Library compcert.backend.SplitLongproof
Correctness of instruction selection for integer division
Require Import String.
Require Import Coqlib Maps.
Require Import AST Errors Integers Floats.
Require Import Values Memory Globalenvs Events Cminor Op CminorSel.
Require Import SelectOp SelectOpproof SplitLong.
Local Open Scope cminorsel_scope.
Local Open Scope string_scope.
Definition external_implements
`{external_calls_ops: ExternalCallsOps}
(name: string) (sg: signature) (vargs: list val) (vres: val) : Prop :=
∀ F V (ge: Genv.t F V) m,
external_call (EF_runtime name sg) ge vargs m E0 vres m.
Definition builtin_implements
`{external_calls_ops: ExternalCallsOps}
(name: string) (sg: signature) (vargs: list val) (vres: val) : Prop :=
∀ F V (ge: Genv.t F V) m,
external_call (EF_builtin name sg) ge vargs m E0 vres m.
Class I64HelpersCorrect mem
`{external_calls_ops: ExternalCallsOps mem} : Prop :=
{
i64_helpers_correct :
(∀ x z, Val.longoffloat x = Some z → external_implements "__i64_dtos" sig_f_l (x::nil) z)
∧ (∀ x z, Val.longuoffloat x = Some z → external_implements "__i64_dtou" sig_f_l (x::nil) z)
∧ (∀ x z, Val.floatoflong x = Some z → external_implements "__i64_stod" sig_l_f (x::nil) z)
∧ (∀ x z, Val.floatoflongu x = Some z → external_implements "__i64_utod" sig_l_f (x::nil) z)
∧ (∀ x z, Val.singleoflong x = Some z → external_implements "__i64_stof" sig_l_s (x::nil) z)
∧ (∀ x z, Val.singleoflongu x = Some z → external_implements "__i64_utof" sig_l_s (x::nil) z)
∧ (∀ x, builtin_implements "__builtin_negl" sig_l_l (x::nil) (Val.negl x))
∧ (∀ x y, builtin_implements "__builtin_addl" sig_ll_l (x::y::nil) (Val.addl x y))
∧ (∀ x y, builtin_implements "__builtin_subl" sig_ll_l (x::y::nil) (Val.subl x y))
∧ (∀ x y, builtin_implements "__builtin_mull" sig_ii_l (x::y::nil) (Val.mull' x y))
∧ (∀ x y z, Val.divls x y = Some z → external_implements "__i64_sdiv" sig_ll_l (x::y::nil) z)
∧ (∀ x y z, Val.divlu x y = Some z → external_implements "__i64_udiv" sig_ll_l (x::y::nil) z)
∧ (∀ x y z, Val.modls x y = Some z → external_implements "__i64_smod" sig_ll_l (x::y::nil) z)
∧ (∀ x y z, Val.modlu x y = Some z → external_implements "__i64_umod" sig_ll_l (x::y::nil) z)
∧ (∀ x y, external_implements "__i64_shl" sig_li_l (x::y::nil) (Val.shll x y))
∧ (∀ x y, external_implements "__i64_shr" sig_li_l (x::y::nil) (Val.shrlu x y))
∧ (∀ x y, external_implements "__i64_sar" sig_li_l (x::y::nil) (Val.shrl x y))
∧ (∀ x y, external_implements "__i64_umulh" sig_ll_l (x::y::nil) (Val.mullhu x y))
∧ (∀ x y, external_implements "__i64_smulh" sig_ll_l (x::y::nil) (Val.mullhs x y))
}.
Definition helper_declared {F V: Type} (p: AST.program (AST.fundef F) V) (id: ident) (name: string) (sg: signature) : Prop :=
(prog_defmap p)!id = Some (Gfun (External (EF_runtime name sg))).
