Library compcert.common.Globalenvs
Global environments are a component of the dynamic semantics of
all languages involved in the compiler. A global environment
maps symbol names (names of functions and of global variables)
to the corresponding memory addresses. It also maps memory addresses
of functions to the corresponding function descriptions.
Global environments, along with the initial memory state at the beginning
of program execution, are built from the program of interest, as follows:
- A distinct memory address is assigned to each function of the program. These function addresses use negative numbers to distinguish them from addresses of memory blocks. The associations of function name to function address and function address to function description are recorded in the global environment.
- For each global variable, a memory block is allocated and associated to
the name of the variable.
Require Recdef.
Require Import Zwf.
Require Import Axioms Coqlib Errors Maps AST Linking.
Require Import Integers Floats Values Memory.
Notation "s #1" := (fst s) (at level 9, format "s '#1'") : pair_scope.
Notation "s #2" := (snd s) (at level 9, format "s '#2'") : pair_scope.
Local Open Scope pair_scope.
Local Open Scope error_monad_scope.
Set Implicit Arguments.
Auxiliary function for initialization of global variables.
Section WITHMEMORYMODELOPS.
Context `{memory_model_ops: Mem.MemoryModelOps}.
Function store_zeros (m: mem) (b: block) (p: Z) (n: Z) {wf (Zwf 0) n}: option mem :=
if zle n 0 then Some m else
match Mem.store Mint8unsigned m b p Vzero with
| Some m' ⇒ store_zeros m' b (p + 1) (n - 1)
| None ⇒ None
end.
Proof.
intros. red. omega.
apply Zwf_well_founded.
Qed.
End WITHMEMORYMODELOPS.
Local Unset Elimination Schemes.
Local Unset Case Analysis Schemes.
Symbol environments
Operations
find_symbol: ident → option block;
public_symbol: ident → bool;
invert_symbol: block → option ident;
block_is_volatile: block → option bool;
nextblock: block;
public_symbol: ident → bool;
invert_symbol: block → option ident;
block_is_volatile: block → option bool;
nextblock: block;
Properties
find_symbol_injective:
∀ id1 id2 b, find_symbol id1 = Some b → find_symbol id2 = Some b → id1 = id2;
invert_find_symbol:
∀ id b, invert_symbol b = Some id → find_symbol id = Some b;
find_invert_symbol:
∀ id b, find_symbol id = Some b → invert_symbol b = Some id;
public_symbol_exists:
∀ id, public_symbol id = true → ∃ b, find_symbol id = Some b;
find_symbol_below:
∀ id b, find_symbol id = Some b → Plt b nextblock;
block_is_volatile_below:
∀ b, block_is_volatile b = Some true → Plt b nextblock
}.
Definition symbol_address (ge: t) (id: ident) (ofs: ptrofs) : val :=
match find_symbol ge id with
| Some b ⇒ Vptr b ofs
| None ⇒ Vundef
end.
Theorem shift_symbol_address:
∀ ge id ofs delta,
symbol_address ge id (Ptrofs.add ofs delta) = Val.offset_ptr (symbol_address ge id ofs) delta.
Proof.
intros. unfold symbol_address, Val.offset_ptr. destruct (find_symbol ge id); auto.
Qed.
Theorem shift_symbol_address_32:
∀ ge id ofs n,
Archi.ptr64 = false →
symbol_address ge id (Ptrofs.add ofs (Ptrofs.of_int n)) = Val.add (symbol_address ge id ofs) (Vint n).
Proof.
intros. unfold symbol_address. destruct (find_symbol ge id).
- unfold Val.add. rewrite H. auto.
- auto.
Qed.
Theorem shift_symbol_address_64:
∀ ge id ofs n,
Archi.ptr64 = true →
symbol_address ge id (Ptrofs.add ofs (Ptrofs.of_int64 n)) = Val.addl (symbol_address ge id ofs) (Vlong n).
Proof.
intros. unfold symbol_address. destruct (find_symbol ge id).
- unfold Val.addl. rewrite H. auto.
- auto.
Qed.
Definition equiv (se1 se2: t) : Prop :=
nextblock se2 = nextblock se1
∧
(∀ id, find_symbol se2 id = find_symbol se1 id)
∧ (∀ id, public_symbol se2 id = public_symbol se1 id)
∧ (∀ b, block_is_volatile se2 b = block_is_volatile se1 b).
End Senv.
Module Genv.
∀ id1 id2 b, find_symbol id1 = Some b → find_symbol id2 = Some b → id1 = id2;
invert_find_symbol:
∀ id b, invert_symbol b = Some id → find_symbol id = Some b;
find_invert_symbol:
∀ id b, find_symbol id = Some b → invert_symbol b = Some id;
public_symbol_exists:
∀ id, public_symbol id = true → ∃ b, find_symbol id = Some b;
find_symbol_below:
∀ id b, find_symbol id = Some b → Plt b nextblock;
block_is_volatile_below:
∀ b, block_is_volatile b = Some true → Plt b nextblock
}.
Definition symbol_address (ge: t) (id: ident) (ofs: ptrofs) : val :=
match find_symbol ge id with
| Some b ⇒ Vptr b ofs
| None ⇒ Vundef
end.
Theorem shift_symbol_address:
∀ ge id ofs delta,
symbol_address ge id (Ptrofs.add ofs delta) = Val.offset_ptr (symbol_address ge id ofs) delta.
Proof.
intros. unfold symbol_address, Val.offset_ptr. destruct (find_symbol ge id); auto.
Qed.
Theorem shift_symbol_address_32:
∀ ge id ofs n,
Archi.ptr64 = false →
symbol_address ge id (Ptrofs.add ofs (Ptrofs.of_int n)) = Val.add (symbol_address ge id ofs) (Vint n).
Proof.
intros. unfold symbol_address. destruct (find_symbol ge id).
- unfold Val.add. rewrite H. auto.
- auto.
Qed.
Theorem shift_symbol_address_64:
∀ ge id ofs n,
Archi.ptr64 = true →
symbol_address ge id (Ptrofs.add ofs (Ptrofs.of_int64 n)) = Val.addl (symbol_address ge id ofs) (Vlong n).
Proof.
intros. unfold symbol_address. destruct (find_symbol ge id).
- unfold Val.addl. rewrite H. auto.
- auto.
Qed.
Definition equiv (se1 se2: t) : Prop :=
nextblock se2 = nextblock se1
∧
(∀ id, find_symbol se2 id = find_symbol se1 id)
∧ (∀ id, public_symbol se2 id = public_symbol se1 id)
∧ (∀ b, block_is_volatile se2 b = block_is_volatile se1 b).
End Senv.
Module Genv.
The type of global environments.
Record t: Type := mkgenv {
genv_public: list ident;
genv_symb: PTree.t block;
genv_defs: PTree.t (globdef F V);
genv_next: block;
genv_symb_range: ∀ id b, PTree.get id genv_symb = Some b → Plt b genv_next;
genv_defs_range: ∀ b g, PTree.get b genv_defs = Some g → Plt b genv_next;
genv_vars_inj: ∀ id1 id2 b,
PTree.get id1 genv_symb = Some b → PTree.get id2 genv_symb = Some b → id1 = id2
}.
symbol_address ge id ofs returns a pointer into the block associated
with id, at byte offset ofs. Vundef is returned if no block is associated
to id.
Definition symbol_address (ge: t) (id: ident) (ofs: ptrofs) : val :=
match find_symbol ge id with
| Some b ⇒ Vptr b ofs
| None ⇒ Vundef
end.
Definition public_symbol (ge: t) (id: ident) : bool :=
match find_symbol ge id with
| None ⇒ false
| Some _ ⇒ In_dec ident_eq id ge.(genv_public)
end.
Definition find_funct_ptr (ge: t) (b: block) : option F :=
match find_def ge b with Some (Gfun f) ⇒ Some f | _ ⇒ None end.
find_funct is similar to find_funct_ptr, but the function address
is given as a value, which must be a pointer with offset 0.
Definition find_funct (ge: t) (v: val) : option F :=
match v with
| Vptr b ofs ⇒ if Ptrofs.eq_dec ofs Ptrofs.zero then find_funct_ptr ge b else None
| _ ⇒ None
end.
Definition invert_symbol (ge: t) (b: block) : option ident :=
PTree.fold
(fun res id b' ⇒ if eq_block b b' then Some id else res)
ge.(genv_symb) None.
Definition find_var_info (ge: t) (b: block) : option (globvar V) :=
match find_def ge b with Some (Gvar v) ⇒ Some v | _ ⇒ None end.
block_is_volatile ge b returns true if b points to a global variable
of volatile type, false otherwise.
Definition block_is_volatile (ge: t) (b: block) : option bool :=
match find_var_info ge b with
| None ⇒ None
| Some gv ⇒ Some (gv.(gvar_volatile))
end.
Program Definition add_global (ge: t) (idg: ident × option (globdef F V)) : t :=
@mkgenv
ge.(genv_public)
(PTree.set idg#1 ge.(genv_next) ge.(genv_symb))
(match idg#2 with Some g ⇒ PTree.set ge.(genv_next) g ge.(genv_defs) | _ ⇒ ge.(genv_defs) end)
(Psucc ge.(genv_next))
_ _ _.
Next Obligation.
destruct ge; simpl in ×.
rewrite PTree.gsspec in H. destruct (peq id i). inv H. apply Plt_succ.
apply Plt_trans_succ; eauto.
Qed.
Next Obligation.
destruct ge; simpl in ×.
destruct o.
+
rewrite PTree.gsspec in H. destruct (peq b genv_next0).
inv H. apply Plt_succ.
apply Plt_trans_succ; eauto.
+
apply genv_defs_range0 in H.
xomega.
Qed.
Next Obligation.
destruct ge; simpl in ×.
rewrite PTree.gsspec in H. rewrite PTree.gsspec in H0.
destruct (peq id1 i); destruct (peq id2 i).
congruence.
inv H. eelim Plt_strict. eapply genv_symb_range0; eauto.
inv H0. eelim Plt_strict. eapply genv_symb_range0; eauto.
eauto.
Qed.
Definition add_globals (ge: t) (gl: list (ident × option (globdef F V))) : t :=
List.fold_left add_global gl ge.
Lemma add_globals_app:
∀ gl2 gl1 ge,
add_globals ge (gl1 ++ gl2) = add_globals (add_globals ge gl1) gl2.
Proof.
intros. apply fold_left_app.
Qed.
Program Definition empty_genv (pub: list ident): t :=
@mkgenv pub (PTree.empty _) (PTree.empty _) 1%positive _ _ _.
Next Obligation.
rewrite PTree.gempty in H. discriminate.
Qed.
Next Obligation.
rewrite PTree.gempty in H. discriminate.
Qed.
Next Obligation.
rewrite PTree.gempty in H. discriminate.
Qed.
Definition globalenv (p: program F V) :=
add_globals (empty_genv p.(prog_public)) p.(prog_defs).
Proof principles
Section GLOBALENV_PRINCIPLES.
Variable P: t → Prop.
