Library compcert.backend.CminorSel
The Cminor language after instruction selection.
Require Import Coqlib.
Require Import Maps.
Require Import AST.
Require Import Integers.
Require Import Events.
Require Import Values.
Require Import Memory.
Require Import Cminor.
Require Import Op.
Require Import Globalenvs.
Require Import Smallstep.
Abstract syntax
Inductive expr : Type :=
| Evar : ident → expr
| Eop : operation → exprlist → expr
| Eload : memory_chunk → addressing → exprlist → expr
| Econdition : condexpr → expr → expr → expr
| Elet : expr → expr → expr
| Eletvar : nat → expr
| Ebuiltin : external_function → exprlist → expr
| Eexternal : ident → signature → exprlist → expr
with exprlist : Type :=
| Enil: exprlist
| Econs: expr → exprlist → exprlist
with condexpr : Type :=
| CEcond : condition → exprlist → condexpr
| CEcondition : condexpr → condexpr → condexpr → condexpr
| CElet: expr → condexpr → condexpr.
Infix ":::" := Econs (at level 60, right associativity) : cminorsel_scope.
Conditional expressions condexpr are expressions that are evaluated
not for their exact value, but for their true/false Boolean value.
Likewise, exit expressions exitexpr are expressions that evaluate
to an exit number. They are used to compile the Sswitch statement
of Cminor.
Inductive exitexpr : Type :=
| XEexit: nat → exitexpr
| XEjumptable: expr → list nat → exitexpr
| XEcondition: condexpr → exitexpr → exitexpr → exitexpr
| XElet: expr → exitexpr → exitexpr.
Statements are as in Cminor, except that the Sifthenelse
construct uses a conditional expression, and the Sstore construct
uses a machine-dependent addressing mode.
Inductive stmt : Type :=
| Sskip: stmt
| Sassign : ident → expr → stmt
| Sstore : memory_chunk → addressing → exprlist → expr → stmt
| Scall : option ident → signature → expr + ident → exprlist → stmt
| Stailcall: signature → expr + ident → exprlist → stmt
| Sbuiltin : builtin_res ident → external_function → list (builtin_arg expr) → stmt
| Sseq: stmt → stmt → stmt
| Sifthenelse: condexpr → stmt → stmt → stmt
| Sloop: stmt → stmt
| Sblock: stmt → stmt
| Sexit: nat → stmt
| Sswitch: exitexpr → stmt
| Sreturn: option expr → stmt
| Slabel: label → stmt → stmt
| Sgoto: label → stmt.
Record function : Type := mkfunction {
fn_sig: signature;
fn_params: list ident;
fn_vars: list ident;
fn_stackspace: Z;
fn_body: stmt
}.
Definition fundef := AST.fundef function.
Definition program := AST.program fundef unit.
Definition funsig (fd: fundef) :=
match fd with
| Internal f ⇒ fn_sig f
| External ef ⇒ ef_sig ef
end.
Continuations
Inductive cont: Type :=
| Kstop: cont
| Kseq: stmt → cont → cont
| Kblock: cont → cont
| Kcall: option ident → function → val → env → cont → cont.
States
Inductive state `{memory_model_ops: Mem.MemoryModelOps}: Type :=
| State:
∀ (f: function)
(s: stmt)
(k: cont)
(sp: val)
(e: env)
(m: mem),
state
| Callstate:
∀ (f: fundef)
(args: list val)
(k: cont)
(m: mem),
state
| Returnstate:
∀ (v: val)
(k: cont)
(m: mem),
state.
Section WITHEXTCALLSOPS.
Context `{external_calls_prf: ExternalCalls}.
Section RELSEM.
Variable ge: genv.
The evaluation predicates have the same general shape as those
of Cminor. Refer to the description of Cminor semantics for
the meaning of the parameters of the predicates.
Section EVAL_EXPR.
Variable sp: val.
Variable e: env.
Variable m: mem.