Definition helper_functions_declared {F V: Type} (p: AST.program (AST.fundef F) V) (hf: helper_functions) : Prop :=
helper_declared p i64_dtos "__i64_dtos" sig_f_l
∧ helper_declared p i64_dtou "__i64_dtou" sig_f_l
∧ helper_declared p i64_stod "__i64_stod" sig_l_f
∧ helper_declared p i64_utod "__i64_utod" sig_l_f
∧ helper_declared p i64_stof "__i64_stof" sig_l_s
∧ helper_declared p i64_utof "__i64_utof" sig_l_s
∧ helper_declared p i64_sdiv "__i64_sdiv" sig_ll_l
∧ helper_declared p i64_udiv "__i64_udiv" sig_ll_l
∧ helper_declared p i64_smod "__i64_smod" sig_ll_l
∧ helper_declared p i64_umod "__i64_umod" sig_ll_l
∧ helper_declared p i64_shl "__i64_shl" sig_li_l
∧ helper_declared p i64_shr "__i64_shr" sig_li_l
∧ helper_declared p i64_sar "__i64_sar" sig_li_l
∧ helper_declared p i64_umulh "__i64_umulh" sig_ll_l
∧ helper_declared p i64_smulh "__i64_smulh" sig_ll_l.
Section CMCONSTR.
Context mem `{external_calls_prf: ExternalCalls mem}.
Context `{i64_helpers_correct_prf: !I64HelpersCorrect mem}.
Variable prog: program.
Variable hf: helper_functions.
Hypothesis HELPERS: helper_functions_declared prog hf.
Let ge := Genv.globalenv prog.
Variable sp: val.
Variable e: env.
Variable m: mem.
Ltac UseHelper := decompose [Logic.and] i64_helpers_correct; eauto.
Ltac DeclHelper := red in HELPERS; decompose [Logic.and] HELPERS; eauto.
Lemma eval_helper:
∀ le id name sg args vargs vres,
eval_exprlist ge sp e m le args vargs →
helper_declared prog id name sg →
external_implements name sg vargs vres →
eval_expr ge sp e m le (Eexternal id sg args) vres.
Proof.
intros.
red in H0. apply Genv.find_def_symbol in H0. destruct H0 as (b & P & Q).
rewrite <- Genv.find_funct_ptr_iff in Q.
econstructor; eauto.
Qed.
Corollary eval_helper_1:
∀ le id name sg arg1 varg1 vres,
eval_expr ge sp e m le arg1 varg1 →
helper_declared prog id name sg →
external_implements name sg (varg1::nil) vres →
eval_expr ge sp e m le (Eexternal id sg (arg1 ::: Enil)) vres.
Proof.
intros. eapply eval_helper; eauto. constructor; auto. constructor.
Qed.
Corollary eval_helper_2:
∀ le id name sg arg1 arg2 varg1 varg2 vres,
eval_expr ge sp e m le arg1 varg1 →
eval_expr ge sp e m le arg2 varg2 →
helper_declared prog id name sg →
external_implements name sg (varg1::varg2::nil) vres →
eval_expr ge sp e m le (Eexternal id sg (arg1 ::: arg2 ::: Enil)) vres.
Proof.
intros. eapply eval_helper; eauto. constructor; auto. constructor; auto. constructor.
Qed.
Remark eval_builtin_1:
∀ le id sg arg1 varg1 vres,
eval_expr ge sp e m le arg1 varg1 →
builtin_implements id sg (varg1::nil) vres →
eval_expr ge sp e m le (Ebuiltin (EF_builtin id sg) (arg1 ::: Enil)) vres.
Proof.
intros. econstructor. econstructor. eauto. constructor. apply H0.
auto.
Qed.
Remark eval_builtin_2:
∀ le id sg arg1 arg2 varg1 varg2 vres,
eval_expr ge sp e m le arg1 varg1 →
eval_expr ge sp e m le arg2 varg2 →
builtin_implements id sg (varg1::varg2::nil) vres →
eval_expr ge sp e m le (Ebuiltin (EF_builtin id sg) (arg1 ::: arg2 ::: Enil)) vres.
Proof.
intros. econstructor. constructor; eauto. constructor; eauto. constructor. apply H1.
auto.
Qed.
Definition unary_constructor_sound (cstr: expr → expr) (sem: val → val) : Prop :=
∀ le a x,
eval_expr ge sp e m le a x →
∃ v, eval_expr ge sp e m le (cstr a) v ∧ Val.lessdef (sem x) v.
Definition binary_constructor_sound (cstr: expr → expr → expr) (sem: val → val → val) : Prop :=
∀ le a x b y,
eval_expr ge sp e m le a x →
eval_expr ge sp e m le b y →
∃ v, eval_expr ge sp e m le (cstr a b) v ∧ Val.lessdef (sem x y) v.
