Some(b, delta) →
perm m1 b' ofs' Cur Readable →
ofs ≤ ofs' + delta < ofs + Z_of_nat (length bytes2) → False) →
storebytes m2 b ofs bytes2 = Some m2' →
inject f m1 m2';
storebytes_empty_inject:
∀ f m1 b1 ofs1 m1' m2 b2 ofs2 m2',
inject f m1 m2 →
storebytes m1 b1 ofs1 nil = Some m1' →
storebytes m2 b2 ofs2 nil = Some m2' →
inject f m1' m2';
alloc_right_inject:
∀ f m1 m2 lo hi b2 m2',
inject f m1 m2 →
alloc m2 lo hi = (m2', b2) →
inject f m1 m2';
alloc_left_unmapped_inject:
∀ f m1 m2 lo hi m1' b1,
inject f m1 m2 →
alloc m1 lo hi = (m1', b1) →
∃ f',
inject f' m1' m2
∧ inject_incr f f'
∧ f' b1 = None
∧ (∀ b, b ≠ b1 → f' b = f b);
alloc_left_mapped_inject:
∀ f m1 m2 lo hi m1' b1 b2 delta,
inject f m1 m2 →
alloc m1 lo hi = (m1', b1) →
valid_block m2 b2 →
0 ≤ delta ≤ Ptrofs.max_unsigned →
(∀ ofs k p, perm m2 b2 ofs k p → delta = 0 ∨ 0 ≤ ofs < Ptrofs.max_unsigned) →
(∀ ofs k p, lo ≤ ofs < hi → perm m2 b2 (ofs + delta) k p) →
inj_offset_aligned delta (hi-lo) →
(∀ b delta' ofs k p,
f b = Some (b2, delta') →
perm m1 b ofs k p →
lo + delta ≤ ofs + delta' < hi + delta → False) →
∃ f',
inject f' m1' m2
∧ inject_incr f f'
∧ f' b1 = Some(b2, delta)
∧ (∀ b, b ≠ b1 → f' b = f b);
alloc_parallel_inject:
∀ f m1 m2 lo1 hi1 m1' b1 lo2 hi2,
inject f m1 m2 →
alloc m1 lo1 hi1 = (m1', b1) →
lo2 ≤ lo1 → hi1 ≤ hi2 →
∃ f', ∃ m2', ∃ b2,
alloc m2 lo2 hi2 = (m2', b2)
∧ inject f' m1' m2'
∧ inject_incr f f'
∧ f' b1 = Some(b2, 0)
∧ (∀ b, b ≠ b1 → f' b = f b);
free_inject:
∀ f m1 l m1' m2 b lo hi m2',
inject f m1 m2 →
free_list m1 l = Some m1' →
free m2 b lo hi = Some m2' →
(∀ b1 delta ofs k p,
f b1 = Some(b, delta) → perm m1 b1 ofs k p → lo ≤ ofs + delta < hi →
∃ lo1, ∃ hi1, In (b1, lo1, hi1) l ∧ lo1 ≤ ofs < hi1) →
inject f m1' m2';
free_left_inject:
∀ f m1 m2 b lo hi m1',
inject f m1 m2 →
free m1 b lo hi = Some m1' →
inject f m1' m2;
free_list_left_inject:
∀ f m2 l m1 m1',
inject f m1 m2 →
free_list m1 l = Some m1' →
inject f m1' m2;
free_right_inject:
∀ f m1 m2 b lo hi m2',
inject f m1 m2 →
free m2 b lo hi = Some m2' →
(∀ b1 delta ofs k p,
f b1 = Some(b, delta) → perm m1 b1 ofs k p →
lo ≤ ofs + delta < hi → False) →
inject f m1 m2';
free_parallel_inject:
∀ f m1 m2 b lo hi m1' b' delta,
inject f m1 m2 →
free m1 b lo hi = Some m1' →
f b = Some(b', delta) →
∃ m2',
free m2 b' (lo + delta) (hi + delta) = Some m2'
∧ inject f m1' m2';
drop_outside_inject:
∀ f m1 m2 b lo hi p m2',