Inductive eval_expr: letenv → expr → val → Prop :=
| eval_Evar: ∀ le id v,
PTree.get id e = Some v →
eval_expr le (Evar id) v
| eval_Eop: ∀ le op al vl v,
eval_exprlist le al vl →
eval_operation ge sp op vl m = Some v →
eval_expr le (Eop op al) v
| eval_Eload: ∀ le chunk addr al vl vaddr v,
eval_exprlist le al vl →
eval_addressing ge sp addr vl = Some vaddr →
Mem.loadv chunk m vaddr = Some v →
eval_expr le (Eload chunk addr al) v
| eval_Econdition: ∀ le a b c va v,
eval_condexpr le a va →
eval_expr le (if va then b else c) v →
eval_expr le (Econdition a b c) v
| eval_Elet: ∀ le a b v1 v2,
eval_expr le a v1 →
eval_expr (v1 :: le) b v2 →
eval_expr le (Elet a b) v2
| eval_Eletvar: ∀ le n v,
nth_error le n = Some v →
eval_expr le (Eletvar n) v
| eval_Ebuiltin: ∀ le ef al vl v,
eval_exprlist le al vl →
external_call ef ge vl m E0 v m →
∀ BUILTIN_ENABLED : builtin_enabled ef,
eval_expr le (Ebuiltin ef al) v
| eval_Eexternal: ∀ le id sg al b ef vl v,
Genv.find_symbol ge id = Some b →
Genv.find_funct_ptr ge b = Some (External ef) →
ef_sig ef = sg →
eval_exprlist le al vl →
external_call ef ge vl m E0 v m →
eval_expr le (Eexternal id sg al) v
with eval_exprlist: letenv → exprlist → list val → Prop :=
| eval_Enil: ∀ le,
eval_exprlist le Enil nil
| eval_Econs: ∀ le a1 al v1 vl,
eval_expr le a1 v1 → eval_exprlist le al vl →
eval_exprlist le (Econs a1 al) (v1 :: vl)
with eval_condexpr: letenv → condexpr → bool → Prop :=
| eval_CEcond: ∀ le cond al vl vb,
eval_exprlist le al vl →
eval_condition cond vl m = Some vb →
eval_condexpr le (CEcond cond al) vb
| eval_CEcondition: ∀ le a b c va v,
eval_condexpr le a va →
eval_condexpr le (if va then b else c) v →
eval_condexpr le (CEcondition a b c) v
| eval_CElet: ∀ le a b v1 v2,
eval_expr le a v1 →
eval_condexpr (v1 :: le) b v2 →
eval_condexpr le (CElet a b) v2.
Scheme eval_expr_ind3 := Minimality for eval_expr Sort Prop
with eval_exprlist_ind3 := Minimality for eval_exprlist Sort Prop
with eval_condexpr_ind3 := Minimality for eval_condexpr Sort Prop.
Inductive eval_exitexpr: letenv → exitexpr → nat → Prop :=
| eval_XEexit: ∀ le x,
eval_exitexpr le (XEexit x) x
| eval_XEjumptable: ∀ le a tbl n x,
eval_expr le a (Vint n) →
list_nth_z tbl (Int.unsigned n) = Some x →
eval_exitexpr le (XEjumptable a tbl) x
| eval_XEcondition: ∀ le a b c va x,
eval_condexpr le a va →
eval_exitexpr le (if va then b else c) x →
eval_exitexpr le (XEcondition a b c) x
| eval_XElet: ∀ le a b v x,
eval_expr le a v →
eval_exitexpr (v :: le) b x →
eval_exitexpr le (XElet a b) x.
Inductive eval_expr_or_symbol: letenv → expr + ident → val → Prop :=
| eval_eos_e: ∀ le e v,
eval_expr le e v →
eval_expr_or_symbol le (inl _ e) v
| eval_eos_s: ∀ le id b,
Genv.find_symbol ge id = Some b →
eval_expr_or_symbol le (inr _ id) (Vptr b Ptrofs.zero).
Inductive eval_builtin_arg: builtin_arg expr → val → Prop :=
| eval_BA: ∀ a v,
eval_expr nil a v →
eval_builtin_arg (BA a) v
| eval_BA_int: ∀ n,
eval_builtin_arg (BA_int n) (Vint n)
| eval_BA_long: ∀ n,
eval_builtin_arg (BA_long n) (Vlong n)
| eval_BA_float: ∀ n,
eval_builtin_arg (BA_float n) (Vfloat n)
| eval_BA_single: ∀ n,
eval_builtin_arg (BA_single n) (Vsingle n)
| eval_BA_loadstack: ∀ chunk ofs v,
Mem.loadv chunk m (Val.offset_ptr sp ofs) = Some v →
eval_builtin_arg (BA_loadstack chunk ofs) v
| eval_BA_addrstack: ∀ ofs,
eval_builtin_arg (BA_addrstack ofs) (Val.offset_ptr sp ofs)
| eval_BA_loadglobal: ∀ chunk id ofs v,
Mem.loadv chunk m (Genv.symbol_address ge id ofs) = Some v →
eval_builtin_arg (BA_loadglobal chunk id ofs) v
| eval_BA_addrglobal: ∀ id ofs,
eval_builtin_arg (BA_addrglobal id ofs) (Genv.symbol_address ge id ofs)
| eval_BA_splitlong: ∀ a1 a2 v1 v2,
eval_expr nil a1 v1 → eval_expr nil a2 v2 →
eval_builtin_arg (BA_splitlong (BA a1) (BA a2)) (Val.longofwords v1 v2).