Ltac EvalOp :=
eauto;
match goal with
| [ |- eval_exprlist _ _ _ _ _ Enil _ ] ⇒ constructor
| [ |- eval_exprlist _ _ _ _ _ (_:::_) _ ] ⇒ econstructor; EvalOp
| [ |- eval_expr _ _ _ _ _ (Eletvar _) _ ] ⇒ constructor; simpl; eauto
| [ |- eval_expr _ _ _ _ _ (Elet _ _) _ ] ⇒ econstructor; EvalOp
| [ |- eval_expr _ _ _ _ _ (lift _) _ ] ⇒ apply eval_lift; EvalOp
| [ |- eval_expr _ _ _ _ _ _ _ ] ⇒ eapply eval_Eop; [EvalOp | simpl; eauto]
| _ ⇒ idtac
end.
Lemma eval_splitlong:
∀ le a f v sem,
(∀ le a b x y,
eval_expr ge sp e m le a x →
eval_expr ge sp e m le b y →
∃ v, eval_expr ge sp e m le (f a b) v ∧
(∀ p q, x = Vint p → y = Vint q → v = sem (Vlong (Int64.ofwords p q)))) →
match v with Vlong _ ⇒ True | _ ⇒ sem v = Vundef end →
eval_expr ge sp e m le a v →
∃ v', eval_expr ge sp e m le (splitlong a f) v' ∧ Val.lessdef (sem v) v'.
Proof.
intros until sem; intros EXEC UNDEF.
unfold splitlong. case (splitlong_match a); intros.
- InvEval; subst.
exploit EXEC. eexact H2. eexact H3. intros [v' [A B]].
∃ v'; split. auto.
destruct v1; simpl in *; try (rewrite UNDEF; auto).
destruct v0; simpl in *; try (rewrite UNDEF; auto).
erewrite B; eauto.
- exploit (EXEC (v :: le) (Eop Ohighlong (Eletvar 0 ::: Enil)) (Eop Olowlong (Eletvar 0 ::: Enil))).
EvalOp. EvalOp.
intros [v' [A B]].
∃ v'; split. econstructor; eauto.
destruct v; try (rewrite UNDEF; auto). erewrite B; simpl; eauto. rewrite Int64.ofwords_recompose. auto.
Qed.
Lemma eval_splitlong_strict:
∀ le a f va v,
eval_expr ge sp e m le a (Vlong va) →
(∀ le a1 a2,
eval_expr ge sp e m le a1 (Vint (Int64.hiword va)) →
eval_expr ge sp e m le a2 (Vint (Int64.loword va)) →
eval_expr ge sp e m le (f a1 a2) v) →
eval_expr ge sp e m le (splitlong a f) v.
Proof.
intros until v.
unfold splitlong. case (splitlong_match a); intros.
- InvEval. destruct v1; simpl in H; try discriminate. destruct v0; inv H.
apply H0. rewrite Int64.hi_ofwords; auto. rewrite Int64.lo_ofwords; auto.
- EvalOp. apply H0; EvalOp.
Qed.
Lemma eval_splitlong2:
∀ le a b f va vb sem,
(∀ le a1 a2 b1 b2 x1 x2 y1 y2,
eval_expr ge sp e m le a1 x1 →
eval_expr ge sp e m le a2 x2 →
eval_expr ge sp e m le b1 y1 →
eval_expr ge sp e m le b2 y2 →
∃ v,
eval_expr ge sp e m le (f a1 a2 b1 b2) v ∧
(∀ p1 p2 q1 q2,
x1 = Vint p1 → x2 = Vint p2 → y1 = Vint q1 → y2 = Vint q2 →
v = sem (Vlong (Int64.ofwords p1 p2)) (Vlong (Int64.ofwords q1 q2)))) →
match va, vb with Vlong _, Vlong _ ⇒ True | _, _ ⇒ sem va vb = Vundef end →
eval_expr ge sp e m le a va →
eval_expr ge sp e m le b vb →
∃ v, eval_expr ge sp e m le (splitlong2 a b f) v ∧ Val.lessdef (sem va vb) v.
Proof.
intros until sem; intros EXEC UNDEF.
unfold splitlong2. case (splitlong2_match a b); intros.
- InvEval; subst.
exploit (EXEC le h1 l1 h2 l2); eauto. intros [v [A B]].