inject f m1 m2 →
drop_perm m2 b lo hi p = Some m2' →
(∀ b' delta ofs k p,
f b' = Some(b, delta) →
perm m1 b' ofs k p → lo ≤ ofs + delta < hi → False) →
inject f m1 m2';
∀ f m1 m2 chunk b1 ofs1 b2 delta,
inject f m1 m2 →
valid_access m1 chunk b1 (Ptrofs.unsigned ofs1) Nonempty →
f b1 = Some (b2, delta) →
Ptrofs.unsigned (Ptrofs.add ofs1 (Ptrofs.repr delta)) = Ptrofs.unsigned ofs1 + delta;
valid_pointer_inject_no_overflow:
∀ f m1 m2 b ofs b' delta,
inject f m1 m2 →
valid_pointer m1 b (Ptrofs.unsigned ofs) = true →
f b = Some(b', delta) →
0 ≤ Ptrofs.unsigned ofs + Ptrofs.unsigned (Ptrofs.repr delta) ≤ Ptrofs.max_unsigned;
weak_valid_pointer_inject_no_overflow:
∀ f m1 m2 b ofs b' delta,
inject f m1 m2 →
weak_valid_pointer m1 b (Ptrofs.unsigned ofs) = true →
f b = Some(b', delta) →
0 ≤ Ptrofs.unsigned ofs + Ptrofs.unsigned (Ptrofs.repr delta) ≤ Ptrofs.max_unsigned;
valid_pointer_inject_val:
∀ f m1 m2 b ofs b' ofs',
inject f m1 m2 →
valid_pointer m1 b (Ptrofs.unsigned ofs) = true →
Val.inject f (Vptr b ofs) (Vptr b' ofs') →
valid_pointer m2 b' (Ptrofs.unsigned ofs') = true;
weak_valid_pointer_inject_val:
∀ f m1 m2 b ofs b' ofs',
inject f m1 m2 →
weak_valid_pointer m1 b (Ptrofs.unsigned ofs) = true →
Val.inject f (Vptr b ofs) (Vptr b' ofs') →
weak_valid_pointer m2 b' (Ptrofs.unsigned ofs') = true;
inject_no_overlap:
∀ f m1 m2 b1 b2 b1' b2' delta1 delta2 ofs1 ofs2,
inject f m1 m2 →
b1 ≠ b2 →
f b1 = Some (b1', delta1) →
f b2 = Some (b2', delta2) →
perm m1 b1 ofs1 Max Nonempty →
perm m1 b2 ofs2 Max Nonempty →
b1' ≠ b2' ∨ ofs1 + delta1 ≠ ofs2 + delta2;
different_pointers_inject:
∀ f m m' b1 ofs1 b2 ofs2 b1' delta1 b2' delta2,
inject f m m' →
b1 ≠ b2 →
valid_pointer m b1 (Ptrofs.unsigned ofs1) = true →
valid_pointer m b2 (Ptrofs.unsigned ofs2) = true →
f b1 = Some (b1', delta1) →
f b2 = Some (b2', delta2) →
b1' ≠ b2' ∨
Ptrofs.unsigned (Ptrofs.add ofs1 (Ptrofs.repr delta1)) ≠
Ptrofs.unsigned (Ptrofs.add ofs2 (Ptrofs.repr delta2));
disjoint_or_equal_inject:
∀ f m m' b1 b1' delta1 b2 b2' delta2 ofs1 ofs2 sz,
inject f m m' →
f b1 = Some(b1', delta1) →
f b2 = Some(b2', delta2) →
range_perm m b1 ofs1 (ofs1 + sz) Max Nonempty →
range_perm m b2 ofs2 (ofs2 + sz) Max Nonempty →
sz > 0 →
b1 ≠ b2 ∨ ofs1 = ofs2 ∨ ofs1 + sz ≤ ofs2 ∨ ofs2 + sz ≤ ofs1 →
b1' ≠ b2' ∨ ofs1 + delta1 = ofs2 + delta2
∨ ofs1 + delta1 + sz ≤ ofs2 + delta2
∨ ofs2 + delta2 + sz ≤ ofs1 + delta1;