Lemma add_globals_preserves:
∀ gl ge,
(∀ ge id g, P ge → In (id, g) gl → P (add_global ge (id, g))) →
P ge → P (add_globals ge gl).
Proof.
induction gl; simpl; intros.
auto.
destruct a. apply IHgl; auto.
Qed.
Lemma add_globals_ensures:
∀ id g gl ge,
(∀ ge id g, P ge → In (id, g) gl → P (add_global ge (id, g))) →
(∀ ge, P (add_global ge (id, g))) →
In (id, g) gl → P (add_globals ge gl).
Proof.
induction gl; simpl; intros.
contradiction.
destruct H1. subst a. apply add_globals_preserves; auto.
apply IHgl; auto.
Qed.
Lemma add_globals_unique_preserves:
∀ id gl ge,
(∀ ge id1 g, P ge → In (id1, g) gl → id1 ≠ id → P (add_global ge (id1, g))) →
¬In id (map fst gl) → P ge → P (add_globals ge gl).
Proof.
induction gl; simpl; intros.
auto.
destruct a. apply IHgl; auto.
Qed.
Lemma add_globals_unique_ensures:
∀ gl1 id g gl2 ge,
(∀ ge id1 g1, P ge → In (id1, g1) gl2 → id1 ≠ id → P (add_global ge (id1, g1))) →
(∀ ge, P (add_global ge (id, g))) →
¬In id (map fst gl2) → P (add_globals ge (gl1 ++ (id, g) :: gl2)).
Proof.
intros. rewrite add_globals_app. simpl. apply add_globals_unique_preserves with id; auto.
Qed.
Remark in_norepet_unique:
∀ (A: Type),
∀ id g (gl: list (ident × A)),
In (id, g) gl → list_norepet (map fst gl) →
∃ gl1 gl2, gl = gl1 ++ (id, g) :: gl2 ∧ ¬In id (map fst gl2).
Proof.
induction gl as [|[id1 g1] gl]; simpl; intros.
contradiction.
inv H0. destruct H.
inv H. ∃ nil, gl. auto.
exploit IHgl; eauto. intros (gl1 & gl2 & X & Y).
∃ ((id1, g1) :: gl1), gl2; split; auto. rewrite X; auto.
Qed.
Lemma add_globals_norepet_ensures:
∀ id g gl ge,
(∀ ge id1 g1, P ge → In (id1, g1) gl → id1 ≠ id → P (add_global ge (id1, g1))) →
(∀ ge, P (add_global ge (id, g))) →
In (id, g) gl → list_norepet (map fst gl) → P (add_globals ge gl).
Proof.
intros. exploit in_norepet_unique; eauto. intros (gl1 & gl2 & X & Y).
subst gl. apply add_globals_unique_ensures; auto. intros. eapply H; eauto.
apply in_or_app; simpl; auto.
Qed.
End GLOBALENV_PRINCIPLES.
Theorem public_symbol_exists:
∀ ge id, public_symbol ge id = true → ∃ b, find_symbol ge id = Some b.
Proof.
unfold public_symbol; intros. destruct (find_symbol ge id) as [b|].
∃ b; auto.
discriminate.
Qed.
Theorem shift_symbol_address:
∀ ge id ofs delta,
symbol_address ge id (Ptrofs.add ofs delta) = Val.offset_ptr (symbol_address ge id ofs) delta.
Proof.
intros. unfold symbol_address, Val.offset_ptr. destruct (find_symbol ge id); auto.
Qed.
Theorem shift_symbol_address_32:
∀ ge id ofs n,
Archi.ptr64 = false →
symbol_address ge id (Ptrofs.add ofs (Ptrofs.of_int n)) = Val.add (symbol_address ge id ofs) (Vint n).
Proof.
intros. unfold symbol_address. destruct (find_symbol ge id).
- unfold Val.add. rewrite H. auto.
- auto.
Qed.
Theorem shift_symbol_address_64:
∀ ge id ofs n,
Archi.ptr64 = true →
symbol_address ge id (Ptrofs.add ofs (Ptrofs.of_int64 n)) = Val.addl (symbol_address ge id ofs) (Vlong n).
Proof.
intros. unfold symbol_address. destruct (find_symbol ge id).
- unfold Val.addl. rewrite H. auto.
- auto.
Qed.
Theorem find_funct_inv:
∀ ge v f,
find_funct ge v = Some f → ∃ b, v = Vptr b Ptrofs.zero.
Proof.
intros until f; unfold find_funct.
destruct v; try congruence.
destruct (Ptrofs.eq_dec i Ptrofs.zero); try congruence.
intros. ∃ b; congruence.
Qed.
Theorem find_funct_find_funct_ptr:
∀ ge b,
find_funct ge (Vptr b Ptrofs.zero) = find_funct_ptr ge b.
Proof.
intros; simpl. apply dec_eq_true.
Qed.
Theorem find_funct_ptr_iff:
∀ ge b f, find_funct_ptr ge b = Some f ↔ find_def ge b = Some (Gfun f).
Proof.
intros. unfold find_funct_ptr. destruct (find_def ge b) as [[f1|v1]|]; intuition congruence.
Qed.
Theorem find_var_info_iff:
∀ ge b v, find_var_info ge b = Some v ↔ find_def ge b = Some (Gvar v).
Proof.
intros. unfold find_var_info. destruct (find_def ge b) as [[f1|v1]|]; intuition congruence.
Qed.
Theorem find_def_symbol:
∀ p id g,
(prog_defmap p)!id = Some g ↔ ∃ b, find_symbol (globalenv p) id = Some b ∧ find_def (globalenv p) b = Some g.
Proof.
intros.
set (P := fun m ge ⇒ m!id = Some g ↔ ∃ b, find_symbol ge id = Some b ∧ find_def ge b = Some g).
assert (REC: ∀ l m ge,
P m ge →
P (fold_left
(fun m idg ⇒
match idg#2 with Some g ⇒ PTree.set idg#1 g m | _ ⇒ PTree.remove idg#1 m end
)
l m)
(add_globals ge l)).
{ induction l as [ | [id1 g1] l]; intros; simpl.
- auto.
- apply IHl. unfold P, add_global, find_symbol, find_def; simpl.
destruct g1.
×
rewrite ! PTree.gsspec. destruct (peq id id1).
+ subst id1. split; intros.
inv H0. ∃ (genv_next ge); split; auto. apply PTree.gss.
destruct H0 as (b & A & B). inv A. rewrite PTree.gss in B. auto.
+ red in H; rewrite H. split.
intros (b & A & B). ∃ b; split; auto. rewrite PTree.gso; auto.
apply Plt_ne. eapply genv_symb_range; eauto.
intros (b & A & B). rewrite PTree.gso in B. ∃ b; auto.
apply Plt_ne. eapply genv_symb_range; eauto.
×
rewrite PTree.gsspec.
rewrite PTree.grspec.
destruct (peq id id1); destruct (PTree.elt_eq id id1); auto; try intuition congruence.
subst id1.
split; try discriminate.
destruct 1 as (? & J & K).
inv J.
apply genv_defs_range in K.
xomega.
}
apply REC. unfold P, find_symbol, find_def; simpl.
rewrite ! PTree.gempty. split.
congruence.
intros (b & A & B); congruence.
Qed.
Theorem find_def_symbol_strong:
∀ p id g,
(prog_option_defmap p)!id = Some g ↔ ∃ b, find_symbol (globalenv p) id = Some b ∧ find_def (globalenv p) b = g.
Proof.
intros.
set (P := fun m ge ⇒ m!id = Some g ↔ ∃ b, find_symbol ge id = Some b ∧ find_def ge b = g).
assert (REC: ∀ l m ge,
P m ge →
P (fold_left
(fun m idg ⇒ PTree.set idg#1 idg#2 m)
l m)
(add_globals ge l)).
{ induction l as [ | [id1 g1] l]; intros; simpl.
- auto.
- apply IHl. unfold P, add_global, find_symbol, find_def; simpl.
rewrite ! PTree.gsspec. destruct (peq id id1).
+ subst id1. split; intros.
inv H0. ∃ (genv_next ge); split; auto.
destruct g.
{ apply PTree.gss. }
{ destruct (_ ! _) eqn:GE; auto.
apply genv_defs_range in GE.
xomega. }
destruct H0 as (b & A & B). clear P IHl H. inv A.
destruct g1.
{ rewrite PTree.gss. auto. }
destruct (_ ! _) eqn:GE; auto.
apply genv_defs_range in GE.
xomega.
+ red in H; rewrite H. split.
intros (b & A & B). ∃ b; split; auto.
destruct g1; auto.
rewrite PTree.gso; auto.
apply Plt_ne. eapply genv_symb_range; eauto.
intros (b & A & B).
destruct g1; eauto.
rewrite PTree.gso in B. ∃ b; auto.
apply Plt_ne. eapply genv_symb_range; eauto.
}
apply REC. unfold P, find_symbol, find_def; simpl.
rewrite ! PTree.gempty. split.
congruence.
intros (b & A & B); congruence.
Qed.
Theorem find_symbol_exists:
∀ p id g,
In (id, g) (prog_defs p) →
∃ b, find_symbol (globalenv p) id = Some b.
Proof.
intros. unfold globalenv. eapply add_globals_ensures; eauto.
intros. unfold find_symbol; simpl. rewrite PTree.gsspec. destruct (peq id id0).
econstructor; eauto.
auto.
intros. unfold find_symbol; simpl. rewrite PTree.gss. econstructor; eauto.
Qed.
Theorem find_symbol_inversion : ∀ p x b,
find_symbol (globalenv p) x = Some b →
In x (prog_defs_names p).
Proof.
intros until b; unfold globalenv. eapply add_globals_preserves.
unfold find_symbol; simpl; intros. rewrite PTree.gsspec in H1.
destruct (peq x id). subst x. change id with (fst (id, g)). apply List.in_map; auto.
auto.
unfold find_symbol; simpl; intros. rewrite PTree.gempty in H. discriminate.
Qed.
Theorem find_def_inversion:
∀ p b g,
find_def (globalenv p) b = Some g →
∃ id, In (id, Some g) (prog_defs p).
Proof.
intros until g. unfold globalenv. apply add_globals_preserves.
unfold find_def; simpl; intros.
destruct g0; auto.
rewrite PTree.gsspec in H1. destruct (peq b (genv_next ge)).
inv H1. ∃ id; auto.
auto.
unfold find_def; simpl; intros. rewrite PTree.gempty in H. discriminate.
Qed.
Corollary find_funct_ptr_inversion:
∀ p b f,
find_funct_ptr (globalenv p) b = Some f →
∃ id, In (id, Some (Gfun f)) (prog_defs p).
Proof.
intros. apply find_def_inversion with b. apply find_funct_ptr_iff; auto.
Qed.
Corollary find_funct_inversion:
∀ p v f,
find_funct (globalenv p) v = Some f →
∃ id, In (id, Some (Gfun f)) (prog_defs p).
Proof.
intros. exploit find_funct_inv; eauto. intros [b EQ]. subst v.
rewrite find_funct_find_funct_ptr in H.
eapply find_funct_ptr_inversion; eauto.
Qed.