∃ v; split; auto.
destruct v1; simpl in *; try (rewrite UNDEF; auto).
destruct v0; try (rewrite UNDEF; auto).
destruct v2; simpl in *; try (rewrite UNDEF; auto).
destruct v3; try (rewrite UNDEF; auto).
erewrite B; eauto.
- InvEval; subst.
exploit (EXEC (vb :: le) (lift h1) (lift l1)
(Eop Ohighlong (Eletvar 0 ::: Enil)) (Eop Olowlong (Eletvar 0 ::: Enil))).
EvalOp. EvalOp. EvalOp. EvalOp.
intros [v [A B]].
∃ v; split.
econstructor; eauto.
destruct v1; simpl in *; try (rewrite UNDEF; auto).
destruct v0; try (rewrite UNDEF; auto).
destruct vb; try (rewrite UNDEF; auto).
erewrite B; simpl; eauto. rewrite Int64.ofwords_recompose. auto.
- InvEval; subst.
exploit (EXEC (va :: le)
(Eop Ohighlong (Eletvar 0 ::: Enil)) (Eop Olowlong (Eletvar 0 ::: Enil))
(lift h2) (lift l2)).
EvalOp. EvalOp. EvalOp. EvalOp.
intros [v [A B]].
∃ v; split.
econstructor; eauto.
destruct va; try (rewrite UNDEF; auto).
destruct v1; simpl in *; try (rewrite UNDEF; auto).
destruct v0; try (rewrite UNDEF; auto).
erewrite B; simpl; eauto. rewrite Int64.ofwords_recompose. auto.
- exploit (EXEC (vb :: va :: le)
(Eop Ohighlong (Eletvar 1 ::: Enil)) (Eop Olowlong (Eletvar 1 ::: Enil))
(Eop Ohighlong (Eletvar 0 ::: Enil)) (Eop Olowlong (Eletvar 0 ::: Enil))).
EvalOp. EvalOp. EvalOp. EvalOp.
intros [v [A B]].
∃ v; split. EvalOp.
destruct va; try (rewrite UNDEF; auto); destruct vb; try (rewrite UNDEF; auto).
erewrite B; simpl; eauto. rewrite ! Int64.ofwords_recompose; auto.
Qed.
Lemma eval_splitlong2_strict:
∀ le a b f va vb v,
eval_expr ge sp e m le a (Vlong va) →
eval_expr ge sp e m le b (Vlong vb) →
(∀ le a1 a2 b1 b2,
eval_expr ge sp e m le a1 (Vint (Int64.hiword va)) →
eval_expr ge sp e m le a2 (Vint (Int64.loword va)) →
eval_expr ge sp e m le b1 (Vint (Int64.hiword vb)) →
eval_expr ge sp e m le b2 (Vint (Int64.loword vb)) →
eval_expr ge sp e m le (f a1 a2 b1 b2) v) →
eval_expr ge sp e m le (splitlong2 a b f) v.
Proof.
assert (INV: ∀ v1 v2 n,
Val.longofwords v1 v2 = Vlong n → v1 = Vint(Int64.hiword n) ∧ v2 = Vint(Int64.loword n)).
{
intros. destruct v1; simpl in H; try discriminate. destruct v2; inv H.
rewrite Int64.hi_ofwords; rewrite Int64.lo_ofwords; auto.
}
intros until v.
unfold splitlong2. case (splitlong2_match a b); intros.
- InvEval. exploit INV. eexact H. intros [EQ1 EQ2]. exploit INV. eexact H0. intros [EQ3 EQ4].
subst. auto.
- InvEval. exploit INV; eauto. intros [EQ1 EQ2]. subst.
econstructor. eauto. apply H1; EvalOp.
- InvEval. exploit INV; eauto. intros [EQ1 EQ2]. subst.
econstructor. eauto. apply H1; EvalOp.
- EvalOp. apply H1; EvalOp.
Qed.
Lemma is_longconst_sound:
∀ le a x n,
is_longconst a = Some n →
eval_expr ge sp e m le a x →
x = Vlong n.
Proof.
unfold is_longconst; intros until n; intros LC.
destruct (is_longconst_match a); intros.
inv LC. InvEval. simpl in H5. inv H5. auto.
discriminate.
Qed.
