Library compcert.x86.Op
Operators and addressing modes. The abstract syntax and dynamic
semantics for the CminorSel, RTL, LTL and Mach languages depend on the
following types, defined in this library:
- condition: boolean conditions for conditional branches;
- operation: arithmetic and logical operations;
- addressing: addressing modes for load and store operations.
Require Import BoolEqual.
Require Import Coqlib.
Require Import AST.
Require Import Integers.
Require Import Floats.
Require Import Values.
Require Import Memory.
Require Import Globalenvs.
Require Import Events.
Set Implicit Arguments.
Require Import Coqlib.
Require Import AST.
Require Import Integers.
Require Import Floats.
Require Import Values.
Require Import Memory.
Require Import Globalenvs.
Require Import Events.
Set Implicit Arguments.
Conditions (boolean-valued operators).
Inductive condition : Type :=
| Ccomp (c: comparison)
| Ccompu (c: comparison)
| Ccompimm (c: comparison) (n: int)
| Ccompuimm (c: comparison) (n: int)
| Ccompl (c: comparison)
| Ccomplu (c: comparison)
| Ccomplimm (c: comparison) (n: int64)
| Ccompluimm (c: comparison) (n: int64)
| Ccompf (c: comparison)
| Cnotcompf (c: comparison)
| Ccompfs (c: comparison)
| Cnotcompfs (c: comparison)
| Cmaskzero (n: int)
| Cmasknotzero (n: int).
Inductive addressing: Type :=
| Aindexed: Z → addressing
| Aindexed2: Z → addressing
| Ascaled: Z → Z → addressing
| Aindexed2scaled: Z → Z → addressing
| Aglobal: ident → ptrofs → addressing
| Abased: ident → ptrofs → addressing
| Abasedscaled: Z → ident → ptrofs → addressing
| Ainstack: ptrofs → addressing.
Arithmetic and logical operations. In the descriptions, rd is the
result of the operation and r1, r2, etc, are the arguments.
Inductive operation : Type :=
| Omove
| Ointconst (n: int)
| Olongconst (n: int64)
| Ofloatconst (n: float)
| Osingleconst (n: float32)
| Oindirectsymbol (id: ident)
| Ocast8signed
| Ocast8unsigned
| Ocast16signed
| Ocast16unsigned
| Oneg
| Osub
| Omul
| Omulimm (n: int)
| Omulhs
| Omulhu
| Odiv
| Odivu
| Omod
| Omodu
| Oand
| Oandimm (n: int)
| Oor
| Oorimm (n: int)
| Oxor
| Oxorimm (n: int)
| Onot
| Oshl
| Oshlimm (n: int)
| Oshr
| Oshrimm (n: int)
| Oshrximm (n: int)
| Oshru
| Oshruimm (n: int)
| Ororimm (n: int)
| Oshldimm (n: int)
| Olea (a: addressing)
| Omakelong
| Olowlong
| Ohighlong
| Ocast32signed
| Ocast32unsigned
| Onegl
| Oaddlimm (n: int64)
| Osubl
| Omull
| Omullimm (n: int64)
| Omullhs
| Omullhu
| Odivl
| Odivlu
| Omodl
| Omodlu
| Oandl
| Oandlimm (n: int64)
| Oorl
| Oorlimm (n: int64)
| Oxorl
| Oxorlimm (n: int64)
| Onotl
| Oshll
| Oshllimm (n: int)
| Oshrl
| Oshrlimm (n: int)
| Oshrxlimm (n: int)
| Oshrlu
| Oshrluimm (n: int)
| Ororlimm (n: int)
| Oleal (a: addressing)
| Onegf
| Oabsf
| Oaddf
| Osubf
| Omulf
| Odivf
| Onegfs
| Oabsfs
| Oaddfs
| Osubfs
| Omulfs
| Odivfs
| Osingleoffloat
| Ofloatofsingle
| Ointoffloat
| Ofloatofint
| Ointofsingle
| Osingleofint
| Olongoffloat
| Ofloatoflong
| Olongofsingle
| Osingleoflong
| Ocmp (cond: condition).
Comparison functions (used in modules CSE and Allocation).
Definition eq_condition (x y: condition) : {x=y} + {x≠y}.
Proof.
generalize Int.eq_dec Int64.eq_dec; intro.
assert (∀ (x y: comparison), {x=y}+{x≠y}). decide equality.
decide equality.
Defined.
Definition eq_addressing (x y: addressing) : {x=y} + {x≠y}.
Proof.
generalize ident_eq Ptrofs.eq_dec zeq; intros.
decide equality.
Defined.
Definition beq_operation: ∀ (x y: operation), bool.
Proof.
generalize Int.eq_dec Int64.eq_dec Float.eq_dec Float32.eq_dec ident_eq eq_addressing eq_condition; boolean_equality.
Defined.
Definition eq_operation: ∀ (x y: operation), {x=y} + {x≠y}.
Proof.
decidable_equality_from beq_operation.
Defined.
Global Opaque eq_condition eq_addressing eq_operation.
In addressing modes, offsets are 32-bit signed integers, even in 64-bit mode.
The following function checks that an addressing mode is valid, i.e. that
the offsets are in range.
Definition offset_in_range (n: Z) : bool := zle Int.min_signed n && zle n Int.max_signed.
Definition addressing_valid (a: addressing) : bool :=
match a with
| Aindexed n ⇒ offset_in_range n
| Aindexed2 n ⇒ offset_in_range n
| Ascaled sc ofs ⇒ offset_in_range ofs
| Aindexed2scaled sc ofs ⇒ offset_in_range ofs
| Aglobal s ofs ⇒ true
| Abased s ofs ⇒ true
| Abasedscaled sc s ofs ⇒ true
| Ainstack ofs ⇒ offset_in_range (Ptrofs.signed ofs)
end.
Evaluation functions
Definition eval_condition
`{memory_model_ops: Mem.MemoryModelOps}
(cond: condition) (vl: list val) (m: mem): option bool :=
match cond, vl with
| Ccomp c, v1 :: v2 :: nil ⇒ Val.cmp_bool c v1 v2
| Ccompu c, v1 :: v2 :: nil ⇒ Val.cmpu_bool (Mem.valid_pointer m) c v1 v2
| Ccompimm c n, v1 :: nil ⇒ Val.cmp_bool c v1 (Vint n)
| Ccompuimm c n, v1 :: nil ⇒ Val.cmpu_bool (Mem.valid_pointer m) c v1 (Vint n)
| Ccompl c, v1 :: v2 :: nil ⇒ Val.cmpl_bool c v1 v2
| Ccomplu c, v1 :: v2 :: nil ⇒ Val.cmplu_bool (Mem.valid_pointer m) c v1 v2
| Ccomplimm c n, v1 :: nil ⇒ Val.cmpl_bool c v1 (Vlong n)
| Ccompluimm c n, v1 :: nil ⇒ Val.cmplu_bool (Mem.valid_pointer m) c v1 (Vlong n)
| Ccompf c, v1 :: v2 :: nil ⇒ Val.cmpf_bool c v1 v2
| Cnotcompf c, v1 :: v2 :: nil ⇒ option_map negb (Val.cmpf_bool c v1 v2)
| Ccompfs c, v1 :: v2 :: nil ⇒ Val.cmpfs_bool c v1 v2
| Cnotcompfs c, v1 :: v2 :: nil ⇒ option_map negb (Val.cmpfs_bool c v1 v2)
| Cmaskzero n, v1 :: nil ⇒ Val.maskzero_bool v1 n
| Cmasknotzero n, v1 :: nil ⇒ option_map negb (Val.maskzero_bool v1 n)
| _, _ ⇒ None
end.
Definition eval_addressing32
(F V: Type) (genv: Genv.t F V) (sp: val)
(addr: addressing) (vl: list val) : option val :=
match addr, vl with
| Aindexed n, v1::nil ⇒
Some (Val.add v1 (Vint (Int.repr n)))
| Aindexed2 n, v1::v2::nil ⇒
Some (Val.add (Val.add v1 v2) (Vint (Int.repr n)))
| Ascaled sc ofs, v1::nil ⇒
Some (Val.add (Val.mul v1 (Vint (Int.repr sc))) (Vint (Int.repr ofs)))
| Aindexed2scaled sc ofs, v1::v2::nil ⇒
Some(Val.add v1 (Val.add (Val.mul v2 (Vint (Int.repr sc))) (Vint (Int.repr ofs))))
| Aglobal s ofs, nil ⇒
if Archi.ptr64 then None else Some (Genv.symbol_address genv s ofs)
| Abased s ofs, v1::nil ⇒
if Archi.ptr64 then None else Some (Val.add (Genv.symbol_address genv s ofs) v1)
| Abasedscaled sc s ofs, v1::nil ⇒
if Archi.ptr64 then None else Some (Val.add (Genv.symbol_address genv s ofs) (Val.mul v1 (Vint (Int.repr sc))))
| Ainstack ofs, nil ⇒
if Archi.ptr64 then None else Some(Val.offset_ptr sp ofs)
| _, _ ⇒ None
end.