Theorem find_funct_ptr_prop:
∀ (P: F → Prop) p b f,
(∀ id f, In (id, Some (Gfun f)) (prog_defs p) → P f) →
find_funct_ptr (globalenv p) b = Some f →
P f.
Proof.
intros. exploit find_funct_ptr_inversion; eauto. intros [id IN]. eauto.
Qed.
Theorem find_funct_prop:
∀ (P: F → Prop) p v f,
(∀ id f, In (id, Some (Gfun f)) (prog_defs p) → P f) →
find_funct (globalenv p) v = Some f →
P f.
Proof.
intros. exploit find_funct_inversion; eauto. intros [id IN]. eauto.
Qed.
Theorem global_addresses_distinct:
∀ ge id1 id2 b1 b2,
id1 ≠ id2 →
find_symbol ge id1 = Some b1 →
find_symbol ge id2 = Some b2 →
b1 ≠ b2.
Proof.
intros. red; intros; subst. elim H. destruct ge. eauto.
Qed.
Theorem invert_find_symbol:
∀ ge id b,
invert_symbol ge b = Some id → find_symbol ge id = Some b.
Proof.
intros until b; unfold find_symbol, invert_symbol.
apply PTree_Properties.fold_rec.
intros. rewrite H in H0; auto.
congruence.
intros. destruct (eq_block b v). inv H2. apply PTree.gss.
rewrite PTree.gsspec. destruct (peq id k).
subst. assert (m!k = Some b) by auto. congruence.
auto.
Qed.
Theorem find_invert_symbol:
∀ ge id b,
find_symbol ge id = Some b → invert_symbol ge b = Some id.
Proof.
intros until b.
assert (find_symbol ge id = Some b → ∃ id', invert_symbol ge b = Some id').
unfold find_symbol, invert_symbol.
apply PTree_Properties.fold_rec.
intros. rewrite H in H0; auto.
rewrite PTree.gempty; congruence.
intros. destruct (eq_block b v). ∃ k; auto.
rewrite PTree.gsspec in H2. destruct (peq id k).
inv H2. congruence. auto.
intros; exploit H; eauto. intros [id' A].
assert (id = id'). eapply genv_vars_inj; eauto. apply invert_find_symbol; auto.
congruence.
Qed.
Definition advance_next (gl: list (ident × option (globdef F V))) (x: positive) :=
List.fold_left (fun n g ⇒ Psucc n) gl x.
Remark genv_next_add_globals:
∀ gl ge,
genv_next (add_globals ge gl) = advance_next gl (genv_next ge).
Proof.
induction gl; simpl; intros.
auto.
rewrite IHgl. auto.
Qed.
Remark genv_public_add_globals:
∀ gl ge,
genv_public (add_globals ge gl) = genv_public ge.
Proof.
induction gl; simpl; intros.
auto.
rewrite IHgl; auto.
Qed.
Theorem globalenv_public:
∀ p, genv_public (globalenv p) = prog_public p.
Proof.
unfold globalenv; intros. rewrite genv_public_add_globals. auto.
Qed.
Theorem block_is_volatile_below:
∀ ge b, block_is_volatile ge b = Some true → Plt b ge.(genv_next).
Proof.
unfold block_is_volatile; intros. destruct (find_var_info ge b) as [gv|] eqn:FV.
rewrite find_var_info_iff in FV. eapply genv_defs_range; eauto.
discriminate.
Qed.
Definition to_senv (ge: t) : Senv.t :=
@Senv.mksenv
(find_symbol ge)
(public_symbol ge)
(invert_symbol ge)
(block_is_volatile ge)
ge.(genv_next)
ge.(genv_vars_inj)
(invert_find_symbol ge)
(find_invert_symbol ge)
(public_symbol_exists ge)
ge.(genv_symb_range)
(block_is_volatile_below ge).
End GENV.
Section WITHMEMORYMODEL.
Context `{memory_model_prf: Mem.MemoryModel}.
Variable F: Type. Variable V: Type.
Section INITMEM.
Variable ge: t F V.
Definition store_init_data (m: mem) (b: block) (p: Z) (id: init_data) : option mem :=
match id with
| Init_int8 n ⇒ Mem.store Mint8unsigned m b p (Vint n)
| Init_int16 n ⇒ Mem.store Mint16unsigned m b p (Vint n)
| Init_int32 n ⇒ Mem.store Mint32 m b p (Vint n)
| Init_int64 n ⇒ Mem.store Mint64 m b p (Vlong n)
| Init_float32 n ⇒ Mem.store Mfloat32 m b p (Vsingle n)
| Init_float64 n ⇒ Mem.store Mfloat64 m b p (Vfloat n)
| Init_addrof symb ofs ⇒
match find_symbol ge symb with
| None ⇒ None
| Some b' ⇒ Mem.store Mptr m b p (Vptr b' ofs)
end
| Init_space n ⇒ Some m
end.
Fixpoint store_init_data_list (m: mem) (b: block) (p: Z) (idl: list init_data)
{struct idl}: option mem :=
match idl with
| nil ⇒ Some m
| id :: idl' ⇒
match store_init_data m b p id with
| None ⇒ None
| Some m' ⇒ store_init_data_list m' b (p + init_data_size id) idl'
end
end.
Definition perm_globvar (gv: globvar V) : permission :=
if gv.(gvar_volatile) then Nonempty
else if gv.(gvar_readonly) then Readable
else Writable.
Definition alloc_global (m: mem) (idg: ident × option (globdef F V)): option mem :=
match idg with
| (id, None) ⇒
let (m1, b) := Mem.alloc m 0 0 in
Some m1
| (id, Some (Gfun f)) ⇒
let (m1, b) := Mem.alloc m 0 1 in
Mem.drop_perm m1 b 0 1 Nonempty
| (id, Some (Gvar v)) ⇒
let init := v.(gvar_init) in
let sz := init_data_list_size init in
let (m1, b) := Mem.alloc m 0 sz in
match store_zeros m1 b 0 sz with
| None ⇒ None
| Some m2 ⇒
match store_init_data_list m2 b 0 init with
| None ⇒ None
| Some m3 ⇒ Mem.drop_perm m3 b 0 sz (perm_globvar v)
end
end
end.
Fixpoint alloc_globals (m: mem) (gl: list (ident × option (globdef F V)))
{struct gl} : option mem :=
match gl with
| nil ⇒ Some m
| g :: gl' ⇒
match alloc_global m g with
| None ⇒ None
| Some m' ⇒ alloc_globals m' gl'
end
end.
Lemma alloc_globals_app : ∀ gl1 gl2 m m1,
alloc_globals m gl1 = Some m1 →
alloc_globals m1 gl2 = alloc_globals m (gl1 ++ gl2).
Proof.
induction gl1.
simpl. intros. inversion H; subst. auto.
simpl. intros. destruct (alloc_global m a); eauto. inversion H.
Qed.
Next-block properties
Remark store_zeros_nextblock:
∀ m b p n m', store_zeros m b p n = Some m' → Mem.nextblock m' = Mem.nextblock m.
Proof.
intros until n. functional induction (store_zeros m b p n); intros.
inv H; auto.
rewrite IHo; eauto with mem.
congruence.
Qed.
Remark store_init_data_list_nextblock:
∀ idl b m p m',
store_init_data_list m b p idl = Some m' →
Mem.nextblock m' = Mem.nextblock m.
Proof.
induction idl; simpl; intros until m'.
intros. congruence.
caseEq (store_init_data m b p a); try congruence. intros.
transitivity (Mem.nextblock m0). eauto.
destruct a; simpl in H; try (eapply Mem.nextblock_store; eauto; fail).
congruence.
destruct (find_symbol ge i); try congruence. eapply Mem.nextblock_store; eauto.
Qed.
Remark alloc_global_nextblock:
∀ g m m',
alloc_global m g = Some m' →
Mem.nextblock m' = Psucc(Mem.nextblock m).
Proof.
unfold alloc_global. intros.
destruct g as [id [[f|v]|]].
destruct (Mem.alloc m 0 1) as [m1 b] eqn:?.
erewrite Mem.nextblock_drop; eauto. erewrite Mem.nextblock_alloc; eauto.
set (init := gvar_init v) in ×.
set (sz := init_data_list_size init) in ×.
destruct (Mem.alloc m 0 sz) as [m1 b] eqn:?.
destruct (store_zeros m1 b 0 sz) as [m2|] eqn:?; try discriminate.
destruct (store_init_data_list m2 b 0 init) as [m3|] eqn:?; try discriminate.
erewrite Mem.nextblock_drop; eauto.
erewrite store_init_data_list_nextblock; eauto.
erewrite store_zeros_nextblock; eauto.
erewrite Mem.nextblock_alloc; eauto.
destruct (Mem.alloc m 0 0) as [m1 b] eqn:? .
inv H.
eapply Mem.nextblock_alloc.
eassumption.
Qed.
Remark alloc_globals_nextblock:
∀ gl m m',
alloc_globals m gl = Some m' →
Mem.nextblock m' = advance_next gl (Mem.nextblock m).
Proof.
induction gl; simpl; intros.
congruence.
destruct (alloc_global m a) as [m1|] eqn:?; try discriminate.
erewrite IHgl; eauto. erewrite alloc_global_nextblock; eauto.
Qed.
Permissions
Remark store_zeros_perm:
∀ k prm b' q m b p n m',
store_zeros m b p n = Some m' →
(Mem.perm m b' q k prm ↔ Mem.perm m' b' q k prm).
Proof.
intros until n. functional induction (store_zeros m b p n); intros.
inv H; tauto.
destruct (IHo _ H); intros. split; eauto with mem.
congruence.
Qed.
Remark store_init_data_perm:
∀ k prm b' q i b m p m',
store_init_data m b p i = Some m' →
(Mem.perm m b' q k prm ↔ Mem.perm m' b' q k prm).
Proof.
intros.
assert (∀ chunk v,
Mem.store chunk m b p v = Some m' →
(Mem.perm m b' q k prm ↔ Mem.perm m' b' q k prm)).
intros; split; eauto with mem.
destruct i; simpl in H; eauto.
inv H; tauto.
destruct (find_symbol ge i); try discriminate. eauto.
Qed.
Remark store_init_data_list_perm:
∀ k prm b' q idl b m p m',
store_init_data_list m b p idl = Some m' →
(Mem.perm m b' q k prm ↔ Mem.perm m' b' q k prm).
Proof.
induction idl as [ | i1 idl]; simpl; intros.
- inv H; tauto.
- destruct (store_init_data m b p i1) as [m1|] eqn:S1; try discriminate.
transitivity (Mem.perm m1 b' q k prm).
eapply store_init_data_perm; eauto.
eapply IHidl; eauto.
Qed.
Remark alloc_global_perm:
∀ k prm b' q idg m m',
alloc_global m idg = Some m' →
Mem.valid_block m b' →
(Mem.perm m b' q k prm ↔ Mem.perm m' b' q k prm).
