Library compcert.backend.CminorSel


The Cminor language after instruction selection.

Require Import Coqlib.
Require Import Maps.
Require Import AST.
Require Import Integers.
Require Import Events.
Require Import Values.
Require Import Memory.
Require Import Cminor.
Require Import Op.
Require Import Globalenvs.
Require Import Smallstep.

Abstract syntax

CminorSel programs share the general structure of Cminor programs: functions, statements and expressions. However, CminorSel uses machine-dependent operations, addressing modes and conditions, as defined in module Op and used in lower-level intermediate languages (RTL and below). Moreover, to express sharing of sub-computations, a "let" binding is provided (constructions Elet and Eletvar), using de Bruijn indices to refer to "let"-bound variables.

Inductive expr : Type :=
  | Evar : ident expr
  | Eop : operation exprlist expr
  | Eload : memory_chunk addressing exprlist expr
  | Econdition : condexpr expr expr expr
  | Elet : expr expr expr
  | Eletvar : nat expr
  | Ebuiltin : external_function exprlist expr
  | Eexternal : ident signature exprlist expr

with exprlist : Type :=
  | Enil: exprlist
  | Econs: expr exprlist exprlist

with condexpr : Type :=
  | CEcond : condition exprlist condexpr
  | CEcondition : condexpr condexpr condexpr condexpr
  | CElet: expr condexpr condexpr.

Infix ":::" := Econs (at level 60, right associativity) : cminorsel_scope.

Conditional expressions condexpr are expressions that are evaluated not for their exact value, but for their true/false Boolean value. Likewise, exit expressions exitexpr are expressions that evaluate to an exit number. They are used to compile the Sswitch statement of Cminor.
Statements are as in Cminor, except that the Sifthenelse construct uses a conditional expression, and the Sstore construct uses a machine-dependent addressing mode.

Operational semantics

Three kinds of evaluation environments are involved:
  • genv: global environments, define symbols and functions;
  • env: local environments, map local variables to values;
  • lenv: let environments, map de Bruijn indices to values.

Definition genv := Genv.t fundef unit.
Definition letenv := list val.

Continuations

Inductive cont: Type :=
  | Kstop: cont
  | Kseq: stmt cont cont
  | Kblock: cont cont
  | Kcall: option ident function val env cont cont.

States

Inductive state `{memory_model_ops: Mem.MemoryModelOps}: Type :=
  | State:
       (f: function)
             (s: stmt)
             (k: cont)
             (sp: val)
             (e: env)
             (m: mem),
      state
  | Callstate:
       (f: fundef)
             (args: list val)
             (k: cont)
             (m: mem),
      state
  | Returnstate:
       (v: val)
             (k: cont)
             (m: mem),
      state.

Section WITHEXTCALLSOPS.
Context `{external_calls_prf: ExternalCalls}.

Section RELSEM.

Variable ge: genv.

The evaluation predicates have the same general shape as those of Cminor. Refer to the description of Cminor semantics for the meaning of the parameters of the predicates.

Section EVAL_EXPR.

Variable sp: val.
Variable e: env.
Variable m: mem.

Inductive eval_expr: letenv expr val Prop :=
  | eval_Evar: le id v,
      PTree.get id e = Some v
      eval_expr le (Evar id) v
  | eval_Eop: le op al vl v,
      eval_exprlist le al vl
      eval_operation ge sp op vl m = Some v
      eval_expr le (Eop op al) v
  | eval_Eload: le chunk addr al vl vaddr v,
      eval_exprlist le al vl
      eval_addressing ge sp addr vl = Some vaddr
      Mem.loadv chunk m vaddr = Some v
      eval_expr le (Eload chunk addr al) v
  | eval_Econdition: le a b c va v,
      eval_condexpr le a va
      eval_expr le (if va then b else c) v
      eval_expr le (Econdition a b c) v
  | eval_Elet: le a b v1 v2,
      eval_expr le a v1
      eval_expr (v1 :: le) b v2
      eval_expr le (Elet a b) v2
  | eval_Eletvar: le n v,
      nth_error le n = Some v
      eval_expr le (Eletvar n) v
  | eval_Ebuiltin: le ef al vl v,
      eval_exprlist le al vl
      external_call ef ge vl m E0 v m
       BUILTIN_ENABLED : builtin_enabled ef,
        eval_expr le (Ebuiltin ef al) v
  | eval_Eexternal: le id sg al b ef vl v,
      Genv.find_symbol ge id = Some b
      Genv.find_funct_ptr ge b = Some (External ef)
      ef_sig ef = sg
      eval_exprlist le al vl
      external_call ef ge vl m E0 v m
      eval_expr le (Eexternal id sg al) v