Definition eval_addressing64
(F V: Type) (genv: Genv.t F V) (sp: val)
(addr: addressing) (vl: list val) : option val :=
match addr, vl with
| Aindexed n, v1::nil ⇒
Some (Val.addl v1 (Vlong (Int64.repr n)))
| Aindexed2 n, v1::v2::nil ⇒
Some (Val.addl (Val.addl v1 v2) (Vlong (Int64.repr n)))
| Ascaled sc ofs, v1::nil ⇒
Some (Val.addl (Val.mull v1 (Vlong (Int64.repr sc))) (Vlong (Int64.repr ofs)))
| Aindexed2scaled sc ofs, v1::v2::nil ⇒
Some(Val.addl v1 (Val.addl (Val.mull v2 (Vlong (Int64.repr sc))) (Vlong (Int64.repr ofs))))
| Aglobal s ofs, nil ⇒
if Archi.ptr64 then Some (Genv.symbol_address genv s ofs) else None
| Ainstack ofs, nil ⇒
if Archi.ptr64 then Some(Val.offset_ptr sp ofs) else None
| _, _ ⇒ None
end.
Definition eval_addressing
(F V: Type) (genv: Genv.t F V) (sp: val)
(addr: addressing) (vl: list val) : option val :=
if Archi.ptr64
then eval_addressing64 genv sp addr vl
else eval_addressing32 genv sp addr vl.
Definition eval_operation
`{memory_model_ops: Mem.MemoryModelOps}
(F V: Type) (genv: Genv.t F V) (sp: val)
(op: operation) (vl: list val) (m: mem): option val :=
match op, vl with
| Omove, v1::nil ⇒ Some v1
| Ointconst n, nil ⇒ Some (Vint n)
| Olongconst n, nil ⇒ Some (Vlong n)
| Ofloatconst n, nil ⇒ Some (Vfloat n)
| Osingleconst n, nil ⇒ Some (Vsingle n)
| Oindirectsymbol id, nil ⇒ Some (Genv.symbol_address genv id Ptrofs.zero)
| Ocast8signed, v1 :: nil ⇒ Some (Val.sign_ext 8 v1)
| Ocast8unsigned, v1 :: nil ⇒ Some (Val.zero_ext 8 v1)
| Ocast16signed, v1 :: nil ⇒ Some (Val.sign_ext 16 v1)
| Ocast16unsigned, v1 :: nil ⇒ Some (Val.zero_ext 16 v1)
| Oneg, v1::nil ⇒ Some (Val.neg v1)
| Osub, v1::v2::nil ⇒ Some (Val.sub v1 v2)
| Omul, v1::v2::nil ⇒ Some (Val.mul v1 v2)
| Omulimm n, v1::nil ⇒ Some (Val.mul v1 (Vint n))
| Omulhs, v1::v2::nil ⇒ Some (Val.mulhs v1 v2)
| Omulhu, v1::v2::nil ⇒ Some (Val.mulhu v1 v2)
| Odiv, v1::v2::nil ⇒ Val.divs v1 v2
| Odivu, v1::v2::nil ⇒ Val.divu v1 v2
| Omod, v1::v2::nil ⇒ Val.mods v1 v2
| Omodu, v1::v2::nil ⇒ Val.modu v1 v2
| Oand, v1::v2::nil ⇒ Some(Val.and v1 v2)
| Oandimm n, v1::nil ⇒ Some (Val.and v1 (Vint n))
| Oor, v1::v2::nil ⇒ Some(Val.or v1 v2)
| Oorimm n, v1::nil ⇒ Some (Val.or v1 (Vint n))
| Oxor, v1::v2::nil ⇒ Some(Val.xor v1 v2)
| Oxorimm n, v1::nil ⇒ Some (Val.xor v1 (Vint n))
| Onot, v1::nil ⇒ Some(Val.notint v1)
| Oshl, v1::v2::nil ⇒ Some (Val.shl v1 v2)
| Oshlimm n, v1::nil ⇒ Some (Val.shl v1 (Vint n))
| Oshr, v1::v2::nil ⇒ Some (Val.shr v1 v2)
| Oshrimm n, v1::nil ⇒ Some (Val.shr v1 (Vint n))
| Oshrximm n, v1::nil ⇒ Val.shrx v1 (Vint n)
| Oshru, v1::v2::nil ⇒ Some (Val.shru v1 v2)
| Oshruimm n, v1::nil ⇒ Some (Val.shru v1 (Vint n))
| Ororimm n, v1::nil ⇒ Some (Val.ror v1 (Vint n))
| Oshldimm n, v1::v2::nil ⇒ Some (Val.or (Val.shl v1 (Vint n))
(Val.shru v2 (Vint (Int.sub Int.iwordsize n))))
| Olea addr, _ ⇒ eval_addressing32 genv sp addr vl
| Omakelong, v1::v2::nil ⇒ Some(Val.longofwords v1 v2)
| Olowlong, v1::nil ⇒ Some(Val.loword v1)
| Ohighlong, v1::nil ⇒ Some(Val.hiword v1)
| Ocast32signed, v1 :: nil ⇒ Some (Val.longofint v1)
| Ocast32unsigned, v1 :: nil ⇒ Some (Val.longofintu v1)
| Onegl, v1::nil ⇒ Some (Val.negl v1)
| Oaddlimm n, v1::nil ⇒ Some (Val.addl v1 (Vlong n))
| Osubl, v1::v2::nil ⇒ Some (Val.subl v1 v2)
| Omull, v1::v2::nil ⇒ Some (Val.mull v1 v2)
| Omullimm n, v1::nil ⇒ Some (Val.mull v1 (Vlong n))
| Omullhs, v1::v2::nil ⇒ Some (Val.mullhs v1 v2)
| Omullhu, v1::v2::nil ⇒ Some (Val.mullhu v1 v2)
| Odivl, v1::v2::nil ⇒ Val.divls v1 v2
| Odivlu, v1::v2::nil ⇒ Val.divlu v1 v2
| Omodl, v1::v2::nil ⇒ Val.modls v1 v2
| Omodlu, v1::v2::nil ⇒ Val.modlu v1 v2
| Oandl, v1::v2::nil ⇒ Some(Val.andl v1 v2)
| Oandlimm n, v1::nil ⇒ Some (Val.andl v1 (Vlong n))
| Oorl, v1::v2::nil ⇒ Some(Val.orl v1 v2)
| Oorlimm n, v1::nil ⇒ Some (Val.orl v1 (Vlong n))
| Oxorl, v1::v2::nil ⇒ Some(Val.xorl v1 v2)
| Oxorlimm n, v1::nil ⇒ Some (Val.xorl v1 (Vlong n))
| Onotl, v1::nil ⇒ Some(Val.notl v1)
| Oshll, v1::v2::nil ⇒ Some (Val.shll v1 v2)
| Oshllimm n, v1::nil ⇒ Some (Val.shll v1 (Vint n))
| Oshrl, v1::v2::nil ⇒ Some (Val.shrl v1 v2)
| Oshrlimm n, v1::nil ⇒ Some (Val.shrl v1 (Vint n))
| Oshrxlimm n, v1::nil ⇒ Val.shrxl v1 (Vint n)
| Oshrlu, v1::v2::nil ⇒ Some (Val.shrlu v1 v2)
| Oshrluimm n, v1::nil ⇒ Some (Val.shrlu v1 (Vint n))
| Ororlimm n, v1::nil ⇒ Some (Val.rorl v1 (Vint n))
| Oleal addr, _ ⇒ eval_addressing64 genv sp addr vl
| Onegf, v1::nil ⇒ Some(Val.negf v1)
| Oabsf, v1::nil ⇒ Some(Val.absf v1)
| Oaddf, v1::v2::nil ⇒ Some(Val.addf v1 v2)
| Osubf, v1::v2::nil ⇒ Some(Val.subf v1 v2)
| Omulf, v1::v2::nil ⇒ Some(Val.mulf v1 v2)
| Odivf, v1::v2::nil ⇒ Some(Val.divf v1 v2)
| Onegfs, v1::nil ⇒ Some(Val.negfs v1)
| Oabsfs, v1::nil ⇒ Some(Val.absfs v1)
| Oaddfs, v1::v2::nil ⇒ Some(Val.addfs v1 v2)
| Osubfs, v1::v2::nil ⇒ Some(Val.subfs v1 v2)
| Omulfs, v1::v2::nil ⇒ Some(Val.mulfs v1 v2)
| Odivfs, v1::v2::nil ⇒ Some(Val.divfs v1 v2)
| Osingleoffloat, v1::nil ⇒ Some(Val.singleoffloat v1)
| Ofloatofsingle, v1::nil ⇒ Some(Val.floatofsingle v1)
| Ointoffloat, v1::nil ⇒ Val.intoffloat v1
| Ofloatofint, v1::nil ⇒ Val.floatofint v1
| Ointofsingle, v1::nil ⇒ Val.intofsingle v1
| Osingleofint, v1::nil ⇒ Val.singleofint v1
| Olongoffloat, v1::nil ⇒ Val.longoffloat v1
| Ofloatoflong, v1::nil ⇒ Val.floatoflong v1
| Olongofsingle, v1::nil ⇒ Val.longofsingle v1
| Osingleoflong, v1::nil ⇒ Val.singleoflong v1
| Ocmp c, _ ⇒ Some(Val.of_optbool (eval_condition c vl m))
| _, _ ⇒ None
end.