Proof.
intros. destruct idg as [id [[f|v]|]]; simpl in H.
destruct (Mem.alloc m 0 1) as [m1 b] eqn:?.
assert (b' ≠ b). apply Mem.valid_not_valid_diff with m; eauto with mem.
split; intros.
eapply Mem.perm_drop_3; eauto. eapply Mem.perm_alloc_1; eauto.
eapply Mem.perm_alloc_4; eauto. eapply Mem.perm_drop_4; eauto.
set (init := gvar_init v) in ×.
set (sz := init_data_list_size init) in ×.
destruct (Mem.alloc m 0 sz) as [m1 b] eqn:?.
destruct (store_zeros m1 b 0 sz) as [m2|] eqn:?; try discriminate.
destruct (store_init_data_list m2 b 0 init) as [m3|] eqn:?; try discriminate.
assert (b' ≠ b). apply Mem.valid_not_valid_diff with m; eauto with mem.
split; intros.
eapply Mem.perm_drop_3; eauto.
erewrite <- store_init_data_list_perm; [idtac|eauto].
erewrite <- store_zeros_perm; [idtac|eauto].
eapply Mem.perm_alloc_1; eauto.
eapply Mem.perm_alloc_4; eauto.
erewrite store_zeros_perm; [idtac|eauto].
erewrite store_init_data_list_perm; [idtac|eauto].
eapply Mem.perm_drop_4; eauto.
destruct (Mem.alloc m 0 0) as [m1 b] eqn:?.
assert (b' ≠ b). apply Mem.valid_not_valid_diff with m; eauto with mem.
inv H.
split; intros.
eapply Mem.perm_alloc_1; eauto.
eapply Mem.perm_alloc_4; eauto.
Qed.
Remark alloc_globals_perm:
∀ k prm b' q gl m m',
alloc_globals m gl = Some m' →
Mem.valid_block m b' →
(Mem.perm m b' q k prm ↔ Mem.perm m' b' q k prm).
Proof.
induction gl.
simpl; intros. inv H. tauto.
simpl; intros. destruct (alloc_global m a) as [m1|] eqn:?; try discriminate.
erewrite alloc_global_perm; eauto. eapply IHgl; eauto.
unfold Mem.valid_block in ×. erewrite alloc_global_nextblock; eauto.
apply Plt_trans_succ; auto.
Qed.
Data preservation properties
Remark store_zeros_unchanged:
∀ (P: block → Z → Prop) m b p n m',
store_zeros m b p n = Some m' →
(∀ i, p ≤ i < p + n → ¬ P b i) →
Mem.unchanged_on P m m'.
Proof.
intros until n. functional induction (store_zeros m b p n); intros.
- inv H; apply Mem.unchanged_on_refl.
- apply Mem.unchanged_on_trans with m'.
+ eapply Mem.store_unchanged_on; eauto. simpl. intros. apply H0. omega.
+ apply IHo; auto. intros; apply H0; omega.
- discriminate.
Qed.
Remark store_init_data_unchanged:
∀ (P: block → Z → Prop) b i m p m',
store_init_data m b p i = Some m' →
(∀ ofs, p ≤ ofs < p + init_data_size i → ¬ P b ofs) →
Mem.unchanged_on P m m'.
Proof.
intros. destruct i; simpl in *;
try (eapply Mem.store_unchanged_on; eauto; fail).
inv H; apply Mem.unchanged_on_refl.
destruct (find_symbol ge i); try congruence.
eapply Mem.store_unchanged_on; eauto;
unfold Mptr; destruct Archi.ptr64; eauto.
Qed.
Remark store_init_data_list_unchanged:
∀ (P: block → Z → Prop) b il m p m',
store_init_data_list m b p il = Some m' →
(∀ ofs, p ≤ ofs → ¬ P b ofs) →
Mem.unchanged_on P m m'.
Proof.
induction il; simpl; intros.
- inv H. apply Mem.unchanged_on_refl.
- destruct (store_init_data m b p a) as [m1|] eqn:?; try congruence.
apply Mem.unchanged_on_trans with m1.
eapply store_init_data_unchanged; eauto. intros; apply H0; tauto.
eapply IHil; eauto. intros; apply H0. generalize (init_data_size_pos a); omega.
Qed.
Properties related to loadbytes
Definition readbytes_as_zero (m: mem) (b: block) (ofs len: Z) : Prop :=
∀ p n,
ofs ≤ p → p + Z.of_nat n ≤ ofs + len →
Mem.loadbytes m b p (Z.of_nat n) = Some (list_repeat n (Byte Byte.zero)).
Lemma store_zeros_loadbytes:
∀ m b p n m',
store_zeros m b p n = Some m' →
readbytes_as_zero m' b p n.
Proof.
intros until n; functional induction (store_zeros m b p n); red; intros.
- destruct n0. simpl. apply Mem.loadbytes_empty. omega.
rewrite inj_S in H1. omegaContradiction.
- destruct (zeq p0 p).
+ subst p0. destruct n0. simpl. apply Mem.loadbytes_empty. omega.
rewrite inj_S in H1. rewrite inj_S.
replace (Z.succ (Z.of_nat n0)) with (1 + Z.of_nat n0) by omega.
change (list_repeat (S n0) (Byte Byte.zero))
with ((Byte Byte.zero :: nil) ++ list_repeat n0 (Byte Byte.zero)).
apply Mem.loadbytes_concat.
eapply Mem.loadbytes_unchanged_on with (P := fun b1 ofs1 ⇒ ofs1 = p).
eapply store_zeros_unchanged; eauto. intros; omega.
intros; omega.
replace (Byte Byte.zero :: nil) with (encode_val Mint8unsigned Vzero).
change 1 with (size_chunk Mint8unsigned).
eapply Mem.loadbytes_store_same; eauto.
unfold encode_val; unfold encode_int; unfold rev_if_be; destruct Archi.big_endian; reflexivity.
eapply IHo; eauto. omega. omega. omega. omega.
+ eapply IHo; eauto. omega. omega.
- discriminate.
Qed.
Definition bytes_of_init_data (i: init_data): list memval :=
match i with
| Init_int8 n ⇒ inj_bytes (encode_int 1%nat (Int.unsigned n))
| Init_int16 n ⇒ inj_bytes (encode_int 2%nat (Int.unsigned n))
| Init_int32 n ⇒ inj_bytes (encode_int 4%nat (Int.unsigned n))
| Init_int64 n ⇒ inj_bytes (encode_int 8%nat (Int64.unsigned n))
| Init_float32 n ⇒ inj_bytes (encode_int 4%nat (Int.unsigned (Float32.to_bits n)))
| Init_float64 n ⇒ inj_bytes (encode_int 8%nat (Int64.unsigned (Float.to_bits n)))
| Init_space n ⇒ list_repeat (Z.to_nat n) (Byte Byte.zero)
| Init_addrof id ofs ⇒
match find_symbol ge id with
| Some b ⇒ inj_value (if Archi.ptr64 then Q64 else Q32) (Vptr b ofs)
| None ⇒ list_repeat (if Archi.ptr64 then 8%nat else 4%nat) Undef
end
end.
Remark init_data_size_addrof:
∀ id ofs, init_data_size (Init_addrof id ofs) = size_chunk Mptr.
Proof.
intros. unfold Mptr. simpl. destruct Archi.ptr64; auto.
Qed.
Lemma store_init_data_loadbytes:
∀ m b p i m',
store_init_data m b p i = Some m' →
readbytes_as_zero m b p (init_data_size i) →
Mem.loadbytes m' b p (init_data_size i) = Some (bytes_of_init_data i).
Proof.
intros; destruct i; simpl in H; try apply (Mem.loadbytes_store_same _ _ _ _ _ _ H).
- inv H. simpl.
assert (EQ: Z.of_nat (Z.to_nat z) = Z.max z 0).
{ destruct (zle 0 z). rewrite Z2Nat.id; xomega. destruct z; try discriminate. simpl. xomega. }
rewrite <- EQ. apply H0. omega. simpl. omega.
- rewrite init_data_size_addrof. simpl.
destruct (find_symbol ge i) as [b'|]; try discriminate.
rewrite (Mem.loadbytes_store_same _ _ _ _ _ _ H).
unfold encode_val, Mptr; destruct Archi.ptr64; reflexivity.
Qed.
Fixpoint bytes_of_init_data_list (il: list init_data): list memval :=
match il with
| nil ⇒ nil
| i :: il ⇒ bytes_of_init_data i ++ bytes_of_init_data_list il
end.
Lemma store_init_data_list_loadbytes:
∀ b il m p m',
store_init_data_list m b p il = Some m' →
readbytes_as_zero m b p (init_data_list_size il) →
Mem.loadbytes m' b p (init_data_list_size il) = Some (bytes_of_init_data_list il).
Proof.
induction il as [ | i1 il]; simpl; intros.
- apply Mem.loadbytes_empty. omega.
- generalize (init_data_size_pos i1) (init_data_list_size_pos il); intros P1 PL.
destruct (store_init_data m b p i1) as [m1|] eqn:S; try discriminate.
apply Mem.loadbytes_concat.
eapply Mem.loadbytes_unchanged_on with (P := fun b1 ofs1 ⇒ ofs1 < p + init_data_size i1).
eapply store_init_data_list_unchanged; eauto.
intros; omega.
intros; omega.
eapply store_init_data_loadbytes; eauto.
red; intros; apply H0. omega. omega.
apply IHil with m1; auto.
red; intros.
eapply Mem.loadbytes_unchanged_on with (P := fun b1 ofs1 ⇒ p + init_data_size i1 ≤ ofs1).
eapply store_init_data_unchanged; eauto.
intros; omega.
intros; omega.
apply H0. omega. omega.
auto. auto.
Qed.
Properties related to load
Definition read_as_zero (m: mem) (b: block) (ofs len: Z) : Prop :=
∀ chunk p,
ofs ≤ p → p + size_chunk chunk ≤ ofs + len →
(align_chunk chunk | p) →
Mem.load chunk m b p =
Some (match chunk with
| Mint8unsigned | Mint8signed | Mint16unsigned | Mint16signed | Mint32 ⇒ Vint Int.zero
| Mint64 ⇒ Vlong Int64.zero
| Mfloat32 ⇒ Vsingle Float32.zero
| Mfloat64 ⇒ Vfloat Float.zero
| Many32 | Many64 ⇒ Vundef
end).
Remark read_as_zero_unchanged:
∀ (P: block → Z → Prop) m b ofs len m',
read_as_zero m b ofs len →
Mem.unchanged_on P m m' →
(∀ i, ofs ≤ i < ofs + len → P b i) →
read_as_zero m' b ofs len.
Proof.
intros; red; intros. eapply Mem.load_unchanged_on; eauto.
intros; apply H1. omega.
Qed.
Lemma store_zeros_read_as_zero:
∀ m b p n m',
store_zeros m b p n = Some m' →
read_as_zero m' b p n.
Proof.
intros; red; intros.
transitivity (Some(decode_val chunk (list_repeat (size_chunk_nat chunk) (Byte Byte.zero)))).
apply Mem.loadbytes_load; auto. rewrite size_chunk_conv.
eapply store_zeros_loadbytes; eauto. rewrite <- size_chunk_conv; auto.
f_equal. destruct chunk; unfold decode_val; unfold decode_int; unfold rev_if_be; destruct Archi.big_endian; reflexivity.