with eval_exprlist: letenv exprlist list val Prop :=
  | eval_Enil: le,
      eval_exprlist le Enil nil
  | eval_Econs: le a1 al v1 vl,
      eval_expr le a1 v1 eval_exprlist le al vl
      eval_exprlist le (Econs a1 al) (v1 :: vl)

with eval_condexpr: letenv condexpr bool Prop :=
  | eval_CEcond: le cond al vl vb,
      eval_exprlist le al vl
      eval_condition cond vl m = Some vb
      eval_condexpr le (CEcond cond al) vb
  | eval_CEcondition: le a b c va v,
      eval_condexpr le a va
      eval_condexpr le (if va then b else c) v
      eval_condexpr le (CEcondition a b c) v
  | eval_CElet: le a b v1 v2,
      eval_expr le a v1
      eval_condexpr (v1 :: le) b v2
      eval_condexpr le (CElet a b) v2.

Scheme eval_expr_ind3 := Minimality for eval_expr Sort Prop
  with eval_exprlist_ind3 := Minimality for eval_exprlist Sort Prop
  with eval_condexpr_ind3 := Minimality for eval_condexpr Sort Prop.

Inductive eval_exitexpr: letenv exitexpr nat Prop :=
  | eval_XEexit: le x,
      eval_exitexpr le (XEexit x) x
  | eval_XEjumptable: le a tbl n x,
      eval_expr le a (Vint n)
      list_nth_z tbl (Int.unsigned n) = Some x
      eval_exitexpr le (XEjumptable a tbl) x
  | eval_XEcondition: le a b c va x,
      eval_condexpr le a va
      eval_exitexpr le (if va then b else c) x
      eval_exitexpr le (XEcondition a b c) x
  | eval_XElet: le a b v x,
      eval_expr le a v
      eval_exitexpr (v :: le) b x
      eval_exitexpr le (XElet a b) x.

Inductive eval_expr_or_symbol: letenv expr + ident val Prop :=
  | eval_eos_e: le e v,
      eval_expr le e v
      eval_expr_or_symbol le (inl _ e) v
  | eval_eos_s: le id b,
      Genv.find_symbol ge id = Some b
      eval_expr_or_symbol le (inr _ id) (Vptr b Ptrofs.zero).

Inductive eval_builtin_arg: builtin_arg expr val Prop :=
  | eval_BA: a v,
      eval_expr nil a v
      eval_builtin_arg (BA a) v
  | eval_BA_int: n,
      eval_builtin_arg (BA_int n) (Vint n)
  | eval_BA_long: n,
      eval_builtin_arg (BA_long n) (Vlong n)
  | eval_BA_float: n,
      eval_builtin_arg (BA_float n) (Vfloat n)
  | eval_BA_single: n,
      eval_builtin_arg (BA_single n) (Vsingle n)
  | eval_BA_loadstack: chunk ofs v,
      Mem.loadv chunk m (Val.offset_ptr sp ofs) = Some v
      eval_builtin_arg (BA_loadstack chunk ofs) v
  | eval_BA_addrstack: ofs,
      eval_builtin_arg (BA_addrstack ofs) (Val.offset_ptr sp ofs)
  | eval_BA_loadglobal: chunk id ofs v,
      Mem.loadv chunk m (Genv.symbol_address ge id ofs) = Some v
      eval_builtin_arg (BA_loadglobal chunk id ofs) v
  | eval_BA_addrglobal: id ofs,
      eval_builtin_arg (BA_addrglobal id ofs) (Genv.symbol_address ge id ofs)
  | eval_BA_splitlong: a1 a2 v1 v2,
      eval_expr nil a1 v1 eval_expr nil a2 v2
      eval_builtin_arg (BA_splitlong (BA a1) (BA a2)) (Val.longofwords v1 v2).