Remark eval_addressing_Aglobal:
∀ (F V: Type) (genv: Genv.t F V) sp id ofs,
eval_addressing genv sp (Aglobal id ofs) nil = Some (Genv.symbol_address genv id ofs).
Proof.
intros. unfold eval_addressing, eval_addressing32, eval_addressing64; destruct Archi.ptr64; auto.
Qed.
Remark eval_addressing_Ainstack:
∀ (F V: Type) (genv: Genv.t F V) sp ofs,
eval_addressing genv sp (Ainstack ofs) nil = Some (Val.offset_ptr sp ofs).
Proof.
intros. unfold eval_addressing, eval_addressing32, eval_addressing64; destruct Archi.ptr64; auto.
Qed.
Remark eval_addressing_Ainstack_inv:
∀ (F V: Type) (genv: Genv.t F V) sp ofs vl v,
eval_addressing genv sp (Ainstack ofs) vl = Some v → vl = nil ∧ v = Val.offset_ptr sp ofs.
Proof.
unfold eval_addressing, eval_addressing32, eval_addressing64;
intros; destruct Archi.ptr64; destruct vl; inv H; auto.
Qed.
Ltac FuncInv :=
match goal with
| H: (match ?x with nil ⇒ _ | _ :: _ ⇒ _ end = Some _) |- _ ⇒
destruct x; simpl in H; FuncInv
| H: (match ?v with Vundef ⇒ _ | Vint _ ⇒ _ | Vfloat _ ⇒ _ | Vptr _ _ ⇒ _ end = Some _) |- _ ⇒
destruct v; simpl in H; FuncInv
| H: (if Archi.ptr64 then _ else _) = Some _ |- _ ⇒
destruct Archi.ptr64 eqn:?; FuncInv
| H: (Some _ = Some _) |- _ ⇒
injection H; intros; clear H; FuncInv
| H: (None = Some _) |- _ ⇒
discriminate H
| _ ⇒
idtac
end.
Definition type_of_condition (c: condition) : list typ :=
match c with
| Ccomp _ ⇒ Tint :: Tint :: nil
| Ccompu _ ⇒ Tint :: Tint :: nil
| Ccompimm _ _ ⇒ Tint :: nil
| Ccompuimm _ _ ⇒ Tint :: nil
| Ccompl _ ⇒ Tlong :: Tlong :: nil
| Ccomplu _ ⇒ Tlong :: Tlong :: nil
| Ccomplimm _ _ ⇒ Tlong :: nil
| Ccompluimm _ _ ⇒ Tlong :: nil
| Ccompf _ ⇒ Tfloat :: Tfloat :: nil
| Cnotcompf _ ⇒ Tfloat :: Tfloat :: nil
| Ccompfs _ ⇒ Tsingle :: Tsingle :: nil
| Cnotcompfs _ ⇒ Tsingle :: Tsingle :: nil
| Cmaskzero _ ⇒ Tint :: nil
| Cmasknotzero _ ⇒ Tint :: nil
end.
Definition type_of_addressing_gen (tyA: typ) (addr: addressing): list typ :=
match addr with
| Aindexed _ ⇒ tyA :: nil
| Aindexed2 _ ⇒ tyA :: tyA :: nil
| Ascaled _ _ ⇒ tyA :: nil
| Aindexed2scaled _ _ ⇒ tyA :: tyA :: nil
| Aglobal _ _ ⇒ nil
| Abased _ _ ⇒ tyA :: nil
| Abasedscaled _ _ _ ⇒ tyA :: nil
| Ainstack _ ⇒ nil
end.
Definition type_of_addressing := type_of_addressing_gen Tptr.
Definition type_of_addressing32 := type_of_addressing_gen Tint.
Definition type_of_addressing64 := type_of_addressing_gen Tlong.
Definition type_of_operation (op: operation) : list typ × typ :=
match op with
| Omove ⇒ (nil, Tint)
| Ointconst _ ⇒ (nil, Tint)
| Olongconst _ ⇒ (nil, Tlong)
| Ofloatconst f ⇒ (nil, Tfloat)
| Osingleconst f ⇒ (nil, Tsingle)
| Oindirectsymbol _ ⇒ (nil, Tptr)
| Ocast8signed ⇒ (Tint :: nil, Tint)
| Ocast8unsigned ⇒ (Tint :: nil, Tint)
| Ocast16signed ⇒ (Tint :: nil, Tint)
| Ocast16unsigned ⇒ (Tint :: nil, Tint)
| Oneg ⇒ (Tint :: nil, Tint)
| Osub ⇒ (Tint :: Tint :: nil, Tint)
| Omul ⇒ (Tint :: Tint :: nil, Tint)
| Omulimm _ ⇒ (Tint :: nil, Tint)
| Omulhs ⇒ (Tint :: Tint :: nil, Tint)
| Omulhu ⇒ (Tint :: Tint :: nil, Tint)
| Odiv ⇒ (Tint :: Tint :: nil, Tint)
| Odivu ⇒ (Tint :: Tint :: nil, Tint)
| Omod ⇒ (Tint :: Tint :: nil, Tint)
| Omodu ⇒ (Tint :: Tint :: nil, Tint)
| Oand ⇒ (Tint :: Tint :: nil, Tint)
| Oandimm _ ⇒ (Tint :: nil, Tint)
| Oor ⇒ (Tint :: Tint :: nil, Tint)
| Oorimm _ ⇒ (Tint :: nil, Tint)
| Oxor ⇒ (Tint :: Tint :: nil, Tint)
| Oxorimm _ ⇒ (Tint :: nil, Tint)
| Onot ⇒ (Tint :: nil, Tint)
| Oshl ⇒ (Tint :: Tint :: nil, Tint)
| Oshlimm _ ⇒ (Tint :: nil, Tint)
| Oshr ⇒ (Tint :: Tint :: nil, Tint)
| Oshrimm _ ⇒ (Tint :: nil, Tint)
| Oshrximm _ ⇒ (Tint :: nil, Tint)
| Oshru ⇒ (Tint :: Tint :: nil, Tint)
| Oshruimm _ ⇒ (Tint :: nil, Tint)
| Ororimm _ ⇒ (Tint :: nil, Tint)
| Oshldimm _ ⇒ (Tint :: Tint :: nil, Tint)
| Olea addr ⇒ (type_of_addressing32 addr, Tint)
| Omakelong ⇒ (Tint :: Tint :: nil, Tlong)
| Olowlong ⇒ (Tlong :: nil, Tint)
| Ohighlong ⇒ (Tlong :: nil, Tint)
| Ocast32signed ⇒ (Tint :: nil, Tlong)
| Ocast32unsigned ⇒ (Tint :: nil, Tlong)
| Onegl ⇒ (Tlong :: nil, Tlong)
| Oaddlimm _ ⇒ (Tlong :: nil, Tlong)
| Osubl ⇒ (Tlong :: Tlong :: nil, Tlong)
| Omull ⇒ (Tlong :: Tlong :: nil, Tlong)
| Omullimm _ ⇒ (Tlong :: nil, Tlong)
| Omullhs ⇒ (Tlong :: Tlong :: nil, Tlong)
| Omullhu ⇒ (Tlong :: Tlong :: nil, Tlong)
| Odivl ⇒ (Tlong :: Tlong :: nil, Tlong)
| Odivlu ⇒ (Tlong :: Tlong :: nil, Tlong)
| Omodl ⇒ (Tlong :: Tlong :: nil, Tlong)
| Omodlu ⇒ (Tlong :: Tlong :: nil, Tlong)
| Oandl ⇒ (Tlong :: Tlong :: nil, Tlong)
| Oandlimm _ ⇒ (Tlong :: nil, Tlong)
| Oorl ⇒ (Tlong :: Tlong :: nil, Tlong)
| Oorlimm _ ⇒ (Tlong :: nil, Tlong)
| Oxorl ⇒ (Tlong :: Tlong :: nil, Tlong)
| Oxorlimm _ ⇒ (Tlong :: nil, Tlong)
| Onotl ⇒ (Tlong :: nil, Tlong)
| Oshll ⇒ (Tlong :: Tint :: nil, Tlong)
| Oshllimm _ ⇒ (Tlong :: nil, Tlong)
| Oshrl ⇒ (Tlong :: Tint :: nil, Tlong)
| Oshrlimm _ ⇒ (Tlong :: nil, Tlong)
| Oshrxlimm _ ⇒ (Tlong :: nil, Tlong)
| Oshrlu ⇒ (Tlong :: Tint :: nil, Tlong)
| Oshrluimm _ ⇒ (Tlong :: nil, Tlong)
| Ororlimm _ ⇒ (Tlong :: nil, Tlong)
| Oleal addr ⇒ (type_of_addressing64 addr, Tlong)
| Onegf ⇒ (Tfloat :: nil, Tfloat)
| Oabsf ⇒ (Tfloat :: nil, Tfloat)
| Oaddf ⇒ (Tfloat :: Tfloat :: nil, Tfloat)
| Osubf ⇒ (Tfloat :: Tfloat :: nil, Tfloat)
| Omulf ⇒ (Tfloat :: Tfloat :: nil, Tfloat)
| Odivf ⇒ (Tfloat :: Tfloat :: nil, Tfloat)
| Onegfs ⇒ (Tsingle :: nil, Tsingle)
| Oabsfs ⇒ (Tsingle :: nil, Tsingle)
| Oaddfs ⇒ (Tsingle :: Tsingle :: nil, Tsingle)
| Osubfs ⇒ (Tsingle :: Tsingle :: nil, Tsingle)
| Omulfs ⇒ (Tsingle :: Tsingle :: nil, Tsingle)
| Odivfs ⇒ (Tsingle :: Tsingle :: nil, Tsingle)
| Osingleoffloat ⇒ (Tfloat :: nil, Tsingle)
| Ofloatofsingle ⇒ (Tsingle :: nil, Tfloat)
| Ointoffloat ⇒ (Tfloat :: nil, Tint)
| Ofloatofint ⇒ (Tint :: nil, Tfloat)
| Ointofsingle ⇒ (Tsingle :: nil, Tint)
| Osingleofint ⇒ (Tint :: nil, Tsingle)
| Olongoffloat ⇒ (Tfloat :: nil, Tlong)
| Ofloatoflong ⇒ (Tlong :: nil, Tfloat)
| Olongofsingle ⇒ (Tsingle :: nil, Tlong)
| Osingleoflong ⇒ (Tlong :: nil, Tsingle)
| Ocmp c ⇒ (type_of_condition c, Tint)
end.