aligned_area_inject:
∀ f m m' b ofs al sz b' delta,
inject f m m' →
al = 1 ∨ al = 2 ∨ al = 4 ∨ al = 8 → sz > 0 →
(al | sz) →
range_perm m b ofs (ofs + sz) Cur Nonempty →
(al | ofs) →
f b = Some(b', delta) →
(al | ofs + delta);
load_inject:
∀ f m1 m2 chunk b1 ofs b2 delta v1,
inject f m1 m2 →
load chunk m1 b1 ofs = Some v1 →
f b1 = Some (b2, delta) →
∃ v2, load chunk m2 b2 (ofs + delta) = Some v2 ∧ Val.inject f v1 v2;
loadv_inject:
∀ f m1 m2 chunk a1 a2 v1,
inject f m1 m2 →
loadv chunk m1 a1 = Some v1 →
Val.inject f a1 a2 →
∃ v2, loadv chunk m2 a2 = Some v2 ∧ Val.inject f v1 v2;
loadbytes_inject:
∀ f m1 m2 b1 ofs len b2 delta bytes1,
inject f m1 m2 →
loadbytes m1 b1 ofs len = Some bytes1 →
f b1 = Some (b2, delta) →
∃ bytes2, loadbytes m2 b2 (ofs + delta) len = Some bytes2
∧ list_forall2 (memval_inject f) bytes1 bytes2;
store_mapped_inject:
∀ f chunk m1 b1 ofs v1 n1 m2 b2 delta v2,
inject f m1 m2 →
store chunk m1 b1 ofs v1 = Some n1 →
f b1 = Some (b2, delta) →
Val.inject f v1 v2 →
∃ n2,
store chunk m2 b2 (ofs + delta) v2 = Some n2
∧ inject f n1 n2;
store_unmapped_inject:
∀ f chunk m1 b1 ofs v1 n1 m2,
inject f m1 m2 →
store chunk m1 b1 ofs v1 = Some n1 →
f b1 = None →
inject f n1 m2;
store_outside_inject:
∀ f m1 m2 chunk b ofs v m2',
inject f m1 m2 →
(∀ b' delta ofs',
f b' = Some(b, delta) →
perm m1 b' ofs' Cur Readable →
ofs ≤ ofs' + delta < ofs + size_chunk chunk → False) →
store chunk m2 b ofs v = Some m2' →
inject f m1 m2';
storev_mapped_inject:
∀ f chunk m1 a1 v1 n1 m2 a2 v2,
inject f m1 m2 →
storev chunk m1 a1 v1 = Some n1 →
Val.inject f a1 a2 →
Val.inject f v1 v2 →
∃ n2,
storev chunk m2 a2 v2 = Some n2 ∧ inject f n1 n2;
storebytes_mapped_inject:
∀ f m1 b1 ofs bytes1 n1 m2 b2 delta bytes2,
inject f m1 m2 →
storebytes m1 b1 ofs bytes1 = Some n1 →
f b1 = Some (b2, delta) →
list_forall2 (memval_inject f) bytes1 bytes2 →
∃ n2,
storebytes m2 b2 (ofs + delta) bytes2 = Some n2
∧ inject f n1 n2;
storebytes_unmapped_inject:
∀ f m1 b1 ofs bytes1 n1 m2,
inject f m1 m2 →
storebytes m1 b1 ofs bytes1 = Some n1 →
f b1 = None →
inject f n1 m2;
storebytes_outside_inject:
∀ f m1 m2 b ofs bytes2 m2',
inject f m1 m2 →
(∀ b' delta ofs',
f b' = Some(b, delta) →
perm m1 b' ofs' Cur Readable →
ofs ≤ ofs' + delta < ofs + Z_of_nat (length bytes2) → False) →
storebytes m2 b ofs bytes2 = Some m2' →
inject f m1 m2';
storebytes_empty_inject:
∀ f m1 b1 ofs1 m1' m2 b2 ofs2 m2',