End EVAL_EXPR.

Update local environment with the result of a builtin.

Definition set_builtin_res (res: builtin_res ident) (v: val) (e: env) : env :=
  match res with
  | BR idPTree.set id v e
  | _e
  end.

Pop continuation until a call or stop

Fixpoint call_cont (k: cont) : cont :=
  match k with
  | Kseq s kcall_cont k
  | Kblock kcall_cont k
  | _k
  end.

Definition is_call_cont (k: cont) : Prop :=
  match k with
  | KstopTrue
  | Kcall _ _ _ _ _True
  | _False
  end.

Find the statement and manufacture the continuation corresponding to a label

Fixpoint find_label (lbl: label) (s: stmt) (k: cont)
                    {struct s}: option (stmt × cont) :=
  match s with
  | Sseq s1 s2
      match find_label lbl s1 (Kseq s2 k) with
      | Some skSome sk
      | Nonefind_label lbl s2 k
      end
  | Sifthenelse c s1 s2
      match find_label lbl s1 k with
      | Some skSome sk
      | Nonefind_label lbl s2 k
      end
  | Sloop s1
      find_label lbl s1 (Kseq (Sloop s1) k)
  | Sblock s1
      find_label lbl s1 (Kblock k)
  | Slabel lbl' s'
      if ident_eq lbl lbl' then Some(s', k) else find_label lbl s' k
  | _None
  end.

One step of execution

Inductive step: state trace state Prop :=

  | step_skip_seq: f s k sp e m,
      step (State f Sskip (Kseq s k) sp e m)
        E0 (State f s k sp e m)
  | step_skip_block: f k sp e m,
      step (State f Sskip (Kblock k) sp e m)
        E0 (State f Sskip k sp e m)
  | step_skip_call: f k sp e m m',
      is_call_cont k
      Mem.free m sp 0 f.(fn_stackspace) = Some m'
      step (State f Sskip k (Vptr sp Ptrofs.zero) e m)
        E0 (Returnstate Vundef k m')

  | step_assign: f id a k sp e m v,
      eval_expr sp e m nil a v
      step (State f (Sassign id a) k sp e m)
        E0 (State f Sskip k sp (PTree.set id v e) m)

  | step_store: f chunk addr al b k sp e m vl v vaddr m',
      eval_exprlist sp e m nil al vl
      eval_expr sp e m nil b v
      eval_addressing ge sp addr vl = Some vaddr
      Mem.storev chunk m vaddr v = Some m'
      step (State f (Sstore chunk addr al b) k sp e m)
        E0 (State f Sskip k sp e m')

  | step_call: f optid sig a bl k sp e m vf vargs fd,
      eval_expr_or_symbol sp e m nil a vf
      eval_exprlist sp e m nil bl vargs
      Genv.find_funct ge vf = Some fd
      funsig fd = sig
      step (State f (Scall optid sig a bl) k sp e m)
        E0 (Callstate fd vargs (Kcall optid f sp e k) m)

  | step_tailcall: f sig a bl k sp e m vf vargs fd m',
      eval_expr_or_symbol (Vptr sp Ptrofs.zero) e m nil a vf
      eval_exprlist (Vptr sp Ptrofs.zero) e m nil bl vargs
      Genv.find_funct ge vf = Some fd
      funsig fd = sig
      Mem.free m sp 0 f.(fn_stackspace) = Some m'
      step (State f (Stailcall sig a bl) k (Vptr sp Ptrofs.zero) e m)
        E0 (Callstate fd vargs (call_cont k) m')

  | step_builtin: f res ef al k sp e m vl t v m',
      list_forall2 (eval_builtin_arg sp e m) al vl
      external_call ef ge vl m t v m'
       BUILTIN_ENABLED : builtin_enabled ef,
      step (State f (Sbuiltin res ef al) k sp e m)
         t (State f Sskip k sp (set_builtin_res res v e) m')