Qed.
Fixpoint load_store_init_data (m: mem) (b: block) (p: Z) (il: list init_data) {struct il} : Prop :=
match il with
| nil ⇒ True
| Init_int8 n :: il' ⇒
Mem.load Mint8unsigned m b p = Some(Vint(Int.zero_ext 8 n))
∧ load_store_init_data m b (p + 1) il'
| Init_int16 n :: il' ⇒
Mem.load Mint16unsigned m b p = Some(Vint(Int.zero_ext 16 n))
∧ load_store_init_data m b (p + 2) il'
| Init_int32 n :: il' ⇒
Mem.load Mint32 m b p = Some(Vint n)
∧ load_store_init_data m b (p + 4) il'
| Init_int64 n :: il' ⇒
Mem.load Mint64 m b p = Some(Vlong n)
∧ load_store_init_data m b (p + 8) il'
| Init_float32 n :: il' ⇒
Mem.load Mfloat32 m b p = Some(Vsingle n)
∧ load_store_init_data m b (p + 4) il'
| Init_float64 n :: il' ⇒
Mem.load Mfloat64 m b p = Some(Vfloat n)
∧ load_store_init_data m b (p + 8) il'
| Init_addrof symb ofs :: il' ⇒
(∃ b', find_symbol ge symb = Some b' ∧ Mem.load Mptr m b p = Some(Vptr b' ofs))
∧ load_store_init_data m b (p + size_chunk Mptr) il'
| Init_space n :: il' ⇒
read_as_zero m b p n
∧ load_store_init_data m b (p + Zmax n 0) il'
end.
Lemma store_init_data_list_charact:
∀ b il m p m',
store_init_data_list m b p il = Some m' →
read_as_zero m b p (init_data_list_size il) →
load_store_init_data m' b p il.
Proof.
assert (A: ∀ chunk v m b p m1 il m',
Mem.store chunk m b p v = Some m1 →
store_init_data_list m1 b (p + size_chunk chunk) il = Some m' →
Mem.load chunk m' b p = Some(Val.load_result chunk v)).
{
intros.
eapply Mem.load_unchanged_on with (P := fun b' ofs' ⇒ ofs' < p + size_chunk chunk).
eapply store_init_data_list_unchanged; eauto. intros; omega.
intros; tauto.
eapply Mem.load_store_same; eauto.
}
induction il; simpl.
- auto.
- intros. destruct (store_init_data m b p a) as [m1|] eqn:?; try congruence.
exploit IHil; eauto.
set (P := fun (b': block) ofs' ⇒ p + init_data_size a ≤ ofs').
apply read_as_zero_unchanged with (m := m) (P := P).
red; intros; apply H0; auto. generalize (init_data_size_pos a); omega. omega.
eapply store_init_data_unchanged with (P := P); eauto.
intros; unfold P. omega.
intros; unfold P. omega.
intro D.
destruct a; simpl in Heqo.
+ split; auto. eapply (A Mint8unsigned (Vint i)); eauto.
+ split; auto. eapply (A Mint16unsigned (Vint i)); eauto.
+ split; auto. eapply (A Mint32 (Vint i)); eauto.
+ split; auto. eapply (A Mint64 (Vlong i)); eauto.
+ split; auto. eapply (A Mfloat32 (Vsingle f)); eauto.
+ split; auto. eapply (A Mfloat64 (Vfloat f)); eauto.
+ split; auto.
set (P := fun (b': block) ofs' ⇒ ofs' < p + init_data_size (Init_space z)).
inv Heqo. apply read_as_zero_unchanged with (m := m1) (P := P).
red; intros. apply H0; auto. simpl. generalize (init_data_list_size_pos il); xomega.
eapply store_init_data_list_unchanged; eauto.
intros; unfold P. omega.
intros; unfold P. simpl; xomega.
+ rewrite init_data_size_addrof in ×.
split; auto.
destruct (find_symbol ge i); try congruence.
∃ b0; split; auto.
transitivity (Some (Val.load_result Mptr (Vptr b0 i0))).
eapply (A Mptr (Vptr b0 i0)); eauto.
unfold Val.load_result, Mptr; destruct Archi.ptr64; auto.
Qed.
Remark alloc_global_unchanged:
∀ (P: block → Z → Prop) m id g m',
alloc_global m (id, g) = Some m' →
Mem.unchanged_on P m m'.
Proof.
intros. destruct g as [[f|v]|]; simpl in H.
-
destruct (Mem.alloc m 0 1) as [m1 b] eqn:?.
set (Q := fun b' (ofs: Z) ⇒ b' ≠ b).
apply Mem.unchanged_on_implies with Q.
apply Mem.unchanged_on_trans with m1.
eapply Mem.alloc_unchanged_on; eauto.
eapply Mem.drop_perm_unchanged_on; eauto.
intros; red. apply Mem.valid_not_valid_diff with m; eauto with mem.
-
set (init := gvar_init v) in ×.
set (sz := init_data_list_size init) in ×.
destruct (Mem.alloc m 0 sz) as [m1 b] eqn:?.
destruct (store_zeros m1 b 0 sz) as [m2|] eqn:?; try discriminate.
destruct (store_init_data_list m2 b 0 init) as [m3|] eqn:?; try discriminate.
set (Q := fun b' (ofs: Z) ⇒ b' ≠ b).
apply Mem.unchanged_on_implies with Q.
apply Mem.unchanged_on_trans with m1.
eapply Mem.alloc_unchanged_on; eauto.
apply Mem.unchanged_on_trans with m2.
eapply store_zeros_unchanged; eauto.
apply Mem.unchanged_on_trans with m3.
eapply store_init_data_list_unchanged; eauto.
eapply Mem.drop_perm_unchanged_on; eauto.
intros; red. apply Mem.valid_not_valid_diff with m; eauto with mem.
-
destruct (Mem.alloc m 0 0) as [m1 b] eqn:?.
inv H.
eapply Mem.alloc_unchanged_on; eauto.
Qed.
Remark alloc_globals_unchanged:
∀ (P: block → Z → Prop) gl m m',
alloc_globals m gl = Some m' →
Mem.unchanged_on P m m'.
Proof.
induction gl; simpl; intros.
- inv H. apply Mem.unchanged_on_refl.
- destruct (alloc_global m a) as [m''|] eqn:?; try discriminate.
destruct a as [id g].
apply Mem.unchanged_on_trans with m''.
eapply alloc_global_unchanged; eauto.
apply IHgl; auto.
Qed.
Remark load_store_init_data_invariant:
∀ m m' b,
(∀ chunk ofs, Mem.load chunk m' b ofs = Mem.load chunk m b ofs) →
∀ il p,
load_store_init_data m b p il → load_store_init_data m' b p il.
Proof.
induction il; intro p; simpl.
auto.
rewrite ! H. destruct a; intuition. red; intros; rewrite H; auto.
Qed.
Definition globals_initialized (g: t F V) (m: mem) :=
∀ b gd,
find_def g b = Some gd →
match gd with
| Gfun f ⇒
Mem.perm m b 0 Cur Nonempty
∧ (∀ ofs k p, Mem.perm m b ofs k p → ofs = 0 ∧ p = Nonempty)
| Gvar v ⇒
Mem.range_perm m b 0 (init_data_list_size v.(gvar_init)) Cur (perm_globvar v)
∧ (∀ ofs k p, Mem.perm m b ofs k p →
0 ≤ ofs < init_data_list_size v.(gvar_init) ∧ perm_order (perm_globvar v) p)
∧ (v.(gvar_volatile) = false → load_store_init_data m b 0 v.(gvar_init))
∧ (v.(gvar_volatile) = false → Mem.loadbytes m b 0 (init_data_list_size v.(gvar_init)) = Some (bytes_of_init_data_list v.(gvar_init)))
end.
Lemma alloc_global_initialized:
∀ g m id gd m',
genv_next g = Mem.nextblock m →
alloc_global m (id, gd) = Some m' →
globals_initialized g m →
globals_initialized (add_global g (id, gd)) m'
∧ genv_next (add_global g (id, gd)) = Mem.nextblock m'.
Proof.
intros.
exploit alloc_global_nextblock; eauto. intros NB. split.
-
red; intros. unfold find_def in H2; simpl in H2.
destruct gd.
{
rewrite PTree.gsspec in H2. destruct (peq b (genv_next g)).
+ inv H2. destruct gd0 as [f|v]; simpl in H0.
× destruct (Mem.alloc m 0 1) as [m1 b] eqn:ALLOC.
exploit Mem.alloc_result; eauto. intros RES.
rewrite H, <- RES. split.
eapply Mem.perm_drop_1; eauto. omega.
intros.
assert (0 ≤ ofs < 1). { eapply Mem.perm_alloc_3; eauto. eapply Mem.perm_drop_4; eauto. }
exploit Mem.perm_drop_2; eauto. intros ORD.
split. omega. inv ORD; auto.
× set (init := gvar_init v) in ×.
set (sz := init_data_list_size init) in ×.
destruct (Mem.alloc m 0 sz) as [m1 b] eqn:?.
destruct (store_zeros m1 b 0 sz) as [m2|] eqn:?; try discriminate.
destruct (store_init_data_list m2 b 0 init) as [m3|] eqn:?; try discriminate.
exploit Mem.alloc_result; eauto. intro RES.
replace (genv_next g) with b by congruence.
split. red; intros. eapply Mem.perm_drop_1; eauto.
split. intros.
assert (0 ≤ ofs < sz).
{ eapply Mem.perm_alloc_3; eauto.
erewrite store_zeros_perm by eauto.
erewrite store_init_data_list_perm by eauto.
eapply Mem.perm_drop_4; eauto. }
split; auto.
eapply Mem.perm_drop_2; eauto.
split. intros NOTVOL. apply load_store_init_data_invariant with m3.
intros. eapply Mem.load_drop; eauto. right; right; right.
unfold perm_globvar. rewrite NOTVOL. destruct (gvar_readonly v); auto with mem.
eapply store_init_data_list_charact; eauto.
eapply store_zeros_read_as_zero; eauto.
intros NOTVOL.
transitivity (Mem.loadbytes m3 b 0 sz).
eapply Mem.loadbytes_drop; eauto. right; right; right.
unfold perm_globvar. rewrite NOTVOL. destruct (gvar_readonly v); auto with mem.
eapply store_init_data_list_loadbytes; eauto.
eapply store_zeros_loadbytes; eauto.
+ assert (U: Mem.unchanged_on (fun _ _ ⇒ True) m m') by (eapply alloc_global_unchanged; eauto).
assert (VALID: Mem.valid_block m b).
{ red. rewrite <- H. eapply genv_defs_range; eauto. }
exploit H1; eauto.
destruct gd0 as [f|v].
× intros [A B]; split; intros.
eapply Mem.perm_unchanged_on; eauto. exact I.
eapply B. eapply Mem.perm_unchanged_on_2; eauto. exact I.