inject f m1 m2 →
storebytes m1 b1 ofs1 nil = Some m1' →
storebytes m2 b2 ofs2 nil = Some m2' →
inject f m1' m2';
alloc_right_inject:
∀ f m1 m2 lo hi b2 m2',
inject f m1 m2 →
alloc m2 lo hi = (m2', b2) →
inject f m1 m2';
alloc_left_unmapped_inject:
∀ f m1 m2 lo hi m1' b1,
inject f m1 m2 →
alloc m1 lo hi = (m1', b1) →
∃ f',
inject f' m1' m2
∧ inject_incr f f'
∧ f' b1 = None
∧ (∀ b, b ≠ b1 → f' b = f b);
alloc_left_mapped_inject:
∀ f m1 m2 lo hi m1' b1 b2 delta,
inject f m1 m2 →
alloc m1 lo hi = (m1', b1) →
valid_block m2 b2 →
0 ≤ delta ≤ Ptrofs.max_unsigned →
(∀ ofs k p, perm m2 b2 ofs k p → delta = 0 ∨ 0 ≤ ofs < Ptrofs.max_unsigned) →
(∀ ofs k p, lo ≤ ofs < hi → perm m2 b2 (ofs + delta) k p) →
inj_offset_aligned delta (hi-lo) →
(∀ b delta' ofs k p,
f b = Some (b2, delta') →
perm m1 b ofs k p →
lo + delta ≤ ofs + delta' < hi + delta → False) →
∃ f',
inject f' m1' m2
∧ inject_incr f f'
∧ f' b1 = Some(b2, delta)
∧ (∀ b, b ≠ b1 → f' b = f b);
alloc_parallel_inject:
∀ f m1 m2 lo1 hi1 m1' b1 lo2 hi2,
inject f m1 m2 →
alloc m1 lo1 hi1 = (m1', b1) →
lo2 ≤ lo1 → hi1 ≤ hi2 →
∃ f', ∃ m2', ∃ b2,
alloc m2 lo2 hi2 = (m2', b2)
∧ inject f' m1' m2'
∧ inject_incr f f'
∧ f' b1 = Some(b2, 0)
∧ (∀ b, b ≠ b1 → f' b = f b);
free_inject:
∀ f m1 l m1' m2 b lo hi m2',
inject f m1 m2 →
free_list m1 l = Some m1' →
free m2 b lo hi = Some m2' →
(∀ b1 delta ofs k p,
f b1 = Some(b, delta) → perm m1 b1 ofs k p → lo ≤ ofs + delta < hi →
∃ lo1, ∃ hi1, In (b1, lo1, hi1) l ∧ lo1 ≤ ofs < hi1) →
inject f m1' m2';
free_left_inject:
∀ f m1 m2 b lo hi m1',
inject f m1 m2 →
free m1 b lo hi = Some m1' →
inject f m1' m2;
free_list_left_inject:
∀ f m2 l m1 m1',
inject f m1 m2 →
free_list m1 l = Some m1' →
inject f m1' m2;
free_right_inject:
∀ f m1 m2 b lo hi m2',
inject f m1 m2 →
free m2 b lo hi = Some m2' →
(∀ b1 delta ofs k p,
f b1 = Some(b, delta) → perm m1 b1 ofs k p →
lo ≤ ofs + delta < hi → False) →
inject f m1 m2';
free_parallel_inject:
∀ f m1 m2 b lo hi m1' b' delta,
inject f m1 m2 →
free m1 b lo hi = Some m1' →
f b = Some(b', delta) →
∃ m2',
free m2 b' (lo + delta) (hi + delta) = Some m2'
∧ inject f m1' m2';
drop_outside_inject:
∀ f m1 m2 b lo hi p m2',
inject f m1 m2 →
drop_perm m2 b lo hi p = Some m2' →
(∀ b' delta ofs k p,
f b' = Some(b, delta) →
perm m1 b' ofs k p → lo ≤ ofs + delta < hi → False) →
inject f m1 m2';
The following property is needed by ValueDomain, to prove mmatch_inj.