End EVAL_EXPR.
Update local environment with the result of a builtin.
Definition set_builtin_res (res: builtin_res ident) (v: val) (e: env) : env :=
match res with
| BR id ⇒ PTree.set id v e
| _ ⇒ e
end.
Pop continuation until a call or stop
Fixpoint call_cont (k: cont) : cont :=
match k with
| Kseq s k ⇒ call_cont k
| Kblock k ⇒ call_cont k
| _ ⇒ k
end.
Definition is_call_cont (k: cont) : Prop :=
match k with
| Kstop ⇒ True
| Kcall _ _ _ _ _ ⇒ True
| _ ⇒ False
end.
Find the statement and manufacture the continuation
corresponding to a label
Fixpoint find_label (lbl: label) (s: stmt) (k: cont)
{struct s}: option (stmt × cont) :=
match s with
| Sseq s1 s2 ⇒
match find_label lbl s1 (Kseq s2 k) with
| Some sk ⇒ Some sk
| None ⇒ find_label lbl s2 k
end
| Sifthenelse c s1 s2 ⇒
match find_label lbl s1 k with
| Some sk ⇒ Some sk
| None ⇒ find_label lbl s2 k
end
| Sloop s1 ⇒
find_label lbl s1 (Kseq (Sloop s1) k)
| Sblock s1 ⇒
find_label lbl s1 (Kblock k)
| Slabel lbl' s' ⇒
if ident_eq lbl lbl' then Some(s', k) else find_label lbl s' k
| _ ⇒ None
end.
One step of execution
Inductive step: state → trace → state → Prop :=
| step_skip_seq: ∀ f s k sp e m,
step (State f Sskip (Kseq s k) sp e m)
E0 (State f s k sp e m)
| step_skip_block: ∀ f k sp e m,
step (State f Sskip (Kblock k) sp e m)
E0 (State f Sskip k sp e m)
| step_skip_call: ∀ f k sp e m m',
is_call_cont k →
Mem.free m sp 0 f.(fn_stackspace) = Some m' →
step (State f Sskip k (Vptr sp Ptrofs.zero) e m)
E0 (Returnstate Vundef k m')
| step_assign: ∀ f id a k sp e m v,
eval_expr sp e m nil a v →
step (State f (Sassign id a) k sp e m)
E0 (State f Sskip k sp (PTree.set id v e) m)
| step_store: ∀ f chunk addr al b k sp e m vl v vaddr m',
eval_exprlist sp e m nil al vl →
eval_expr sp e m nil b v →
eval_addressing ge sp addr vl = Some vaddr →
Mem.storev chunk m vaddr v = Some m' →
step (State f (Sstore chunk addr al b) k sp e m)
E0 (State f Sskip k sp e m')
| step_call: ∀ f optid sig a bl k sp e m vf vargs fd,
eval_expr_or_symbol sp e m nil a vf →
eval_exprlist sp e m nil bl vargs →
Genv.find_funct ge vf = Some fd →
funsig fd = sig →
step (State f (Scall optid sig a bl) k sp e m)
E0 (Callstate fd vargs (Kcall optid f sp e k) m)
| step_tailcall: ∀ f sig a bl k sp e m vf vargs fd m',
eval_expr_or_symbol (Vptr sp Ptrofs.zero) e m nil a vf →
eval_exprlist (Vptr sp Ptrofs.zero) e m nil bl vargs →
Genv.find_funct ge vf = Some fd →
funsig fd = sig →
Mem.free m sp 0 f.(fn_stackspace) = Some m' →
step (State f (Stailcall sig a bl) k (Vptr sp Ptrofs.zero) e m)
E0 (Callstate fd vargs (call_cont k) m')
| step_builtin: ∀ f res ef al k sp e m vl t v m',
list_forall2 (eval_builtin_arg sp e m) al vl →
external_call ef ge vl m t v m' →
∀ BUILTIN_ENABLED : builtin_enabled ef,
step (State f (Sbuiltin res ef al) k sp e m)