× intros (A & B & C & D). split; [| split; [| split]].
red; intros. eapply Mem.perm_unchanged_on; eauto. exact I.
intros. eapply B. eapply Mem.perm_unchanged_on_2; eauto. exact I.
intros. apply load_store_init_data_invariant with m; auto.
intros. eapply Mem.load_unchanged_on_1; eauto. intros; exact I.
intros. eapply Mem.loadbytes_unchanged_on; eauto. intros; exact I.
}
{
generalize H0. intro H0' .
apply alloc_global_nextblock in H0'.
apply (alloc_global_unchanged (fun _ _ ⇒ True)) in H0.
generalize H2. intro H2'.
apply genv_defs_range in H2'.
rewrite H in H2'.
apply H1 in H2.
destruct gd0.
+ destruct H2.
split.
- eapply Mem.perm_unchanged_on; eauto.
simpl; auto.
- intros.
eapply H3.
eapply Mem.perm_unchanged_on_2; eauto.
simpl; auto.
+ destruct H2 as (R & PO & LSINI & INI).
split.
{
red; intros. eapply Mem.perm_unchanged_on; eauto.
simpl; auto.
}
split.
{
intros.
eapply PO; eauto.
eapply Mem.perm_unchanged_on_2; eauto.
simpl; auto.
}
split.
{
intros.
eapply load_store_init_data_invariant.
2: eapply LSINI; eauto.
intros.
eapply Mem.load_unchanged_on_1; eauto.
simpl; auto.
}
{
intros.
eapply Mem.loadbytes_unchanged_on; eauto.
simpl; auto.
}
}
- simpl. congruence.
Qed.
Lemma alloc_globals_initialized:
∀ gl ge m m',
alloc_globals m gl = Some m' →
genv_next ge = Mem.nextblock m →
globals_initialized ge m →
globals_initialized (add_globals ge gl) m'.
Proof.
induction gl; simpl; intros.
- inv H; auto.
- destruct a as [id g]. destruct (alloc_global m (id, g)) as [m1|] eqn:?; try discriminate.
exploit alloc_global_initialized; eauto. intros [P Q].
eapply IHgl; eauto.
Qed.
Definition globals_initialized_strong (g: t F V) (m: mem) :=
(∀ b,
find_def g b = None →
∀ ofs k p, ¬ Mem.perm m b ofs k p) ∧
globals_initialized g m.
Lemma alloc_global_initialized_strong:
∀ g m id gd m',
genv_next g = Mem.nextblock m →
alloc_global m (id, gd) = Some m' →
globals_initialized_strong g m →
globals_initialized_strong (add_global g (id, gd)) m'
∧ genv_next (add_global g (id, gd)) = Mem.nextblock m' .
Proof.
intros g m id gd m' H H0 H1.
exploit alloc_global_nextblock; eauto. intros NB.
exploit (alloc_global_unchanged (fun _ _ ⇒ True)); eauto. intro UNCH.
destruct H1 as [H1 H2].
apply and_assoc.
split.
{
intros b H3 ofs k p.
unfold find_def in H3.
unfold add_global in H3.
simpl in H3.
destruct gd.
+ rewrite PTree.gsspec in H3.
destruct (peq b (genv_next g)); try discriminate.
intro PERM.
eapply H1; eauto.
eapply Mem.perm_unchanged_on_2 with (P := fun _ _ ⇒ True); simpl; eauto.
unfold Mem.valid_block.
apply Mem.perm_valid_block in PERM.
unfold Mem.valid_block in PERM.
rewrite H in n.
rewrite NB in PERM.
xomega.
+ intro PERM.
destruct (peq b (genv_next g)) as [ | n ] .
- subst.
simpl in H0.
destruct (Mem.alloc m 0 0) as [? b] eqn:ALLOC.
inv H0.
exploit Mem.alloc_result; eauto.
intro; subst.
rewrite H in PERM.
exploit Mem.perm_alloc_3; eauto.
omega.
- eapply H1; eauto.
eapply Mem.perm_unchanged_on_2; eauto.
{ simpl; auto. }
unfold Mem.valid_block.
rewrite H in n.
apply Mem.perm_valid_block in PERM.
unfold Mem.valid_block in PERM.
rewrite NB in PERM.
xomega.
}
eapply alloc_global_initialized; eauto.
Qed.
Lemma alloc_globals_initialized_strong:
∀ gl ge m m',
alloc_globals m gl = Some m' →
genv_next ge = Mem.nextblock m →
globals_initialized_strong ge m →
globals_initialized_strong (add_globals ge gl) m'.
Proof.
induction gl; simpl; intros.
- inv H; auto.
- destruct a as [id g]. destruct (alloc_global m (id, g)) as [m1|] eqn:?; try discriminate.
exploit alloc_global_initialized_strong; eauto. intros [P Q].
eapply IHgl; eauto.
Qed.
End INITMEM.
Definition init_mem (p: program F V) :=
alloc_globals (globalenv p) Mem.empty p.(prog_defs).
Lemma init_mem_genv_next: ∀ p m,
init_mem p = Some m →
genv_next (globalenv p) = Mem.nextblock m.
Proof.
unfold init_mem; intros.
exploit alloc_globals_nextblock; eauto. rewrite Mem.nextblock_empty. intro.
generalize (genv_next_add_globals (prog_defs p) (empty_genv F V (prog_public p))).
fold (globalenv p). simpl genv_next. intros. congruence.
Qed.
Theorem find_symbol_not_fresh:
∀ p id b m,
init_mem p = Some m →
find_symbol (globalenv p) id = Some b → Mem.valid_block m b.
Proof.
intros. red. erewrite <- init_mem_genv_next; eauto.
eapply genv_symb_range; eauto.
Qed.
Theorem find_def_not_fresh:
∀ p b g m,
init_mem p = Some m →
find_def (globalenv p) b = Some g → Mem.valid_block m b.
Proof.
intros. red. erewrite <- init_mem_genv_next; eauto.
eapply genv_defs_range; eauto.
Qed.
Theorem find_funct_ptr_not_fresh:
∀ p b f m,
init_mem p = Some m →
find_funct_ptr (globalenv p) b = Some f → Mem.valid_block m b.
Proof.
intros. rewrite find_funct_ptr_iff in H0. eapply find_def_not_fresh; eauto.
Qed.
Theorem find_var_info_not_fresh:
∀ p b gv m,
init_mem p = Some m →
find_var_info (globalenv p) b = Some gv → Mem.valid_block m b.
Proof.
intros. rewrite find_var_info_iff in H0. eapply find_def_not_fresh; eauto.
Qed.
Lemma init_mem_characterization_gen:
∀ p m,
init_mem p = Some m →
globals_initialized (globalenv p) (globalenv p) m.
Proof.
intros. apply alloc_globals_initialized with Mem.empty.
auto.
rewrite Mem.nextblock_empty. auto.
red; intros. unfold find_def in H0; simpl in H0; rewrite PTree.gempty in H0; discriminate.
Qed.
Lemma init_mem_characterization_gen_strong:
∀ p m,
init_mem p = Some m →
globals_initialized_strong (globalenv p) (globalenv p) m.
Proof.
intros. apply alloc_globals_initialized_strong with Mem.empty.
auto.
rewrite Mem.nextblock_empty. auto.
red; intros.
split.
{
intros; eauto using Mem.perm_empty.
}
red; intros.
unfold find_def in H0; simpl in H0; rewrite PTree.gempty in H0; discriminate.
Qed.
Theorem init_mem_characterization:
∀ p b gv m,
find_var_info (globalenv p) b = Some gv →
init_mem p = Some m →
Mem.range_perm m b 0 (init_data_list_size gv.(gvar_init)) Cur (perm_globvar gv)
∧ (∀ ofs k p, Mem.perm m b ofs k p →
0 ≤ ofs < init_data_list_size gv.(gvar_init) ∧ perm_order (perm_globvar gv) p)
∧ (gv.(gvar_volatile) = false →
load_store_init_data (globalenv p) m b 0 gv.(gvar_init))
∧ (gv.(gvar_volatile) = false →
Mem.loadbytes m b 0 (init_data_list_size gv.(gvar_init)) = Some (bytes_of_init_data_list (globalenv p) gv.(gvar_init))).
Proof.
intros. rewrite find_var_info_iff in H.
exploit init_mem_characterization_gen; eauto.
Qed.
Theorem init_mem_characterization_2:
∀ p b fd m,
find_funct_ptr (globalenv p) b = Some fd →
init_mem p = Some m →
Mem.perm m b 0 Cur Nonempty
∧ (∀ ofs k p, Mem.perm m b ofs k p → ofs = 0 ∧ p = Nonempty).
Proof.
intros. rewrite find_funct_ptr_iff in H.
exploit init_mem_characterization_gen; eauto.
Qed.
Section INITMEM_INJ.
Variable ge: t F V.
Variable thr: block.
Hypothesis symb_inject: ∀ id b, find_symbol ge id = Some b → Plt b thr.
Lemma store_zeros_neutral:
∀ m b p n m',
Mem.inject_neutral thr m →
Plt b thr →
store_zeros m b p n = Some m' →
Mem.inject_neutral thr m'.
Proof.
intros until n. functional induction (store_zeros m b p n); intros.
inv H1; auto.
apply IHo; auto. eapply Mem.store_inject_neutral; eauto. constructor.
inv H1.
Qed.
Lemma store_init_data_neutral:
∀ m b p id m',
Mem.inject_neutral thr m →
Plt b thr →
store_init_data ge m b p id = Some m' →
Mem.inject_neutral thr m'.
Proof.
intros.
destruct id; simpl in H1; try (eapply Mem.store_inject_neutral; eauto; fail).
congruence.
destruct (find_symbol ge i) as [b'|] eqn:E; try discriminate.
eapply Mem.store_inject_neutral; eauto.
econstructor. unfold Mem.flat_inj. apply pred_dec_true; auto. eauto.
rewrite Ptrofs.add_zero. auto.
Qed.
Lemma store_init_data_list_neutral:
∀ b idl m p m',
Mem.inject_neutral thr m →
Plt b thr →
store_init_data_list ge m b p idl = Some m' →
Mem.inject_neutral thr m'.
Proof.
induction idl; simpl; intros.
congruence.
destruct (store_init_data ge m b p a) as [m1|] eqn:E; try discriminate.
eapply IHidl. eapply store_init_data_neutral; eauto. auto. eauto.
Qed.
Lemma alloc_global_neutral:
∀ idg m m',
alloc_global ge m idg = Some m' →
Mem.inject_neutral thr m →
Plt (Mem.nextblock m) thr →
Mem.inject_neutral thr m'.