self_inject f m:
(∀ b, f b = None ∨ f b = Some (b, 0)) →
(∀ b, f b ≠ None → Mem.valid_block m b) →
(∀ b,
f b ≠ None →
∀ o b' o' q n,
loadbytes m b o 1 = Some (Fragment (Vptr b' o') q n :: nil) →
f b' ≠ None) →
Mem.inject f m m;
extends_inject_compose:
∀ f m1 m2 m3,
extends m1 m2 → inject f m2 m3 → inject f m1 m3;
extends_extends_compose:
∀ m1 m2 m3,
extends m1 m2 → extends m2 m3 → extends m1 m3;
Properties of inject_neutral
neutral_inject:
∀ m, inject_neutral (nextblock m) m →
inject (flat_inj (nextblock m)) m m;
empty_inject_neutral:
∀ thr, inject_neutral thr empty;
alloc_inject_neutral:
∀ thr m lo hi b m',
alloc m lo hi = (m', b) →
inject_neutral thr m →
Plt (nextblock m) thr →
inject_neutral thr m';
store_inject_neutral:
∀ chunk m b ofs v m' thr,
store chunk m b ofs v = Some m' →
inject_neutral thr m →
Plt b thr →
Val.inject (flat_inj thr) v v →
inject_neutral thr m';
drop_inject_neutral:
∀ m b lo hi p m' thr,
drop_perm m b lo hi p = Some m' →
inject_neutral thr m →
Plt b thr →
inject_neutral thr m';
Properties of unchanged_on and strong_unchanged_on
strong_unchanged_on_weak P m1 m2:
strong_unchanged_on P m1 m2 →
unchanged_on P m1 m2;
unchanged_on_nextblock P m1 m2:
unchanged_on P m1 m2 →
Ple (nextblock m1) (nextblock m2);
strong_unchanged_on_refl:
∀ P m, strong_unchanged_on P m m;
unchanged_on_trans:
∀ P m1 m2 m3, unchanged_on P m1 m2 → unchanged_on P m2 m3 → unchanged_on P m1 m3;
strong_unchanged_on_trans:
∀ P m1 m2 m3, strong_unchanged_on P m1 m2 → strong_unchanged_on P m2 m3 → strong_unchanged_on P m1 m3;
perm_unchanged_on:
∀ P m m' b ofs k p,
unchanged_on P m m' → P b ofs →
perm m b ofs k p → perm m' b ofs k p;
perm_unchanged_on_2:
∀ P m m' b ofs k p,
unchanged_on P m m' → P b ofs → valid_block m b →
perm m' b ofs k p → perm m b ofs k p;
loadbytes_unchanged_on_1:
∀ P m m' b ofs n,
unchanged_on P m m' →
valid_block m b →
(∀ i, ofs ≤ i < ofs + n → P b i) →
loadbytes m' b ofs n = loadbytes m b ofs n;
loadbytes_unchanged_on:
∀ P m m' b ofs n bytes,
unchanged_on P m m' →
(∀ i, ofs ≤ i < ofs + n → P b i) →
loadbytes m b ofs n = Some bytes →
loadbytes m' b ofs n = Some bytes;
load_unchanged_on_1:
∀ P m m' chunk b ofs,
unchanged_on P m m' →
valid_block m b →
(∀ i, ofs ≤ i < ofs + size_chunk chunk → P b i) →
load chunk m' b ofs = load chunk m b ofs;
load_unchanged_on:
∀ P m m' chunk b ofs v,
unchanged_on P m m' →
(∀ i, ofs ≤ i < ofs + size_chunk chunk → P b i) →