Lemma is_longconst_zero_sound:
∀ le a x,
is_longconst_zero a = true →
eval_expr ge sp e m le a x →
x = Vlong Int64.zero.
Proof.
unfold is_longconst_zero; intros.
destruct (is_longconst a) as [n|] eqn:E; try discriminate.
revert H. predSpec Int64.eq Int64.eq_spec n Int64.zero.
intros. subst. eapply is_longconst_sound; eauto.
congruence.
Qed.
Lemma eval_lowlong: unary_constructor_sound lowlong Val.loword.
Proof.
unfold lowlong; red. intros until x. destruct (lowlong_match a); intros.
InvEval; subst. ∃ v0; split; auto.
destruct v1; simpl; auto. destruct v0; simpl; auto.
rewrite Int64.lo_ofwords. auto.
∃ (Val.loword x); split; auto. EvalOp.
Qed.
Lemma eval_highlong: unary_constructor_sound highlong Val.hiword.
Proof.
unfold highlong; red. intros until x. destruct (highlong_match a); intros.
InvEval; subst. ∃ v1; split; auto.
destruct v1; simpl; auto. destruct v0; simpl; auto.
rewrite Int64.hi_ofwords. auto.
∃ (Val.hiword x); split; auto. EvalOp.
Qed.
Lemma eval_longconst:
∀ le n, eval_expr ge sp e m le (longconst n) (Vlong n).
Proof.
intros. EvalOp. rewrite Int64.ofwords_recompose; auto.
Qed.
Theorem eval_intoflong: unary_constructor_sound intoflong Val.loword.
Proof eval_lowlong.
Theorem eval_longofintu: unary_constructor_sound longofintu Val.longofintu.
Proof.
red; intros. unfold longofintu. econstructor; split. EvalOp.
unfold Val.longofintu. destruct x; auto.
replace (Int64.repr (Int.unsigned i)) with (Int64.ofwords Int.zero i); auto.
apply Int64.same_bits_eq; intros.
rewrite Int64.testbit_repr by auto.
rewrite Int64.bits_ofwords by auto.
fold (Int.testbit i i0).
destruct (zlt i0 Int.zwordsize).
auto.
rewrite Int.bits_zero. rewrite Int.bits_above by omega. auto.
Qed.
Theorem eval_longofint: unary_constructor_sound longofint Val.longofint.
Proof.
red; intros. unfold longofint. destruct (longofint_match a).
- InvEval. econstructor; split. apply eval_longconst. auto.
- exploit (eval_shrimm ge sp e m (Int.repr 31) (x :: le) (Eletvar 0)). EvalOp.
intros [v1 [A B]].
econstructor; split. EvalOp.
destruct x; simpl; auto.
simpl in B. inv B. simpl.
replace (Int64.repr (Int.signed i))
with (Int64.ofwords (Int.shr i (Int.repr 31)) i); auto.
apply Int64.same_bits_eq; intros.
rewrite Int64.testbit_repr by auto.
rewrite Int64.bits_ofwords by auto.
rewrite Int.bits_signed by omega.
destruct (zlt i0 Int.zwordsize).
auto.
assert (Int64.zwordsize = 2 × Int.zwordsize) by reflexivity.
rewrite Int.bits_shr by omega.
change (Int.unsigned (Int.repr 31)) with (Int.zwordsize - 1).
f_equal. destruct (zlt (i0 - Int.zwordsize + (Int.zwordsize - 1)) Int.zwordsize); omega.
Qed.
Theorem eval_negl: unary_constructor_sound negl Val.negl.
Proof.
unfold negl; red; intros. destruct (is_longconst a) eqn:E.
econstructor; split. apply eval_longconst.
exploit is_longconst_sound; eauto. intros EQ; subst x. simpl. auto.
econstructor; split. eapply eval_builtin_1; eauto. UseHelper. auto.
Qed.
Theorem eval_notl: unary_constructor_sound notl Val.notl.
Proof.
red; intros. unfold notl. apply eval_splitlong; auto.
intros.
exploit eval_notint. eexact H0. intros [va [A B]].
exploit eval_notint. eexact H1. intros [vb [C D]].
∃ (Val.longofwords va vb); split. EvalOp.
intros; subst. simpl in ×. inv B; inv D.
simpl. unfold Int.not. rewrite <- Int64.decompose_xor. auto.
destruct x; auto.
Qed.