  | step_seq: f s1 s2 k sp e m,
      step (State f (Sseq s1 s2) k sp e m)
        E0 (State f s1 (Kseq s2 k) sp e m)

  | step_ifthenelse: f c s1 s2 k sp e m b,
      eval_condexpr sp e m nil c b
      step (State f (Sifthenelse c s1 s2) k sp e m)
        E0 (State f (if b then s1 else s2) k sp e m)

  | step_loop: f s k sp e m,
      step (State f (Sloop s) k sp e m)
        E0 (State f s (Kseq (Sloop s) k) sp e m)

  | step_block: f s k sp e m,
      step (State f (Sblock s) k sp e m)
        E0 (State f s (Kblock k) sp e m)

  | step_exit_seq: f n s k sp e m,
      step (State f (Sexit n) (Kseq s k) sp e m)
        E0 (State f (Sexit n) k sp e m)
  | step_exit_block_0: f k sp e m,
      step (State f (Sexit O) (Kblock k) sp e m)
        E0 (State f Sskip k sp e m)
  | step_exit_block_S: f n k sp e m,
      step (State f (Sexit (S n)) (Kblock k) sp e m)
        E0 (State f (Sexit n) k sp e m)

  | step_switch: f a k sp e m n,
      eval_exitexpr sp e m nil a n
      step (State f (Sswitch a) k sp e m)
        E0 (State f (Sexit n) k sp e m)

  | step_return_0: f k sp e m m',
      Mem.free m sp 0 f.(fn_stackspace) = Some m'
      step (State f (Sreturn None) k (Vptr sp Ptrofs.zero) e m)
        E0 (Returnstate Vundef (call_cont k) m')
  | step_return_1: f a k sp e m v m',
      eval_expr (Vptr sp Ptrofs.zero) e m nil a v
      Mem.free m sp 0 f.(fn_stackspace) = Some m'
      step (State f (Sreturn (Some a)) k (Vptr sp Ptrofs.zero) e m)
        E0 (Returnstate v (call_cont k) m')

  | step_label: f lbl s k sp e m,
      step (State f (Slabel lbl s) k sp e m)
        E0 (State f s k sp e m)

  | step_goto: f lbl k sp e m s' k',
      find_label lbl f.(fn_body) (call_cont k) = Some(s', k')
      step (State f (Sgoto lbl) k sp e m)
        E0 (State f s' k' sp e m)

  | step_internal_function: f vargs k m m' sp e,
      Mem.alloc m 0 f.(fn_stackspace) = (m', sp)
      set_locals f.(fn_vars) (set_params vargs f.(fn_params)) = e
      step (Callstate (Internal f) vargs k m)
        E0 (State f f.(fn_body) k (Vptr sp Ptrofs.zero) e m')
  | step_external_function: ef vargs k m t vres m',
      external_call ef ge vargs m t vres m'
      step (Callstate (External ef) vargs k m)
         t (Returnstate vres k m')

  | step_return: v optid f sp e k m,
      step (Returnstate v (Kcall optid f sp e k) m)
        E0 (State f Sskip k sp (set_optvar optid v e) m).

End RELSEM.

Inductive initial_state (p: program): state Prop :=
  | initial_state_intro: b f m0,
      let ge := Genv.globalenv p in
      Genv.init_mem p = Some m0
      Genv.find_symbol ge p.(prog_main) = Some b
      Genv.find_funct_ptr ge b = Some f
      funsig f = signature_main
      initial_state p (Callstate f nil Kstop m0).

Inductive final_state: state int Prop :=
  | final_state_intro: r m,
      final_state (Returnstate (Vint r) Kstop m) r.

Definition semantics (p: program) :=
  Semantics step (initial_state p) final_state (Genv.globalenv p).

Hint Constructors eval_expr eval_exprlist eval_condexpr: evalexpr.

Lifting of let-bound variables

Instruction selection sometimes generate Elet constructs to share the evaluation of a subexpression. Owing to the use of de Bruijn indices for let-bound variables, we need to shift de Bruijn indices when an expression b is put in a Elet a b context.