Proof.
intros. destruct idg as [id [[f|v]|]]; simpl in H.
destruct (Mem.alloc m 0 1) as [m1 b] eqn:?.
assert (Plt b thr). rewrite (Mem.alloc_result _ _ _ _ _ Heqp). auto.
eapply Mem.drop_inject_neutral; eauto.
eapply Mem.alloc_inject_neutral; eauto.
set (init := gvar_init v) in ×.
set (sz := init_data_list_size init) in ×.
destruct (Mem.alloc m 0 sz) as [m1 b] eqn:?.
destruct (store_zeros m1 b 0 sz) as [m2|] eqn:?; try discriminate.
destruct (store_init_data_list ge m2 b 0 init) as [m3|] eqn:?; try discriminate.
assert (Plt b thr). rewrite (Mem.alloc_result _ _ _ _ _ Heqp). auto.
eapply Mem.drop_inject_neutral; eauto.
eapply store_init_data_list_neutral with (m := m2) (b := b); eauto.
eapply store_zeros_neutral with (m := m1); eauto.
eapply Mem.alloc_inject_neutral; eauto.
destruct (Mem.alloc m 0 0) as [m1 b] eqn:?.
assert (Plt b thr). rewrite (Mem.alloc_result _ _ _ _ _ Heqp). auto.
inv H.
eapply Mem.alloc_inject_neutral; eauto.
Qed.
Remark advance_next_le: ∀ gl x, Ple x (advance_next (F:=F) (V:=V) gl x).
Proof.
induction gl; simpl; intros.
apply Ple_refl.
apply Ple_trans with (Psucc x). apply Ple_succ. eauto.
Qed.
Lemma alloc_globals_neutral:
∀ gl m m',
alloc_globals ge m gl = Some m' →
Mem.inject_neutral thr m →
Ple (Mem.nextblock m') thr →
Mem.inject_neutral thr m'.
Proof.
induction gl; intros.
simpl in ×. congruence.
exploit alloc_globals_nextblock; eauto. intros EQ.
simpl in ×. destruct (alloc_global ge m a) as [m1|] eqn:E; try discriminate.
exploit alloc_global_neutral; eauto.
assert (Ple (Psucc (Mem.nextblock m)) (Mem.nextblock m')).
{ rewrite EQ. apply advance_next_le. }
unfold Plt, Ple in *; zify; omega.
Qed.
End INITMEM_INJ.
Theorem initmem_inject:
∀ p m,
init_mem p = Some m →
Mem.inject (Mem.flat_inj (Mem.nextblock m)) m m.
Proof.
unfold init_mem; intros.
apply Mem.neutral_inject.
eapply alloc_globals_neutral; eauto.
intros. exploit find_symbol_not_fresh; eauto.
apply Mem.empty_inject_neutral.
apply Ple_refl.
Qed.
Definition init_data_alignment (i: init_data) : Z :=
match i with
| Init_int8 n ⇒ 1
| Init_int16 n ⇒ 2
| Init_int32 n ⇒ 4
| Init_int64 n ⇒ 8
| Init_float32 n ⇒ 4
| Init_float64 n ⇒ 4
| Init_addrof symb ofs ⇒ if Archi.ptr64 then 8 else 4
| Init_space n ⇒ 1
end.
Fixpoint init_data_list_aligned (p: Z) (il: list init_data) {struct il} : Prop :=
match il with
| nil ⇒ True
| i1 :: il ⇒ (init_data_alignment i1 | p) ∧ init_data_list_aligned (p + init_data_size i1) il
end.
Section INITMEM_INVERSION.
Variable ge: t F V.
Lemma store_init_data_aligned:
∀ m b p i m',
store_init_data ge m b p i = Some m' →
(init_data_alignment i | p).
Proof.
intros.
assert (DFL: ∀ chunk v,
Mem.store chunk m b p v = Some m' →
align_chunk chunk = init_data_alignment i →
(init_data_alignment i | p)).
{ intros. apply Mem.store_valid_access_3 in H0. destruct H0. congruence. }
destruct i; simpl in H; eauto.
simpl. apply Z.divide_1_l.
destruct (find_symbol ge i); try discriminate. eapply DFL. eassumption.
unfold Mptr, init_data_alignment; destruct Archi.ptr64; auto.
Qed.
Lemma store_init_data_list_aligned:
∀ b il m p m',
store_init_data_list ge m b p il = Some m' →
init_data_list_aligned p il.
Proof.
induction il as [ | i1 il]; simpl; intros.
- auto.
- destruct (store_init_data ge m b p i1) as [m1|] eqn:S1; try discriminate.
split; eauto. eapply store_init_data_aligned; eauto.
Qed.
Lemma store_init_data_list_free_idents:
∀ b i o il m p m',
store_init_data_list ge m b p il = Some m' →
In (Init_addrof i o) il →
∃ b', find_symbol ge i = Some b'.
Proof.
induction il as [ | i1 il]; simpl; intros.
- contradiction.
- destruct (store_init_data ge m b p i1) as [m1|] eqn:S1; try discriminate.
destruct H0.
+ subst i1. simpl in S1. destruct (find_symbol ge i) as [b'|]. ∃ b'; auto. discriminate.
+ eapply IHil; eauto.
Qed.
End INITMEM_INVERSION.
Theorem init_mem_inversion:
∀ p m id v,
init_mem p = Some m →
In (id, Some (Gvar v)) p.(prog_defs) →
init_data_list_aligned 0 v.(gvar_init)
∧ ∀ i o, In (Init_addrof i o) v.(gvar_init) → ∃ b, find_symbol (globalenv p) i = Some b.
Proof.
intros until v. unfold init_mem. set (ge := globalenv p).
revert m. generalize Mem.empty. generalize (prog_defs p).
induction l as [ | idg1 defs ]; simpl; intros m m'; intros.
- contradiction.
- destruct (alloc_global ge m idg1) as [m''|] eqn:A; try discriminate.
destruct H0.
+ subst idg1; simpl in A.
set (il := gvar_init v) in ×. set (sz := init_data_list_size il) in ×.
destruct (Mem.alloc m 0 sz) as [m1 b].
destruct (store_zeros m1 b 0 sz) as [m2|]; try discriminate.
destruct (store_init_data_list ge m2 b 0 il) as [m3|] eqn:B; try discriminate.
split. eapply store_init_data_list_aligned; eauto. intros; eapply store_init_data_list_free_idents; eauto.
+ eapply IHdefs; eauto.
Qed.
Section INITMEM_EXISTS.
Variable ge: t F V.
Lemma store_zeros_exists:
∀ m b p n,
Mem.range_perm m b p (p + n) Cur Writable →
∃ m', store_zeros m b p n = Some m'.
Proof.
intros until n. functional induction (store_zeros m b p n); intros PERM.
- ∃ m; auto.
- apply IHo. red; intros. eapply Mem.perm_store_1; eauto. apply PERM. omega.
- destruct (Mem.valid_access_store m Mint8unsigned b p Vzero) as (m' & STORE).
split. red; intros. apply Mem.perm_cur. apply PERM. simpl in H. omega.
simpl. apply Z.divide_1_l.
congruence.
Qed.
Lemma store_init_data_exists:
∀ m b p i,
Mem.range_perm m b p (p + init_data_size i) Cur Writable →
(init_data_alignment i | p) →
(∀ id ofs, i = Init_addrof id ofs → ∃ b, find_symbol ge id = Some b) →
∃ m', store_init_data ge m b p i = Some m'.
Proof.
intros.
assert (DFL: ∀ chunk v,
init_data_size i = size_chunk chunk →
init_data_alignment i = align_chunk chunk →
∃ m', Mem.store chunk m b p v = Some m').
{ intros. destruct (Mem.valid_access_store m chunk b p v) as (m' & STORE).
split. rewrite <- H2; auto. rewrite <- H3; auto.
∃ m'; auto. }
destruct i; eauto.
simpl. ∃ m; auto.
simpl. exploit H1; eauto. intros (b1 & FS). rewrite FS. eapply DFL.
unfold init_data_size, Mptr. destruct Archi.ptr64; auto.
unfold init_data_alignment, Mptr. destruct Archi.ptr64; auto.
Qed.
Lemma store_init_data_list_exists:
∀ b il m p,
Mem.range_perm m b p (p + init_data_list_size il) Cur Writable →
init_data_list_aligned p il →
(∀ id ofs, In (Init_addrof id ofs) il → ∃ b, find_symbol ge id = Some b) →
∃ m', store_init_data_list ge m b p il = Some m'.
Proof.
induction il as [ | i1 il ]; simpl; intros.
- ∃ m; auto.
- destruct H0.
destruct (@store_init_data_exists m b p i1) as (m1 & S1); eauto.
red; intros. apply H. generalize (init_data_list_size_pos il); omega.
rewrite S1.
apply IHil; eauto.
red; intros. erewrite <- store_init_data_perm by eauto. apply H. generalize (init_data_size_pos i1); omega.
Qed.
Lemma alloc_global_exists:
∀ m idg,
match idg with
| (id, None) ⇒ True
| (id, Some (Gfun f)) ⇒ True
| (id, Some (Gvar v)) ⇒
init_data_list_aligned 0 v.(gvar_init)
∧ ∀ i o, In (Init_addrof i o) v.(gvar_init) → ∃ b, find_symbol ge i = Some b
end →
∃ m', alloc_global ge m idg = Some m'.
Proof.
intros m [id [[f|v]|]]; intros; simpl.
- destruct (Mem.alloc m 0 1) as [m1 b] eqn:ALLOC.
destruct (Mem.range_perm_drop_2 m1 b 0 1 Nonempty) as [m2 DROP].
red; intros; eapply Mem.perm_alloc_2; eauto.
∃ m2; auto.
- destruct H as [P Q].
set (sz := init_data_list_size (gvar_init v)).
destruct (Mem.alloc m 0 sz) as [m1 b] eqn:ALLOC.
assert (P1: Mem.range_perm m1 b 0 sz Cur Freeable) by (red; intros; eapply Mem.perm_alloc_2; eauto).
destruct (@store_zeros_exists m1 b 0 sz) as [m2 ZEROS].
red; intros. apply Mem.perm_implies with Freeable; auto with mem.
rewrite ZEROS.
assert (P2: Mem.range_perm m2 b 0 sz Cur Freeable).
{ red; intros. erewrite <- store_zeros_perm by eauto. eauto. }
destruct (@store_init_data_list_exists b (gvar_init v) m2 0) as [m3 STORE]; auto.
red; intros. apply Mem.perm_implies with Freeable; auto with mem.
rewrite STORE.
assert (P3: Mem.range_perm m3 b 0 sz Cur Freeable).
{ red; intros. erewrite <- store_init_data_list_perm by eauto. eauto. }
destruct (Mem.range_perm_drop_2 m3 b 0 sz (perm_globvar v)) as [m4 DROP]; auto.
∃ m4; auto.
- destruct (Mem.alloc _ _ _); eauto.
Qed.
End INITMEM_EXISTS.
Theorem init_mem_exists:
∀ p,
(∀ id v, In (id, Some (Gvar v)) (prog_defs p) →
init_data_list_aligned 0 v.(gvar_init)
∧ ∀ i o, In (Init_addrof i o) v.(gvar_init) → ∃ b, find_symbol (globalenv p) i = Some b) →
∃ m, init_mem p = Some m.
Proof.
intros. set (ge := globalenv p) in ×.
unfold init_mem. revert H. generalize (prog_defs p) Mem.empty.
induction l as [ | idg l]; simpl; intros.
- ∃ m; auto.