Weak type soundness results for eval_operation:
the result values, when defined, are always of the type predicted
by type_of_operation.
Section SOUNDNESS.
Context `{memory_model_prf: Mem.MemoryModel}.
Variable A V: Type.
Variable genv: Genv.t A V.
Remark type_add:
∀ v1 v2, Val.has_type (Val.add v1 v2) Tint.
Proof.
intros. unfold Val.has_type, Val.add. destruct Archi.ptr64, v1, v2; auto.
Qed.
Remark type_addl:
∀ v1 v2, Val.has_type (Val.addl v1 v2) Tlong.
Proof.
intros. unfold Val.has_type, Val.addl. destruct Archi.ptr64, v1, v2; auto.
Qed.
Lemma type_of_addressing64_sound:
∀ addr vl sp v,
eval_addressing64 genv sp addr vl = Some v →
Val.has_type v Tlong.
Proof.
intros. destruct addr; simpl in H; FuncInv; subst; simpl; auto using type_addl.
- unfold Genv.symbol_address; destruct (Genv.find_symbol genv i); simpl; auto.
- destruct sp; simpl; auto.
Qed.
Lemma type_of_addressing32_sound:
∀ addr vl sp v,
eval_addressing32 genv sp addr vl = Some v →
Val.has_type v Tint.
Proof.
intros. destruct addr; simpl in H; FuncInv; subst; simpl; auto using type_add.
- unfold Genv.symbol_address; destruct (Genv.find_symbol genv i); simpl; auto.
- destruct sp; simpl; auto.
Qed.
Corollary type_of_addressing_sound:
∀ addr vl sp v,
eval_addressing genv sp addr vl = Some v →
Val.has_type v Tptr.
Proof.
unfold eval_addressing, Tptr; intros.
destruct Archi.ptr64; eauto using type_of_addressing64_sound, type_of_addressing32_sound.
Qed.
Lemma type_of_operation_sound:
∀ op vl sp v m,
op ≠ Omove →
eval_operation genv sp op vl m = Some v →
Val.has_type v (snd (type_of_operation op)).
Proof with (try exact I; try reflexivity).
intros.
destruct op; simpl in H0; FuncInv; subst; simpl.
congruence.
exact I.
exact I.
exact I.
exact I.
unfold Genv.symbol_address; destruct (Genv.find_symbol genv id)...
destruct v0...
destruct v0...
destruct v0...
destruct v0...
destruct v0...
unfold Val.sub, Val.has_type; destruct Archi.ptr64, v0, v1... destruct (eq_block b b0)...
destruct v0; destruct v1...
destruct v0...
destruct v0; destruct v1...
destruct v0; destruct v1...
destruct v0; destruct v1; simpl in *; inv H0.
destruct (Int.eq i0 Int.zero || Int.eq i (Int.repr Int.min_signed) && Int.eq i0 Int.mone); inv H2...
destruct v0; destruct v1; simpl in *; inv H0. destruct (Int.eq i0 Int.zero); inv H2...
destruct v0; destruct v1; simpl in *; inv H0.
destruct (Int.eq i0 Int.zero || Int.eq i (Int.repr Int.min_signed) && Int.eq i0 Int.mone); inv H2...
destruct v0; destruct v1; simpl in *; inv H0. destruct (Int.eq i0 Int.zero); inv H2...
destruct v0; destruct v1...
destruct v0...
destruct v0; destruct v1...
destruct v0...
destruct v0; destruct v1...
destruct v0...
destruct v0...
destruct v0; destruct v1; simpl... destruct (Int.ltu i0 Int.iwordsize)...
destruct v0; simpl... destruct (Int.ltu n Int.iwordsize)...
destruct v0; destruct v1; simpl... destruct (Int.ltu i0 Int.iwordsize)...
destruct v0; simpl... destruct (Int.ltu n Int.iwordsize)...
destruct v0; simpl in H0; try discriminate. destruct (Int.ltu n (Int.repr 31)); inv H0...
destruct v0; destruct v1; simpl... destruct (Int.ltu i0 Int.iwordsize)...
destruct v0; simpl... destruct (Int.ltu n Int.iwordsize)...
destruct v0...
destruct v0; simpl... destruct (Int.ltu n Int.iwordsize)...
destruct v1; simpl... destruct (Int.ltu (Int.sub Int.iwordsize n) Int.iwordsize)...
eapply type_of_addressing32_sound; eauto.
destruct v0; destruct v1...
destruct v0...
destruct v0...
destruct v0...
destruct v0...
destruct v0...
unfold Val.addl, Val.has_type; destruct Archi.ptr64, v0...
unfold Val.subl, Val.has_type; destruct Archi.ptr64, v0, v1... destruct (eq_block b b0)...
destruct v0; destruct v1...
destruct v0...
destruct v0; destruct v1...
destruct v0; destruct v1...
destruct v0; destruct v1; simpl in *; inv H0.
destruct (Int64.eq i0 Int64.zero || Int64.eq i (Int64.repr Int64.min_signed) && Int64.eq i0 Int64.mone); inv H2...
destruct v0; destruct v1; simpl in *; inv H0. destruct (Int64.eq i0 Int64.zero); inv H2...
destruct v0; destruct v1; simpl in *; inv H0.
destruct (Int64.eq i0 Int64.zero || Int64.eq i (Int64.repr Int64.min_signed) && Int64.eq i0 Int64.mone); inv H2...
destruct v0; destruct v1; simpl in *; inv H0. destruct (Int64.eq i0 Int64.zero); inv H2...
destruct v0; destruct v1...
destruct v0...
destruct v0; destruct v1...
destruct v0...
destruct v0; destruct v1...
destruct v0...
destruct v0...
destruct v0; destruct v1; simpl... destruct (Int.ltu i0 Int64.iwordsize')...
destruct v0; simpl... destruct (Int.ltu n Int64.iwordsize')...
destruct v0; destruct v1; simpl... destruct (Int.ltu i0 Int64.iwordsize')...
destruct v0; simpl... destruct (Int.ltu n Int64.iwordsize')...
destruct v0; inv H0. destruct (Int.ltu n (Int.repr 63)); inv H2...
destruct v0; destruct v1; simpl... destruct (Int.ltu i0 Int64.iwordsize')...
destruct v0; simpl... destruct (Int.ltu n Int64.iwordsize')...
destruct v0...
eapply type_of_addressing64_sound; eauto.
destruct v0...
destruct v0...
destruct v0; destruct v1...
destruct v0; destruct v1...
destruct v0; destruct v1...
destruct v0; destruct v1...
destruct v0...
destruct v0...
destruct v0; destruct v1...
destruct v0; destruct v1...
destruct v0; destruct v1...
destruct v0; destruct v1...
destruct v0...
destruct v0...
destruct v0; simpl in H0; inv H0. destruct (Float.to_int f); inv H2...
destruct v0; simpl in H0; inv H0...
destruct v0; simpl in H0; inv H0. destruct (Float32.to_int f); inv H2...
destruct v0; simpl in H0; inv H0...
destruct v0; simpl in H0; inv H0. destruct (Float.to_long f); inv H2...
destruct v0; simpl in H0; inv H0...
destruct v0; simpl in H0; inv H0. destruct (Float32.to_long f); inv H2...
destruct v0; simpl in H0; inv H0...
destruct (eval_condition cond vl m); simpl... destruct b...
Qed.
End SOUNDNESS.
Definition is_move_operation
(A: Type) (op: operation) (args: list A) : option A :=
match op, args with
| Omove, arg :: nil ⇒ Some arg
| _, _ ⇒ None
end.
Lemma is_move_operation_correct:
∀ (A: Type) (op: operation) (args: list A) (a: A),
is_move_operation op args = Some a →
op = Omove ∧ args = a :: nil.
Proof.
intros until a. unfold is_move_operation; destruct op;
try (intros; discriminate).
destruct args. intros; discriminate.
destruct args. intros. intuition congruence.
intros; discriminate.