load chunk m b ofs = Some v →
load chunk m' b ofs = Some v;
store_strong_unchanged_on:
∀ P chunk m b ofs v m',
store chunk m b ofs v = Some m' →
(∀ i, ofs ≤ i < ofs + size_chunk chunk → ¬ P b i) →
strong_unchanged_on P m m';
storebytes_strong_unchanged_on:
∀ P m b ofs bytes m',
storebytes m b ofs bytes = Some m' →
(∀ i, ofs ≤ i < ofs + Z_of_nat (length bytes) → ¬ P b i) →
strong_unchanged_on P m m';
alloc_strong_unchanged_on:
∀ P m lo hi m' b,
alloc m lo hi = (m', b) →
strong_unchanged_on P m m';
free_strong_unchanged_on:
∀ P m b lo hi m',
free m b lo hi = Some m' →
(∀ i, lo ≤ i < hi → ¬ P b i) →
strong_unchanged_on P m m';
drop_perm_strong_unchanged_on:
∀ P m b lo hi p m',
drop_perm m b lo hi p = Some m' →
(∀ i, lo ≤ i < hi → ¬ P b i) →
strong_unchanged_on P m m';
unchanged_on_implies:
∀ (P Q: block → Z → Prop) m m',
unchanged_on P m m' →
(∀ b ofs, Q b ofs → valid_block m b → P b ofs) →
unchanged_on Q m m'
;
strong_unchanged_on_implies:
∀ (P Q: block → Z → Prop) m m',
strong_unchanged_on P m m' →
(∀ b ofs, Q b ofs → valid_block m b → P b ofs) →
strong_unchanged_on Q m m'
;
The following property is needed by Separation, to prove
minjection. HINT: it can be used only for strong_unchanged_on, not
for unchanged_on.
inject_strong_unchanged_on j m0 m m' :
inject j m0 m →
strong_unchanged_on
(fun (b : block) (ofs : Z) ⇒
∃ (b0 : block) (delta : Z),
j b0 = Some (b, delta) ∧
perm m0 b0 (ofs - delta) Max Nonempty) m m' →
inject j m0 m'
}.
Section WITHMEMORYMODEL.
Context `{memory_model_prf: MemoryModel}.
Lemma valid_access_store:
∀ m1 chunk b ofs v,
valid_access m1 chunk b ofs Writable →
{ m2: mem | store chunk m1 b ofs v = Some m2 }.
Proof.
intros m1 chunk b ofs v H.
destruct (store _ _ _ _ _) eqn:STORE; eauto.
exfalso.
apply @valid_access_store' with (v := v) in H; auto.
destruct H.
congruence.
Defined.
Lemma range_perm_storebytes:
∀ m1 b ofs bytes,
range_perm m1 b ofs (ofs + Z_of_nat (length bytes)) Cur Writable →
{ m2 : mem | storebytes m1 b ofs bytes = Some m2 }.
Proof.
intros m1 b ofs bytes H.
destruct (storebytes _ _ _ _) eqn:STOREBYTES; eauto.
exfalso.
apply range_perm_storebytes' in H.
destruct H.
congruence.
Defined.
Lemma range_perm_free:
∀ m1 b lo hi,
range_perm m1 b lo hi Cur Freeable →
{ m2: mem | free m1 b lo hi = Some m2 }.
Proof.
intros m1 b lo hi H.
destruct (free _ _ _ _) eqn:FREE; eauto.
exfalso.
apply range_perm_free' in H.
destruct H.
congruence.
Defined.