- destruct (@alloc_global_exists ge m idg) as [m1 A1].
destruct idg as [id [[f|v]|]]; eauto.
fold ge. rewrite A1. eapply IHl; eauto.
Qed.
End WITHMEMORYMODEL.
Section MATCH_GENVS.
Context {A B V W: Type} (R: globdef A V → globdef B W → Prop).
Record match_genvs (ge1: t A V) (ge2: t B W): Prop := {
mge_next:
genv_next ge2 = genv_next ge1;
mge_symb:
∀ id, PTree.get id (genv_symb ge2) = PTree.get id (genv_symb ge1);
mge_defs:
∀ b, option_rel R (PTree.get b (genv_defs ge1)) (PTree.get b (genv_defs ge2))
}.
Lemma add_global_match:
∀ ge1 ge2 id g1 g2,
match_genvs ge1 ge2 →
option_rel R g1 g2 →
match_genvs (add_global ge1 (id, g1)) (add_global ge2 (id, g2)).
Proof.
intros. destruct H. constructor; simpl; intros.
- congruence.
- rewrite mge_next0, ! PTree.gsspec. destruct (peq id0 id); auto.
-
inv H0; auto.
rewrite mge_next0, ! PTree.gsspec. destruct (peq b (genv_next ge1)).
constructor; auto.
auto.
Qed.
Lemma add_globals_match:
∀ gl1 gl2,
list_forall2 (fun idg1 idg2 ⇒ fst idg1 = fst idg2 ∧ option_rel R (snd idg1) (snd idg2)) gl1 gl2 →
∀ ge1 ge2, match_genvs ge1 ge2 →
match_genvs (add_globals ge1 gl1) (add_globals ge2 gl2).
Proof.
induction 1; intros; simpl.
auto.
destruct a1 as [id1 g1]; destruct b1 as [id2 g2]; simpl in *; destruct H; subst id2.
apply IHlist_forall2. apply add_global_match; auto.
Qed.
End MATCH_GENVS.
Section MATCH_PROGRAMS.
Context {C F1 V1 F2 V2: Type} {LC: Linker C} {LF: Linker F1} {LV: Linker V1}.
Variable match_fundef: C → F1 → F2 → Prop.
Variable match_varinfo: V1 → V2 → Prop.
Variable ctx: C.
Variable p: program F1 V1.
Variable tp: program F2 V2.
Hypothesis progmatch: match_program_gen match_fundef match_varinfo ctx p tp.
Lemma globalenvs_match:
match_genvs (match_globdef match_fundef match_varinfo ctx) (globalenv p) (globalenv tp).
Proof.
intros. apply add_globals_match. apply progmatch.
constructor; simpl; intros; auto. rewrite ! PTree.gempty. constructor.
Qed.
Theorem find_def_match_2:
∀ b, option_rel (match_globdef match_fundef match_varinfo ctx)
(find_def (globalenv p) b) (find_def (globalenv tp) b).
Proof (mge_defs globalenvs_match).
Theorem find_def_match:
∀ b g,
find_def (globalenv p) b = Some g →
∃ tg,
find_def (globalenv tp) b = Some tg ∧ match_globdef match_fundef match_varinfo ctx g tg.
Proof.
intros. generalize (find_def_match_2 b). rewrite H; intros R; inv R.
∃ y; auto.
Qed.
Theorem find_funct_ptr_match:
∀ b f,
find_funct_ptr (globalenv p) b = Some f →
∃ cunit tf,
find_funct_ptr (globalenv tp) b = Some tf ∧ match_fundef cunit f tf ∧ linkorder cunit ctx.
Proof.
intros. rewrite find_funct_ptr_iff in ×. apply find_def_match in H.
destruct H as (tg & P & Q). inv Q.
∃ ctx', f2; intuition auto. apply find_funct_ptr_iff; auto.
Qed.
Theorem find_funct_match:
∀ v f,
find_funct (globalenv p) v = Some f →
∃ cunit tf,
find_funct (globalenv tp) v = Some tf ∧ match_fundef cunit f tf ∧ linkorder cunit ctx.
Proof.
intros. exploit find_funct_inv; eauto. intros [b EQ]. subst v.
rewrite find_funct_find_funct_ptr in H.
rewrite find_funct_find_funct_ptr.
apply find_funct_ptr_match. auto.
Qed.
Theorem find_var_info_match:
∀ b v,
find_var_info (globalenv p) b = Some v →
∃ tv,
find_var_info (globalenv tp) b = Some tv ∧ match_globvar match_varinfo v tv.
Proof.
intros. rewrite find_var_info_iff in ×. apply find_def_match in H.
destruct H as (tg & P & Q). inv Q.
∃ v2; split; auto. apply find_var_info_iff; auto.
Qed.
Theorem find_symbol_match:
∀ (s : ident),
find_symbol (globalenv tp) s = find_symbol (globalenv p) s.
Proof.
intros. destruct globalenvs_match. apply mge_symb0.
Qed.
Theorem genv_next_match:
genv_next (globalenv tp) = genv_next (globalenv p).
Proof.
intros. destruct globalenvs_match. apply mge_next0.
Qed.
Theorem senv_match:
Senv.equiv (to_senv (globalenv p)) (to_senv (globalenv tp)).
Proof.
red; simpl. repeat split.
- apply genv_next_match.
- apply find_symbol_match.
- intros. unfold public_symbol. rewrite find_symbol_match.
rewrite ! globalenv_public.
destruct progmatch as (P & Q & R). rewrite R. auto.
- intros. unfold block_is_volatile.
destruct globalenvs_match as [P Q R]. specialize (R b).
unfold find_var_info, find_def.
inv R; auto.
inv H1; auto.
inv H2; auto.
Qed.
Context `{memory_model_prf: Mem.MemoryModel}.
Lemma store_init_data_list_match:
∀ idl m b ofs m',
store_init_data_list (globalenv p) m b ofs idl = Some m' →
store_init_data_list (globalenv tp) m b ofs idl = Some m'.
Proof.
induction idl; simpl; intros.
- auto.
- destruct (store_init_data (globalenv p) m b ofs a) as [m1|] eqn:S; try discriminate.
assert (X: store_init_data (globalenv tp) m b ofs a = Some m1).
{ destruct a; auto. simpl; rewrite find_symbol_match; auto. }
rewrite X. auto.
Qed.
Lemma alloc_globals_match:
∀ gl1 gl2, list_forall2 (match_ident_option_globdef match_fundef match_varinfo ctx) gl1 gl2 →
∀ m m',
alloc_globals (globalenv p) m gl1 = Some m' →
alloc_globals (globalenv tp) m gl2 = Some m'.
Proof.
induction 1; simpl; intros.
- auto.
- destruct (alloc_global (globalenv p) m a1) as [m1|] eqn:?; try discriminate.
assert (X: alloc_global (globalenv tp) m b1 = Some m1).
{ destruct a1 as [id1 g1]; destruct b1 as [id2 g2]; destruct H; simpl in ×.
subst id2. inv H2.
- auto.
- inv H; simpl in ×.
{ auto. }
inv H2; simpl in ×.
set (sz := init_data_list_size init) in ×.
destruct (Mem.alloc m 0 sz) as [m2 b] eqn:?.
destruct (store_zeros m2 b 0 sz) as [m3|] eqn:?; try discriminate.
destruct (store_init_data_list (globalenv p) m3 b 0 init) as [m4|] eqn:?; try discriminate.
erewrite store_init_data_list_match; eauto.
}
rewrite X; eauto.
Qed.
Theorem init_mem_match:
∀ m, init_mem p = Some m → init_mem tp = Some m.
Proof.
unfold init_mem; intros.
eapply alloc_globals_match; eauto. apply progmatch.
Qed.
End MATCH_PROGRAMS.
Special case for partial transformations that do not depend on the compilation unit
Section TRANSFORM_PARTIAL.
Context {A B V: Type} {LA: Linker A} {LV: Linker V}.
Context {transf: A → res B} {p: program A V} {tp: program B V}.
Hypothesis progmatch: match_program (fun cu f tf ⇒ transf f = OK tf) eq p tp.
Theorem find_funct_ptr_transf_partial:
∀ b f,
find_funct_ptr (globalenv p) b = Some f →
∃ tf,
find_funct_ptr (globalenv tp) b = Some tf ∧ transf f = OK tf.
Proof.
intros. exploit (find_funct_ptr_match progmatch); eauto.
intros (cu & tf & P & Q & R); ∃ tf; auto.
Qed.
Theorem find_funct_transf_partial:
∀ v f,
find_funct (globalenv p) v = Some f →
∃ tf,
find_funct (globalenv tp) v = Some tf ∧ transf f = OK tf.
Proof.
intros. exploit (find_funct_match progmatch); eauto.
intros (cu & tf & P & Q & R); ∃ tf; auto.
Qed.
Theorem find_symbol_transf_partial:
∀ (s : ident),
find_symbol (globalenv tp) s = find_symbol (globalenv p) s.
Proof.
intros. eapply (find_symbol_match progmatch).
Qed.
Theorem senv_transf_partial:
Senv.equiv (to_senv (globalenv p)) (to_senv (globalenv tp)).
Proof.
intros. eapply (senv_match progmatch).
Qed.
Context `{memory_model_prf: Mem.MemoryModel}.
Theorem init_mem_transf_partial:
∀ m, init_mem p = Some m → init_mem tp = Some m.
Proof.
eapply (init_mem_match progmatch).
Qed.
End TRANSFORM_PARTIAL.
Special case for total transformations that do not depend on the compilation unit
Section TRANSFORM_TOTAL.
Context {A B V: Type} {LA: Linker A} {LV: Linker V}.
Context {transf: A → B} {p: program A V} {tp: program B V}.
Hypothesis progmatch: match_program (fun cu f tf ⇒ tf = transf f) eq p tp.
Theorem find_funct_ptr_transf:
∀ b f,
find_funct_ptr (globalenv p) b = Some f →
find_funct_ptr (globalenv tp) b = Some (transf f).
Proof.
intros. exploit (find_funct_ptr_match progmatch); eauto.
intros (cu & tf & P & Q & R). congruence.
Qed.
Theorem find_funct_transf:
∀ v f,
find_funct (globalenv p) v = Some f →
find_funct (globalenv tp) v = Some (transf f).
Proof.
intros. exploit (find_funct_match progmatch); eauto.
intros (cu & tf & P & Q & R). congruence.
Qed.
Theorem find_symbol_transf:
∀ (s : ident),
find_symbol (globalenv tp) s = find_symbol (globalenv p) s.
Proof.
intros. eapply (find_symbol_match progmatch).
Qed.
Theorem senv_transf:
Senv.equiv (to_senv (globalenv p)) (to_senv (globalenv tp)).
Proof.
intros. eapply (senv_match progmatch).
Qed.
Context `{memory_model_prf: Mem.MemoryModel}.
Theorem init_mem_transf:
∀ m, init_mem p = Some m → init_mem tp = Some m.
Proof.
eapply (init_mem_match progmatch).
Qed.
End TRANSFORM_TOTAL.
End Genv.
Coercion Genv.to_senv: Genv.t >-> Senv.t.