Qed.
Definition negate_condition (cond: condition): condition :=
match cond with
| Ccomp c ⇒ Ccomp(negate_comparison c)
| Ccompu c ⇒ Ccompu(negate_comparison c)
| Ccompimm c n ⇒ Ccompimm (negate_comparison c) n
| Ccompuimm c n ⇒ Ccompuimm (negate_comparison c) n
| Ccompl c ⇒ Ccompl(negate_comparison c)
| Ccomplu c ⇒ Ccomplu(negate_comparison c)
| Ccomplimm c n ⇒ Ccomplimm (negate_comparison c) n
| Ccompluimm c n ⇒ Ccompluimm (negate_comparison c) n
| Ccompf c ⇒ Cnotcompf c
| Cnotcompf c ⇒ Ccompf c
| Ccompfs c ⇒ Cnotcompfs c
| Cnotcompfs c ⇒ Ccompfs c
| Cmaskzero n ⇒ Cmasknotzero n
| Cmasknotzero n ⇒ Cmaskzero n
end.
Lemma eval_negate_condition:
∀ `{memory_model_ops: Mem.MemoryModelOps},
∀ cond vl m,
eval_condition (negate_condition cond) vl m = option_map negb (eval_condition cond vl m).
Proof.
intros. destruct cond; simpl.
repeat (destruct vl; auto). apply Val.negate_cmp_bool.
repeat (destruct vl; auto). apply Val.negate_cmpu_bool.
repeat (destruct vl; auto). apply Val.negate_cmp_bool.
repeat (destruct vl; auto). apply Val.negate_cmpu_bool.
repeat (destruct vl; auto). apply Val.negate_cmpl_bool.
repeat (destruct vl; auto). apply Val.negate_cmplu_bool.
repeat (destruct vl; auto). apply Val.negate_cmpl_bool.
repeat (destruct vl; auto). apply Val.negate_cmplu_bool.
repeat (destruct vl; auto).
repeat (destruct vl; auto). destruct (Val.cmpf_bool c v v0) as [[]|]; auto.
repeat (destruct vl; auto).
repeat (destruct vl; auto). destruct (Val.cmpfs_bool c v v0) as [[]|]; auto.
destruct vl; auto. destruct vl; auto.
destruct vl; auto. destruct vl; auto. destruct (Val.maskzero_bool v n) as [[]|]; auto.
Qed.
Shifting stack-relative references. This is used in Stacking.
Definition shift_stack_addressing (delta: Z) (addr: addressing) :=
match addr with
| Ainstack ofs ⇒ Ainstack (Ptrofs.add ofs (Ptrofs.repr delta))
| _ ⇒ addr
end.
Definition shift_stack_operation (delta: Z) (op: operation) :=
match op with
| Olea addr ⇒ Olea (shift_stack_addressing delta addr)
| Oleal addr ⇒ Oleal (shift_stack_addressing delta addr)
| _ ⇒ op
end.
Lemma type_shift_stack_addressing:
∀ delta addr, type_of_addressing (shift_stack_addressing delta addr) = type_of_addressing addr.
Proof.
intros. destruct addr; auto.
Qed.
Lemma type_shift_stack_operation:
∀ delta op, type_of_operation (shift_stack_operation delta op) = type_of_operation op.
Proof.
intros. destruct op; auto; simpl; decEq; destruct a; auto.
Qed.
Lemma eval_shift_stack_addressing32:
∀ F V (ge: Genv.t F V) sp addr vl delta,
eval_addressing32 ge (Vptr sp Ptrofs.zero) (shift_stack_addressing delta addr) vl =
eval_addressing32 ge (Vptr sp (Ptrofs.repr delta)) addr vl.
Proof.
intros.
assert (A: ∀ i, Ptrofs.add Ptrofs.zero (Ptrofs.add i (Ptrofs.repr delta)) = Ptrofs.add (Ptrofs.repr delta) i).
{ intros. rewrite Ptrofs.add_zero_l. apply Ptrofs.add_commut. }
destruct addr; simpl; rewrite ?A; reflexivity.
Qed.
Lemma eval_shift_stack_addressing64:
∀ F V (ge: Genv.t F V) sp addr vl delta,
eval_addressing64 ge (Vptr sp Ptrofs.zero) (shift_stack_addressing delta addr) vl =
eval_addressing64 ge (Vptr sp (Ptrofs.repr delta)) addr vl.
Proof.
intros.
assert (A: ∀ i, Ptrofs.add Ptrofs.zero (Ptrofs.add i (Ptrofs.repr delta)) = Ptrofs.add (Ptrofs.repr delta) i).
{ intros. rewrite Ptrofs.add_zero_l. apply Ptrofs.add_commut. }
destruct addr; simpl; rewrite ?A; reflexivity.
Qed.
Lemma eval_shift_stack_addressing:
∀ F V (ge: Genv.t F V) sp addr vl delta,
eval_addressing ge (Vptr sp Ptrofs.zero) (shift_stack_addressing delta addr) vl =
eval_addressing ge (Vptr sp (Ptrofs.repr delta)) addr vl.
Proof.
intros. unfold eval_addressing.
destruct Archi.ptr64; auto using eval_shift_stack_addressing32, eval_shift_stack_addressing64.
Qed.
Lemma eval_shift_stack_operation:
∀ `{memory_model_ops: Mem.MemoryModelOps},
∀ F V (ge: Genv.t F V) sp op vl m delta,
eval_operation ge (Vptr sp Ptrofs.zero) (shift_stack_operation delta op) vl m =
eval_operation ge (Vptr sp (Ptrofs.repr delta)) op vl m.
Proof.
intros. destruct op; simpl; auto using eval_shift_stack_addressing32, eval_shift_stack_addressing64.
Qed.
Offset an addressing mode addr by a quantity delta, so that
it designates the pointer delta bytes past the pointer designated
by addr. This may be undefined if an offset overflows, in which case
None is returned.
Definition offset_addressing_total (addr: addressing) (delta: Z) : addressing :=
match addr with
| Aindexed n ⇒ Aindexed (n + delta)
| Aindexed2 n ⇒ Aindexed2 (n + delta)
| Ascaled sc n ⇒ Ascaled sc (n + delta)
| Aindexed2scaled sc n ⇒ Aindexed2scaled sc (n + delta)
| Aglobal s n ⇒ Aglobal s (Ptrofs.add n (Ptrofs.repr delta))
| Abased s n ⇒ Abased s (Ptrofs.add n (Ptrofs.repr delta))
| Abasedscaled sc s n ⇒ Abasedscaled sc s (Ptrofs.add n (Ptrofs.repr delta))
| Ainstack n ⇒ Ainstack (Ptrofs.add n (Ptrofs.repr delta))
end.
Definition offset_addressing (addr: addressing) (delta: Z) : option addressing :=
let addr' := offset_addressing_total addr delta in
if addressing_valid addr' then Some addr' else None.
Lemma eval_offset_addressing_total_32:
∀ (F V: Type) (ge: Genv.t F V) sp addr args delta v,
eval_addressing32 ge sp addr args = Some v →
eval_addressing32 ge sp (offset_addressing_total addr delta) args = Some(Val.add v (Vint (Int.repr delta))).
Proof.
assert (A: ∀ x y, Int.add (Int.repr x) (Int.repr y) = Int.repr (x + y)).
{ intros. apply Int.eqm_samerepr; auto with ints. }
assert (B: ∀ delta, Archi.ptr64 = false → Ptrofs.repr delta = Ptrofs.of_int (Int.repr delta)).
{ intros; symmetry; auto with ptrofs. }
intros. destruct addr; simpl in *; FuncInv; subst; simpl.
- rewrite <- A, ! Val.add_assoc; auto.
- rewrite <- A, ! Val.add_assoc; auto.
- rewrite <- A, ! Val.add_assoc; auto.
- rewrite <- A, ! Val.add_assoc; auto.
- rewrite B, Genv.shift_symbol_address_32 by auto. auto.
- rewrite B, Genv.shift_symbol_address_32 by auto. rewrite ! Val.add_assoc. do 2 f_equal. apply Val.add_commut.
- rewrite B, Genv.shift_symbol_address_32 by auto. rewrite ! Val.add_assoc. do 2 f_equal. apply Val.add_commut.
- destruct sp; simpl; auto. rewrite Heqb. rewrite Ptrofs.add_assoc. do 4 f_equal. symmetry; auto with ptrofs.
Qed.
Lemma eval_offset_addressing_total_64:
∀ (F V: Type) (ge: Genv.t F V) sp addr args delta v,
eval_addressing64 ge sp addr args = Some v →
eval_addressing64 ge sp (offset_addressing_total addr delta) args = Some(Val.addl v (Vlong (Int64.repr delta))).
Proof.
assert (A: ∀ x y, Int64.add (Int64.repr x) (Int64.repr y) = Int64.repr (x + y)).
{ intros. apply Int64.eqm_samerepr; auto with ints. }
assert (B: ∀ delta, Archi.ptr64 = true → Ptrofs.repr delta = Ptrofs.of_int64 (Int64.repr delta)).
{ intros; symmetry; auto with ptrofs. }
intros. destruct addr; simpl in *; FuncInv; subst; simpl.