t (State f Sskip k sp (set_builtin_res res v e) m')
| step_seq: ∀ f s1 s2 k sp e m,
step (State f (Sseq s1 s2) k sp e m)
E0 (State f s1 (Kseq s2 k) sp e m)
| step_ifthenelse: ∀ f c s1 s2 k sp e m b,
eval_condexpr sp e m nil c b →
step (State f (Sifthenelse c s1 s2) k sp e m)
E0 (State f (if b then s1 else s2) k sp e m)
| step_loop: ∀ f s k sp e m,
step (State f (Sloop s) k sp e m)
E0 (State f s (Kseq (Sloop s) k) sp e m)
| step_block: ∀ f s k sp e m,
step (State f (Sblock s) k sp e m)
E0 (State f s (Kblock k) sp e m)
| step_exit_seq: ∀ f n s k sp e m,
step (State f (Sexit n) (Kseq s k) sp e m)
E0 (State f (Sexit n) k sp e m)
| step_exit_block_0: ∀ f k sp e m,
step (State f (Sexit O) (Kblock k) sp e m)
E0 (State f Sskip k sp e m)
| step_exit_block_S: ∀ f n k sp e m,
step (State f (Sexit (S n)) (Kblock k) sp e m)
E0 (State f (Sexit n) k sp e m)
| step_switch: ∀ f a k sp e m n,
eval_exitexpr sp e m nil a n →
step (State f (Sswitch a) k sp e m)
E0 (State f (Sexit n) k sp e m)
| step_return_0: ∀ f k sp e m m',
Mem.free m sp 0 f.(fn_stackspace) = Some m' →
step (State f (Sreturn None) k (Vptr sp Ptrofs.zero) e m)
E0 (Returnstate Vundef (call_cont k) m')
| step_return_1: ∀ f a k sp e m v m',
eval_expr (Vptr sp Ptrofs.zero) e m nil a v →
Mem.free m sp 0 f.(fn_stackspace) = Some m' →
step (State f (Sreturn (Some a)) k (Vptr sp Ptrofs.zero) e m)
E0 (Returnstate v (call_cont k) m')
| step_label: ∀ f lbl s k sp e m,
step (State f (Slabel lbl s) k sp e m)
E0 (State f s k sp e m)
| step_goto: ∀ f lbl k sp e m s' k',
find_label lbl f.(fn_body) (call_cont k) = Some(s', k') →
step (State f (Sgoto lbl) k sp e m)
E0 (State f s' k' sp e m)
| step_internal_function: ∀ f vargs k m m' sp e,
Mem.alloc m 0 f.(fn_stackspace) = (m', sp) →
set_locals f.(fn_vars) (set_params vargs f.(fn_params)) = e →
step (Callstate (Internal f) vargs k m)
E0 (State f f.(fn_body) k (Vptr sp Ptrofs.zero) e m')
| step_external_function: ∀ ef vargs k m t vres m',
external_call ef ge vargs m t vres m' →
step (Callstate (External ef) vargs k m)
t (Returnstate vres k m')
| step_return: ∀ v optid f sp e k m,
step (Returnstate v (Kcall optid f sp e k) m)
E0 (State f Sskip k sp (set_optvar optid v e) m).
End RELSEM.
Inductive initial_state (p: program): state → Prop :=
| initial_state_intro: ∀ b f m0,
let ge := Genv.globalenv p in
Genv.init_mem p = Some m0 →
Genv.find_symbol ge p.(prog_main) = Some b →
Genv.find_funct_ptr ge b = Some f →
funsig f = signature_main →
initial_state p (Callstate f nil Kstop m0).
Inductive final_state: state → int → Prop :=
| final_state_intro: ∀ r m,
final_state (Returnstate (Vint r) Kstop m) r.
Definition semantics (p: program) :=
Semantics step (initial_state p) final_state (Genv.globalenv p).
Hint Constructors eval_expr eval_exprlist eval_condexpr: evalexpr.