Lemma range_perm_drop_2:
∀ m b lo hi p,
range_perm m b lo hi Cur Freeable → { m' | drop_perm m b lo hi p = Some m' }.
Proof.
intros m b lo hi p H.
destruct (drop_perm _ _ _ _ _) eqn:DROP; eauto.
exfalso.
apply @range_perm_drop_2' with (p := p) in H; auto.
destruct H.
congruence.
Defined.
Lemma perm_free_list:
∀ l m m' b ofs k p,
free_list m l = Some m' →
perm m' b ofs k p →
perm m b ofs k p ∧
(∀ lo hi, In (b, lo, hi) l → lo ≤ ofs < hi → False).
Proof.
induction l; simpl; intros.
inv H. auto.
destruct a as [[b1 lo1] hi1].
destruct (free m b1 lo1 hi1) as [m1|] eqn:E; try discriminate.
exploit IHl; eauto. intros [A B].
split. eapply Mem.perm_free_3; eauto.
intros. destruct H1. inv H1.
elim (perm_free_2 _ _ _ _ _ E ofs k p). auto. auto.
eauto.
Qed.
Lemma unchanged_on_refl:
∀ P m, unchanged_on P m m.
Proof.
intros. apply strong_unchanged_on_weak. apply strong_unchanged_on_refl.
Qed.
Lemma store_unchanged_on:
∀ P chunk m b ofs v m',
store chunk m b ofs v = Some m' →
(∀ i, ofs ≤ i < ofs + size_chunk chunk → ¬ P b i) →
unchanged_on P m m'.
Proof.
intros. apply strong_unchanged_on_weak. eapply store_strong_unchanged_on; eauto.
Qed.
Lemma storebytes_unchanged_on:
∀ P m b ofs bytes m',
storebytes m b ofs bytes = Some m' →
(∀ i, ofs ≤ i < ofs + Z_of_nat (length bytes) → ¬ P b i) →
unchanged_on P m m'.
Proof.
intros. apply strong_unchanged_on_weak. eapply storebytes_strong_unchanged_on; eauto.
Qed.
Lemma alloc_unchanged_on:
∀ P m lo hi m' b,
alloc m lo hi = (m', b) →
unchanged_on P m m'.
Proof.
intros. apply strong_unchanged_on_weak. eapply alloc_strong_unchanged_on; eauto.
Qed.
Lemma free_unchanged_on:
∀ P m b lo hi m',
free m b lo hi = Some m' →
(∀ i, lo ≤ i < hi → ¬ P b i) →
unchanged_on P m m'.
Proof.
intros. apply strong_unchanged_on_weak. eapply free_strong_unchanged_on; eauto.
Qed.
Lemma drop_perm_unchanged_on:
∀ P m b lo hi p m',
drop_perm m b lo hi p = Some m' →
(∀ i, lo ≤ i < hi → ¬ P b i) →
unchanged_on P m m'.
Proof.
intros. apply strong_unchanged_on_weak. eapply drop_perm_strong_unchanged_on; eauto.
Qed.
Lemma perm_free m b lo hi m':
free m b lo hi = Some m' →
∀ b' o' k p,
perm m' b' o' k p ↔
((¬ (b' = b ∧ lo ≤ o' < hi)) ∧ perm m b' o' k p).
Proof.
intros H b' o' k p.
assert (¬ (b' = b ∧ lo ≤ o' < hi) → perm m b' o' k p → perm m' b' o' k p) as H0.
{
intro H0.
eapply perm_free_1; eauto.
destruct (peq b' b); try tauto.
subst.
intuition xomega.
}
assert (b' = b ∧ lo ≤ o' < hi → ¬ perm m' b' o' k p) as H1.
destruct 1; subst; eapply perm_free_2; eauto.
generalize (perm_free_3 _ _ _ _ _ H b' o' k p).
tauto.
Qed.
End WITHMEMORYMODEL.
End Mem.