- rewrite <- A, ! Val.addl_assoc; auto.
- rewrite <- A, ! Val.addl_assoc; auto.
- rewrite <- A, ! Val.addl_assoc; auto.
- rewrite <- A, ! Val.addl_assoc; auto.
- rewrite B, Genv.shift_symbol_address_64 by auto. auto.
- destruct sp; simpl; auto. rewrite Heqb. rewrite Ptrofs.add_assoc. do 4 f_equal. symmetry; auto with ptrofs.
Qed.
Lemma eval_offset_addressing:
∀ (F V: Type) (ge: Genv.t F V) sp addr args delta addr' v,
offset_addressing addr delta = Some addr' →
eval_addressing ge sp addr args = Some v →
Archi.ptr64 = false →
eval_addressing ge sp addr' args = Some(Val.add v (Vint (Int.repr delta))).
Proof.
intros. unfold offset_addressing in H. destruct (addressing_valid (offset_addressing_total addr delta)); inv H.
unfold eval_addressing in *; rewrite H1 in ×. apply eval_offset_addressing_total_32; auto.
Qed.
Operations that are so cheap to recompute that CSE should not factor them out.
Definition is_trivial_op (op: operation) : bool :=
match op with
| Omove ⇒ true
| Ointconst _ ⇒ true
| Olongconst _ ⇒ true
| Olea (Aglobal _ _) ⇒ true
| Olea (Ainstack _) ⇒ true
| Oleal (Aglobal _ _) ⇒ true
| Oleal (Ainstack _) ⇒ true
| _ ⇒ false
end.
Operations that depend on the memory state.
Definition op_depends_on_memory (op: operation) : bool :=
match op with
| Ocmp (Ccompu _) ⇒ negb Archi.ptr64
| Ocmp (Ccompuimm _ _) ⇒ negb Archi.ptr64
| Ocmp (Ccomplu _) ⇒ Archi.ptr64
| Ocmp (Ccompluimm _ _) ⇒ Archi.ptr64
| _ ⇒ false
end.
Lemma op_depends_on_memory_correct:
∀ `{memory_model_ops: Mem.MemoryModelOps},
∀ (F V: Type) (ge: Genv.t F V) sp op args m1 m2,
op_depends_on_memory op = false →
eval_operation ge sp op args m1 = eval_operation ge sp op args m2.
Proof.
intros until m2. destruct op; simpl; try congruence.
destruct cond; simpl; intros SF; auto; rewrite ? negb_false_iff in SF;
unfold Val.cmpu_bool, Val.cmplu_bool; rewrite SF; reflexivity.
Qed.
Global variables mentioned in an operation or addressing mode
Definition globals_addressing (addr: addressing) : list ident :=
match addr with
| Aglobal s n ⇒ s :: nil
| Abased s n ⇒ s :: nil
| Abasedscaled sc s n ⇒ s :: nil
| _ ⇒ nil
end.
Definition globals_operation (op: operation) : list ident :=
match op with
| Oindirectsymbol s ⇒ s :: nil
| Olea addr ⇒ globals_addressing addr
| Oleal addr ⇒ globals_addressing addr
| _ ⇒ nil
end.
Invariance and compatibility properties.
Section GENV_TRANSF.
Variable F1 F2 V1 V2: Type.
Variable ge1: Genv.t F1 V1.
Variable ge2: Genv.t F2 V2.
Hypothesis agree_on_symbols:
∀ (s: ident), Genv.find_symbol ge2 s = Genv.find_symbol ge1 s.
Lemma eval_addressing32_preserved:
∀ sp addr vl,
eval_addressing32 ge2 sp addr vl = eval_addressing32 ge1 sp addr vl.
Proof.
intros.
unfold eval_addressing32, Genv.symbol_address; destruct addr; try rewrite agree_on_symbols;
reflexivity.
Qed.
Lemma eval_addressing64_preserved:
∀ sp addr vl,
eval_addressing64 ge2 sp addr vl = eval_addressing64 ge1 sp addr vl.
Proof.
intros.
unfold eval_addressing64, Genv.symbol_address; destruct addr; try rewrite agree_on_symbols;
reflexivity.
Qed.
Lemma eval_addressing_preserved:
∀ sp addr vl,
eval_addressing ge2 sp addr vl = eval_addressing ge1 sp addr vl.
Proof.
intros.
unfold eval_addressing; destruct Archi.ptr64; auto using eval_addressing32_preserved, eval_addressing64_preserved.
Qed.
Lemma eval_operation_preserved:
∀ `{memory_model_ops: Mem.MemoryModelOps},
∀ sp op vl m,
eval_operation ge2 sp op vl m = eval_operation ge1 sp op vl m.
Proof.
intros.
unfold eval_operation; destruct op; auto using eval_addressing32_preserved, eval_addressing64_preserved.
unfold Genv.symbol_address. rewrite agree_on_symbols. auto.
Qed.
End GENV_TRANSF.
Compatibility of the evaluation functions with value injections.
Section EVAL_COMPAT.
Context `{memory_model_ops: Mem.MemoryModelOps}.
Variable F1 F2 V1 V2: Type.
Variable ge1: Genv.t F1 V1.
Variable ge2: Genv.t F2 V2.
Variable f: meminj.
Variable m1: mem.
Variable m2: mem.
Hypothesis valid_pointer_inj:
∀ b1 ofs b2 delta,
f b1 = Some(b2, delta) →
Mem.valid_pointer m1 b1 (Ptrofs.unsigned ofs) = true →
Mem.valid_pointer m2 b2 (Ptrofs.unsigned (Ptrofs.add ofs (Ptrofs.repr delta))) = true.
Hypothesis weak_valid_pointer_inj:
∀ b1 ofs b2 delta,
f b1 = Some(b2, delta) →
Mem.weak_valid_pointer m1 b1 (Ptrofs.unsigned ofs) = true →
Mem.weak_valid_pointer m2 b2 (Ptrofs.unsigned (Ptrofs.add ofs (Ptrofs.repr delta))) = true.
Hypothesis weak_valid_pointer_no_overflow:
∀ b1 ofs b2 delta,
f b1 = Some(b2, delta) →
Mem.weak_valid_pointer m1 b1 (Ptrofs.unsigned ofs) = true →
0 ≤ Ptrofs.unsigned ofs + Ptrofs.unsigned (Ptrofs.repr delta) ≤ Ptrofs.max_unsigned.
Hypothesis valid_different_pointers_inj:
∀ b1 ofs1 b2 ofs2 b1' delta1 b2' delta2,
b1 ≠ b2 →
Mem.valid_pointer m1 b1 (Ptrofs.unsigned ofs1) = true →
Mem.valid_pointer m1 b2 (Ptrofs.unsigned ofs2) = true →
f b1 = Some (b1', delta1) →
f b2 = Some (b2', delta2) →
b1' ≠ b2' ∨
Ptrofs.unsigned (Ptrofs.add ofs1 (Ptrofs.repr delta1)) ≠ Ptrofs.unsigned (Ptrofs.add ofs2 (Ptrofs.repr delta2)).
Ltac InvInject :=
match goal with
| [ H: Val.inject _ (Vint _) _ |- _ ] ⇒
inv H; InvInject
| [ H: Val.inject _ (Vfloat _) _ |- _ ] ⇒
inv H; InvInject
| [ H: Val.inject _ (Vptr _ _) _ |- _ ] ⇒
inv H; InvInject
| [ H: Val.inject_list _ nil _ |- _ ] ⇒
inv H; InvInject
| [ H: Val.inject_list _ (_ :: _) _ |- _ ] ⇒
inv H; InvInject
| _ ⇒ idtac
end.
Lemma eval_condition_inj:
∀ cond vl1 vl2 b,
Val.inject_list f vl1 vl2 →
eval_condition cond vl1 m1 = Some b →
eval_condition cond vl2 m2 = Some b.
Proof.
intros. destruct cond; simpl in H0; FuncInv; InvInject; simpl; auto.
- inv H3; inv H2; simpl in H0; inv H0; auto.
- eauto 3 using Val.cmpu_bool_inject, Mem.valid_pointer_implies.
- inv H3; simpl in H0; inv H0; auto.
- eauto 3 using Val.cmpu_bool_inject, Mem.valid_pointer_implies.
- inv H3; inv H2; simpl in H0; inv H0; auto.
- eauto 3 using Val.cmplu_bool_inject, Mem.valid_pointer_implies.
- inv H3; simpl in H0; inv H0; auto.
- eauto 3 using Val.cmplu_bool_inject, Mem.valid_pointer_implies.
- inv H3; inv H2; simpl in H0; inv H0; auto.
- inv H3; inv H2; simpl in H0; inv H0; auto.
- inv H3; inv H2; simpl in H0; inv H0; auto.
- inv H3; inv H2; simpl in H0; inv H0; auto.
- inv H3; try discriminate; auto.
- inv H3; try discriminate; auto.
Qed.
Ltac TrivialExists :=
match goal with
| [ |- ∃ v2, Some ?v1 = Some v2 ∧ Val.inject _ _ v2 ] ⇒
∃ v1; split; auto
| _ ⇒ idtac
end.