Lifting of let-bound variables
Fixpoint lift_expr (p: nat) (a: expr) {struct a}: expr :=
match a with
| Evar id ⇒ Evar id
| Eop op bl ⇒ Eop op (lift_exprlist p bl)
| Eload chunk addr bl ⇒ Eload chunk addr (lift_exprlist p bl)
| Econdition a b c ⇒
Econdition (lift_condexpr p a) (lift_expr p b) (lift_expr p c)
| Elet b c ⇒ Elet (lift_expr p b) (lift_expr (S p) c)
| Eletvar n ⇒
if le_gt_dec p n then Eletvar (S n) else Eletvar n
| Ebuiltin ef bl ⇒ Ebuiltin ef (lift_exprlist p bl)
| Eexternal id sg bl ⇒ Eexternal id sg (lift_exprlist p bl)
end
with lift_exprlist (p: nat) (a: exprlist) {struct a}: exprlist :=
match a with
| Enil ⇒ Enil
| Econs b cl ⇒ Econs (lift_expr p b) (lift_exprlist p cl)
end
with lift_condexpr (p: nat) (a: condexpr) {struct a}: condexpr :=
match a with
| CEcond c al ⇒ CEcond c (lift_exprlist p al)
| CEcondition a b c ⇒ CEcondition (lift_condexpr p a) (lift_condexpr p b) (lift_condexpr p c)
| CElet a b ⇒ CElet (lift_expr p a) (lift_condexpr (S p) b)
end.
Definition lift (a: expr): expr := lift_expr O a.
We now relate the evaluation of a lifted expression with that
of the original expression.
Inductive insert_lenv: letenv → nat → val → letenv → Prop :=
| insert_lenv_0:
∀ le v,
insert_lenv le O v (v :: le)
| insert_lenv_S:
∀ le p w le' v,
insert_lenv le p w le' →
insert_lenv (v :: le) (S p) w (v :: le').
Lemma insert_lenv_lookup1:
∀ le p w le',
insert_lenv le p w le' →
∀ n v,
nth_error le n = Some v → (p > n)%nat →
nth_error le' n = Some v.
Proof.
induction 1; intros.
omegaContradiction.
destruct n; simpl; simpl in H0. auto.
apply IHinsert_lenv. auto. omega.
Qed.
Lemma insert_lenv_lookup2:
∀ le p w le',
insert_lenv le p w le' →
∀ n v,
nth_error le n = Some v → (p ≤ n)%nat →
nth_error le' (S n) = Some v.
Proof.
induction 1; intros.
simpl. assumption.
simpl. destruct n. omegaContradiction.
apply IHinsert_lenv. exact H0. omega.
Qed.
Lemma eval_lift_expr:
∀ ge sp e m w le a v,
eval_expr ge sp e m le a v →
∀ p le', insert_lenv le p w le' →
eval_expr ge sp e m le' (lift_expr p a) v.
Proof.
intros until w.
apply (eval_expr_ind3 ge sp e m
(fun le a v ⇒
∀ p le', insert_lenv le p w le' →
eval_expr ge sp e m le' (lift_expr p a) v)
(fun le al vl ⇒
∀ p le', insert_lenv le p w le' →
eval_exprlist ge sp e m le' (lift_exprlist p al) vl)
(fun le a b ⇒
∀ p le', insert_lenv le p w le' →
eval_condexpr ge sp e m le' (lift_condexpr p a) b));
simpl; intros; eauto with evalexpr.
eapply eval_Econdition; eauto. destruct va; eauto.
eapply eval_Elet. eauto. apply H2. apply insert_lenv_S; auto.
case (le_gt_dec p n); intro.
apply eval_Eletvar. eapply insert_lenv_lookup2; eauto.
apply eval_Eletvar. eapply insert_lenv_lookup1; eauto.
eapply eval_CEcondition; eauto. destruct va; eauto.
eapply eval_CElet; eauto. apply H2. constructor; auto.
Qed.
Lemma eval_lift:
∀ ge sp e m le a v w,
eval_expr ge sp e m le a v →
eval_expr ge sp e m (w::le) (lift a) v.
Proof.
intros. unfold lift. eapply eval_lift_expr.
eexact H. apply insert_lenv_0.
Qed.
End WITHEXTCALLSOPS.
Hint Constructors eval_expr eval_exprlist eval_condexpr: evalexpr.
Hint Resolve eval_lift: evalexpr.