Fixpoint lift_expr (p: nat) (a: expr) {struct a}: expr :=
  match a with
  | Evar idEvar id
  | Eop op blEop op (lift_exprlist p bl)
  | Eload chunk addr blEload chunk addr (lift_exprlist p bl)
  | Econdition a b c
      Econdition (lift_condexpr p a) (lift_expr p b) (lift_expr p c)
  | Elet b cElet (lift_expr p b) (lift_expr (S p) c)
  | Eletvar n
      if le_gt_dec p n then Eletvar (S n) else Eletvar n
  | Ebuiltin ef blEbuiltin ef (lift_exprlist p bl)
  | Eexternal id sg blEexternal id sg (lift_exprlist p bl)
  end

with lift_exprlist (p: nat) (a: exprlist) {struct a}: exprlist :=
  match a with
  | EnilEnil
  | Econs b clEcons (lift_expr p b) (lift_exprlist p cl)
  end

with lift_condexpr (p: nat) (a: condexpr) {struct a}: condexpr :=
  match a with
  | CEcond c alCEcond c (lift_exprlist p al)
  | CEcondition a b cCEcondition (lift_condexpr p a) (lift_condexpr p b) (lift_condexpr p c)
  | CElet a bCElet (lift_expr p a) (lift_condexpr (S p) b)
  end.

Definition lift (a: expr): expr := lift_expr O a.

We now relate the evaluation of a lifted expression with that of the original expression.

Inductive insert_lenv: letenv nat val letenv Prop :=
  | insert_lenv_0:
       le v,
      insert_lenv le O v (v :: le)
  | insert_lenv_S:
       le p w le' v,
      insert_lenv le p w le'
      insert_lenv (v :: le) (S p) w (v :: le').

Lemma insert_lenv_lookup1:
   le p w le',
  insert_lenv le p w le'
   n v,
  nth_error le n = Some v (p > n)%nat
  nth_error le' n = Some v.
Proof.
  induction 1; intros.
  omegaContradiction.
  destruct n; simpl; simpl in H0. auto.
  apply IHinsert_lenv. auto. omega.
Qed.

Lemma insert_lenv_lookup2:
   le p w le',
  insert_lenv le p w le'
   n v,
  nth_error le n = Some v (p n)%nat
  nth_error le' (S n) = Some v.
Proof.
  induction 1; intros.
  simpl. assumption.
  simpl. destruct n. omegaContradiction.
  apply IHinsert_lenv. exact H0. omega.
Qed.

Lemma eval_lift_expr:
   ge sp e m w le a v,
  eval_expr ge sp e m le a v
   p le', insert_lenv le p w le'
  eval_expr ge sp e m le' (lift_expr p a) v.
Proof.
  intros until w.
  apply (eval_expr_ind3 ge sp e m
    (fun le a v
       p le', insert_lenv le p w le'
      eval_expr ge sp e m le' (lift_expr p a) v)
    (fun le al vl
       p le', insert_lenv le p w le'
      eval_exprlist ge sp e m le' (lift_exprlist p al) vl)
    (fun le a b
       p le', insert_lenv le p w le'
      eval_condexpr ge sp e m le' (lift_condexpr p a) b));
  simpl; intros; eauto with evalexpr.

  eapply eval_Econdition; eauto. destruct va; eauto.

  eapply eval_Elet. eauto. apply H2. apply insert_lenv_S; auto.

  case (le_gt_dec p n); intro.
  apply eval_Eletvar. eapply insert_lenv_lookup2; eauto.
  apply eval_Eletvar. eapply insert_lenv_lookup1; eauto.

  eapply eval_CEcondition; eauto. destruct va; eauto.
  eapply eval_CElet; eauto. apply H2. constructor; auto.
Qed.

Lemma eval_lift:
   ge sp e m le a v w,
  eval_expr ge sp e m le a v
  eval_expr ge sp e m (w::le) (lift a) v.
Proof.
  intros. unfold lift. eapply eval_lift_expr.
  eexact H. apply insert_lenv_0.
Qed.

End WITHEXTCALLSOPS.

Hint Constructors eval_expr eval_exprlist eval_condexpr: evalexpr.

Hint Resolve eval_lift: evalexpr.