Lemma eval_addressing32_inj:
∀ addr sp1 vl1 sp2 vl2 v1,
(∀ id ofs,
In id (globals_addressing addr) →
Val.inject f (Genv.symbol_address ge1 id ofs) (Genv.symbol_address ge2 id ofs)) →
Val.inject f sp1 sp2 →
Val.inject_list f vl1 vl2 →
eval_addressing32 ge1 sp1 addr vl1 = Some v1 →
∃ v2, eval_addressing32 ge2 sp2 addr vl2 = Some v2 ∧ Val.inject f v1 v2.
Proof.
assert (A: ∀ v1 v2 v1' v2', Val.inject f v1 v1' → Val.inject f v2 v2' → Val.inject f (Val.mul v1 v2) (Val.mul v1' v2')).
{ intros. inv H; simpl; auto. inv H0; auto. }
intros. destruct addr; simpl in *; FuncInv; InvInject; TrivialExists; eauto using Val.add_inject, Val.offset_ptr_inject with coqlib.
Qed.
Lemma eval_addressing64_inj:
∀ addr sp1 vl1 sp2 vl2 v1,
(∀ id ofs,
In id (globals_addressing addr) →
Val.inject f (Genv.symbol_address ge1 id ofs) (Genv.symbol_address ge2 id ofs)) →
Val.inject f sp1 sp2 →
Val.inject_list f vl1 vl2 →
eval_addressing64 ge1 sp1 addr vl1 = Some v1 →
∃ v2, eval_addressing64 ge2 sp2 addr vl2 = Some v2 ∧ Val.inject f v1 v2.
Proof.
assert (A: ∀ v1 v2 v1' v2', Val.inject f v1 v1' → Val.inject f v2 v2' → Val.inject f (Val.mull v1 v2) (Val.mull v1' v2')).
{ intros. inv H; simpl; auto. inv H0; auto. }
intros. destruct addr; simpl in *; FuncInv; InvInject; TrivialExists; eauto using Val.addl_inject, Val.offset_ptr_inject with coqlib.
Qed.
Lemma eval_addressing_inj:
∀ addr sp1 vl1 sp2 vl2 v1,
(∀ id ofs,
In id (globals_addressing addr) →
Val.inject f (Genv.symbol_address ge1 id ofs) (Genv.symbol_address ge2 id ofs)) →
Val.inject f sp1 sp2 →
Val.inject_list f vl1 vl2 →
eval_addressing ge1 sp1 addr vl1 = Some v1 →
∃ v2, eval_addressing ge2 sp2 addr vl2 = Some v2 ∧ Val.inject f v1 v2.
Proof.
unfold eval_addressing; intros. destruct Archi.ptr64; eauto using eval_addressing32_inj, eval_addressing64_inj.
Qed.
Lemma eval_operation_inj:
∀ op sp1 vl1 sp2 vl2 v1,
(∀ id ofs,
In id (globals_operation op) →
Val.inject f (Genv.symbol_address ge1 id ofs) (Genv.symbol_address ge2 id ofs)) →
Val.inject f sp1 sp2 →
Val.inject_list f vl1 vl2 →
eval_operation ge1 sp1 op vl1 m1 = Some v1 →
∃ v2, eval_operation ge2 sp2 op vl2 m2 = Some v2 ∧ Val.inject f v1 v2.
Proof.
intros until v1; intros GL; intros. destruct op; simpl in H1; simpl; FuncInv; InvInject; TrivialExists.
apply GL; simpl; auto.
inv H4; simpl; auto.
inv H4; simpl; auto.
inv H4; simpl; auto.
inv H4; simpl; auto.
inv H4; simpl; auto.
apply Val.sub_inject; auto.
inv H4; inv H2; simpl; auto.
inv H4; simpl; auto.
inv H4; inv H2; simpl; auto.
inv H4; inv H2; simpl; auto.
inv H4; inv H3; simpl in H1; inv H1. simpl.
destruct (Int.eq i0 Int.zero || Int.eq i (Int.repr Int.min_signed) && Int.eq i0 Int.mone); inv H2. TrivialExists.
inv H4; inv H3; simpl in H1; inv H1. simpl.
destruct (Int.eq i0 Int.zero); inv H2. TrivialExists.
inv H4; inv H3; simpl in H1; inv H1. simpl.
destruct (Int.eq i0 Int.zero || Int.eq i (Int.repr Int.min_signed) && Int.eq i0 Int.mone); inv H2. TrivialExists.
inv H4; inv H3; simpl in H1; inv H1. simpl.
destruct (Int.eq i0 Int.zero); inv H2. TrivialExists.
inv H4; inv H2; simpl; auto.
inv H4; simpl; auto.
inv H4; inv H2; simpl; auto.
inv H4; simpl; auto.
inv H4; inv H2; simpl; auto.
inv H4; simpl; auto.
inv H4; simpl; auto.
inv H4; inv H2; simpl; auto. destruct (Int.ltu i0 Int.iwordsize); auto.
inv H4; simpl; auto. destruct (Int.ltu n Int.iwordsize); auto.
inv H4; inv H2; simpl; auto. destruct (Int.ltu i0 Int.iwordsize); auto.
inv H4; simpl; auto. destruct (Int.ltu n Int.iwordsize); auto.
inv H4; simpl in H1; try discriminate. simpl.
destruct (Int.ltu n (Int.repr 31)); inv H1. TrivialExists.
inv H4; inv H2; simpl; auto. destruct (Int.ltu i0 Int.iwordsize); auto.
inv H4; simpl; auto. destruct (Int.ltu n Int.iwordsize); auto.
inv H4; simpl; auto.
inv H4; simpl; auto. destruct (Int.ltu n Int.iwordsize); auto.
inv H2; simpl; auto. destruct (Int.ltu (Int.sub Int.iwordsize n) Int.iwordsize); auto.
eapply eval_addressing32_inj; eauto.
inv H4; inv H2; simpl; auto.
inv H4; simpl; auto.
inv H4; simpl; auto.
inv H4; simpl; auto.
inv H4; simpl; auto.
inv H4; simpl; auto.
apply Val.addl_inject; auto.
apply Val.subl_inject; auto.
inv H4; inv H2; simpl; auto.
inv H4; simpl; auto.
inv H4; inv H2; simpl; auto.
inv H4; inv H2; simpl; auto.
inv H4; inv H3; simpl in H1; inv H1. simpl.
destruct (Int64.eq i0 Int64.zero || Int64.eq i (Int64.repr Int64.min_signed) && Int64.eq i0 Int64.mone); inv H2. TrivialExists.
inv H4; inv H3; simpl in H1; inv H1. simpl.
destruct (Int64.eq i0 Int64.zero); inv H2. TrivialExists.
inv H4; inv H3; simpl in H1; inv H1. simpl.
destruct (Int64.eq i0 Int64.zero || Int64.eq i (Int64.repr Int64.min_signed) && Int64.eq i0 Int64.mone); inv H2. TrivialExists.
inv H4; inv H3; simpl in H1; inv H1. simpl.
destruct (Int64.eq i0 Int64.zero); inv H2. TrivialExists.
inv H4; inv H2; simpl; auto.
inv H4; simpl; auto.
inv H4; inv H2; simpl; auto.
inv H4; simpl; auto.
inv H4; inv H2; simpl; auto.
inv H4; simpl; auto.
inv H4; simpl; auto.
inv H4; inv H2; simpl; auto. destruct (Int.ltu i0 Int64.iwordsize'); auto.
inv H4; simpl; auto. destruct (Int.ltu n Int64.iwordsize'); auto.
inv H4; inv H2; simpl; auto. destruct (Int.ltu i0 Int64.iwordsize'); auto.
inv H4; simpl; auto. destruct (Int.ltu n Int64.iwordsize'); auto.
inv H4; simpl in H1; try discriminate. simpl. destruct (Int.ltu n (Int.repr 63)); inv H1. TrivialExists.
inv H4; inv H2; simpl; auto. destruct (Int.ltu i0 Int64.iwordsize'); auto.
inv H4; simpl; auto. destruct (Int.ltu n Int64.iwordsize'); auto.
inv H4; simpl; auto.
eapply eval_addressing64_inj; eauto.
inv H4; simpl; auto.
inv H4; simpl; auto.
inv H4; inv H2; simpl; auto.
inv H4; inv H2; simpl; auto.
inv H4; inv H2; simpl; auto.
inv H4; inv H2; simpl; auto.
inv H4; simpl; auto.
inv H4; simpl; auto.
inv H4; inv H2; simpl; auto.
inv H4; inv H2; simpl; auto.
inv H4; inv H2; simpl; auto.
inv H4; inv H2; simpl; auto.
inv H4; simpl; auto.
inv H4; simpl; auto.
inv H4; simpl in H1; inv H1. simpl. destruct (Float.to_int f0); simpl in H2; inv H2.
∃ (Vint i); auto.
inv H4; simpl in H1; inv H1. simpl. TrivialExists.
inv H4; simpl in H1; inv H1. simpl. destruct (Float32.to_int f0); simpl in H2; inv H2.
∃ (Vint i); auto.
inv H4; simpl in H1; inv H1. simpl. TrivialExists.
inv H4; simpl in H1; inv H1. simpl. destruct (Float.to_long f0); simpl in H2; inv H2.
∃ (Vlong i); auto.
inv H4; simpl in H1; inv H1. simpl. TrivialExists.
inv H4; simpl in H1; inv H1. simpl. destruct (Float32.to_long f0); simpl in H2; inv H2.
∃ (Vlong i); auto.
inv H4; simpl in H1; inv H1. simpl. TrivialExists.
subst v1. destruct (eval_condition cond vl1 m1) eqn:?.
exploit eval_condition_inj; eauto. intros EQ; rewrite EQ.
destruct b; simpl; constructor.
simpl; constructor.
Qed.
End EVAL_COMPAT.
Compatibility of the evaluation functions with the ``is less defined'' relation over values.
Section EVAL_LESSDEF.
Context `{memory_model_prf: Mem.MemoryModel}.
Variable F V: Type.
Variable genv: Genv.t F V.
Remark valid_pointer_extends:
∀ m1 m2, Mem.extends m1 m2 →
∀ b1 ofs b2 delta,
Some(b1, 0) = Some(b2, delta) →
Mem.valid_pointer m1 b1 (Ptrofs.unsigned ofs) = true →
Mem.valid_pointer m2 b2 (Ptrofs.unsigned (Ptrofs.add ofs (Ptrofs.repr delta))) = true.
Proof.
intros. inv H0. rewrite Ptrofs.add_zero. eapply Mem.valid_pointer_extends; eauto.
Qed.
Remark weak_valid_pointer_extends:
∀ m1 m2, Mem.extends m1 m2 →
∀ b1 ofs b2 delta,
Some(b1, 0) = Some(b2, delta) →
Mem.weak_valid_pointer m1 b1 (Ptrofs.unsigned ofs) = true →
Mem.weak_valid_pointer m2 b2 (Ptrofs.unsigned (Ptrofs.add ofs (Ptrofs.repr delta))) = true.
Proof.
intros. inv H0. rewrite Ptrofs.add_zero. eapply Mem.weak_valid_pointer_extends; eauto.
Qed.
Remark weak_valid_pointer_no_overflow_extends:
∀ m1 b1 ofs b2 delta,
Some(b1, 0) = Some(b2, delta) →
Mem.weak_valid_pointer m1 b1 (Ptrofs.unsigned ofs) = true →
0 ≤ Ptrofs.unsigned ofs + Ptrofs.unsigned (Ptrofs.repr delta) ≤ Ptrofs.max_unsigned.
Proof.
intros. inv H. rewrite Zplus_0_r. apply Ptrofs.unsigned_range_2.
Qed.
Remark valid_different_pointers_extends:
∀ m1 b1 ofs1 b2 ofs2 b1' delta1 b2' delta2,
b1 ≠ b2 →
Mem.valid_pointer m1 b1 (Ptrofs.unsigned ofs1) = true →
Mem.valid_pointer m1 b2 (Ptrofs.unsigned ofs2) = true →
Some(b1, 0) = Some (b1', delta1) →
Some(b2, 0) = Some (b2', delta2) →
b1' ≠ b2' ∨
Ptrofs.unsigned(Ptrofs.add ofs1 (Ptrofs.repr delta1)) ≠ Ptrofs.unsigned(Ptrofs.add ofs2 (Ptrofs.repr delta2)).
Proof.
intros. inv H2; inv H3. auto.
Qed.
Lemma eval_condition_lessdef:
∀ cond vl1 vl2 b m1 m2,
Val.lessdef_list vl1 vl2 →
Mem.extends m1 m2 →
eval_condition cond vl1 m1 = Some b →
eval_condition cond vl2 m2 = Some b.
Proof.
intros. eapply eval_condition_inj with (f := fun b ⇒ Some(b, 0)) (m3 := m1).
apply valid_pointer_extends; auto.
apply weak_valid_pointer_extends; auto.
apply weak_valid_pointer_no_overflow_extends.
apply valid_different_pointers_extends; auto.
rewrite <- val_inject_list_lessdef. eauto. auto.
Qed.
Lemma eval_operation_lessdef:
∀ sp op vl1 vl2 v1 m1 m2,
Val.lessdef_list vl1 vl2 →
Mem.extends m1 m2 →
eval_operation genv sp op vl1 m1 = Some v1 →
∃ v2, eval_operation genv sp op vl2 m2 = Some v2 ∧ Val.lessdef v1 v2.
Proof.
intros. rewrite val_inject_list_lessdef in H.
assert (∃ v2 : val,
eval_operation genv sp op vl2 m2 = Some v2
∧ Val.inject (fun b ⇒ Some(b, 0)) v1 v2).
eapply eval_operation_inj with (m3 := m1) (sp1 := sp).
apply valid_pointer_extends; auto.
apply weak_valid_pointer_extends; auto.
apply weak_valid_pointer_no_overflow_extends.
apply valid_different_pointers_extends; auto.
intros. apply val_inject_lessdef. auto.
apply val_inject_lessdef; auto.
eauto.
auto.
destruct H2 as [v2 [A B]]. ∃ v2; split; auto. rewrite val_inject_lessdef; auto.
Qed.
Lemma eval_addressing_lessdef:
∀ sp addr vl1 vl2 v1,
Val.lessdef_list vl1 vl2 →
eval_addressing genv sp addr vl1 = Some v1 →
∃ v2, eval_addressing genv sp addr vl2 = Some v2 ∧ Val.lessdef v1 v2.
Proof.
intros. rewrite val_inject_list_lessdef in H.
assert (∃ v2 : val,
eval_addressing genv sp addr vl2 = Some v2
∧ Val.inject (fun b ⇒ Some(b, 0)) v1 v2).
eapply eval_addressing_inj with (sp1 := sp).
intros. rewrite <- val_inject_lessdef; auto.
rewrite <- val_inject_lessdef; auto.
eauto. auto.
destruct H1 as [v2 [A B]]. ∃ v2; split; auto. rewrite val_inject_lessdef; auto.
Qed.
End EVAL_LESSDEF.
Compatibility of the evaluation functions with memory injections.
Section EVAL_INJECT.
Context `{memory_model_prf: Mem.MemoryModel}.
Variable F V: Type.
Variable genv: Genv.t F V.
Variable f: meminj.
Hypothesis globals: meminj_preserves_globals genv f.
Variable sp1: block.
Variable sp2: block.
Variable delta: Z.
Hypothesis sp_inj: f sp1 = Some(sp2, delta).
Remark symbol_address_inject:
∀ id ofs, Val.inject f (Genv.symbol_address genv id ofs) (Genv.symbol_address genv id ofs).
Proof.
intros. unfold Genv.symbol_address. destruct (Genv.find_symbol genv id) eqn:?; auto.
exploit (proj1 globals); eauto. intros.
econstructor; eauto. rewrite Ptrofs.add_zero; auto.
Qed.
Lemma eval_condition_inject:
∀ cond vl1 vl2 b m1 m2,
Val.inject_list f vl1 vl2 →
Mem.inject f m1 m2 →
eval_condition cond vl1 m1 = Some b →
eval_condition cond vl2 m2 = Some b.
Proof.
intros. eapply eval_condition_inj with (f0 := f) (m3 := m1); eauto.
intros; eapply Mem.valid_pointer_inject_val; eauto.
intros; eapply Mem.weak_valid_pointer_inject_val; eauto.
intros; eapply Mem.weak_valid_pointer_inject_no_overflow; eauto.
intros; eapply Mem.different_pointers_inject; eauto.
Qed.
Lemma eval_addressing_inject:
∀ addr vl1 vl2 v1,
Val.inject_list f vl1 vl2 →
eval_addressing genv (Vptr sp1 Ptrofs.zero) addr vl1 = Some v1 →
∃ v2,
eval_addressing genv (Vptr sp2 Ptrofs.zero) (shift_stack_addressing delta addr) vl2 = Some v2
∧ Val.inject f v1 v2.
Proof.
intros.
rewrite eval_shift_stack_addressing.
eapply eval_addressing_inj with (sp1 := Vptr sp1 Ptrofs.zero); eauto.
intros. apply symbol_address_inject.
econstructor; eauto. rewrite Ptrofs.add_zero_l; auto.
Qed.
Lemma eval_operation_inject:
∀ op vl1 vl2 v1 m1 m2,
Val.inject_list f vl1 vl2 →
Mem.inject f m1 m2 →
eval_operation genv (Vptr sp1 Ptrofs.zero) op vl1 m1 = Some v1 →
∃ v2,
eval_operation genv (Vptr sp2 Ptrofs.zero) (shift_stack_operation delta op) vl2 m2 = Some v2
∧ Val.inject f v1 v2.
Proof.
intros.
rewrite eval_shift_stack_operation. simpl.
eapply eval_operation_inj with (sp3 := Vptr sp1 Ptrofs.zero) (m3 := m1); eauto.
intros; eapply Mem.valid_pointer_inject_val; eauto.
intros; eapply Mem.weak_valid_pointer_inject_val; eauto.
intros; eapply Mem.weak_valid_pointer_inject_no_overflow; eauto.
intros; eapply Mem.different_pointers_inject; eauto.
intros. apply symbol_address_inject.
econstructor; eauto. rewrite Ptrofs.add_zero_l; auto.
Qed.
End EVAL_INJECT.