Theorem eval_longoffloat:
∀ le a x y,
eval_expr ge sp e m le a x →
Val.longoffloat x = Some y →
∃ v, eval_expr ge sp e m le (longoffloat a) v ∧ Val.lessdef y v.
Proof.
intros; unfold longoffloat. econstructor; split.
eapply eval_helper_1; eauto. DeclHelper. UseHelper. auto.
Qed.
Theorem eval_longuoffloat:
∀ le a x y,
eval_expr ge sp e m le a x →
Val.longuoffloat x = Some y →
∃ v, eval_expr ge sp e m le (longuoffloat a) v ∧ Val.lessdef y v.
Proof.
intros; unfold longuoffloat. econstructor; split.
eapply eval_helper_1; eauto. DeclHelper. UseHelper. auto.
Qed.
Theorem eval_floatoflong:
∀ le a x y,
eval_expr ge sp e m le a x →
Val.floatoflong x = Some y →
∃ v, eval_expr ge sp e m le (floatoflong a) v ∧ Val.lessdef y v.
Proof.
intros; unfold floatoflong. econstructor; split.
eapply eval_helper_1; eauto. DeclHelper. UseHelper. auto.
Qed.
Theorem eval_floatoflongu:
∀ le a x y,
eval_expr ge sp e m le a x →
Val.floatoflongu x = Some y →
∃ v, eval_expr ge sp e m le (floatoflongu a) v ∧ Val.lessdef y v.
Proof.
intros; unfold floatoflongu. econstructor; split.
eapply eval_helper_1; eauto. DeclHelper. UseHelper. auto.
Qed.
Theorem eval_longofsingle:
∀ le a x y,
eval_expr ge sp e m le a x →
Val.longofsingle x = Some y →
∃ v, eval_expr ge sp e m le (longofsingle a) v ∧ Val.lessdef y v.
Proof.
intros; unfold longofsingle.
destruct x; simpl in H0; inv H0. destruct (Float32.to_long f) as [n|] eqn:EQ; simpl in H2; inv H2.
exploit eval_floatofsingle; eauto. intros (v & A & B). simpl in B. inv B.
apply Float32.to_long_double in EQ.
eapply eval_longoffloat; eauto. simpl.
change (Float.of_single f) with (Float32.to_double f); rewrite EQ; auto.
Qed.
Theorem eval_longuofsingle:
∀ le a x y,
eval_expr ge sp e m le a x →
Val.longuofsingle x = Some y →
∃ v, eval_expr ge sp e m le (longuofsingle a) v ∧ Val.lessdef y v.
Proof.
intros; unfold longuofsingle.
destruct x; simpl in H0; inv H0. destruct (Float32.to_longu f) as [n|] eqn:EQ; simpl in H2; inv H2.
exploit eval_floatofsingle; eauto. intros (v & A & B). simpl in B. inv B.
apply Float32.to_longu_double in EQ.
eapply eval_longuoffloat; eauto. simpl.
change (Float.of_single f) with (Float32.to_double f); rewrite EQ; auto.
Qed.
Theorem eval_singleoflong:
∀ le a x y,
eval_expr ge sp e m le a x →
Val.singleoflong x = Some y →
∃ v, eval_expr ge sp e m le (singleoflong a) v ∧ Val.lessdef y v.
Proof.
intros; unfold singleoflong. econstructor; split.
eapply eval_helper_1; eauto. DeclHelper. UseHelper. auto.
Qed.
Theorem eval_singleoflongu:
∀ le a x y,
eval_expr ge sp e m le a x →
Val.singleoflongu x = Some y →
∃ v, eval_expr ge sp e m le (singleoflongu a) v ∧ Val.lessdef y v.
Proof.
intros; unfold singleoflongu. econstructor; split.
eapply eval_helper_1; eauto. DeclHelper. UseHelper. auto.
Qed.
Theorem eval_andl: binary_constructor_sound andl Val.andl.
Proof.
red; intros. unfold andl. apply eval_splitlong2; auto.
intros.
exploit eval_and. eexact H1. eexact H3. intros [va [A B]].
exploit eval_and. eexact H2. eexact H4. intros [vb [C D]].
∃ (Val.longofwords va vb); split. EvalOp.
intros; subst. simpl in B; inv B. simpl in D; inv D.
simpl. f_equal. rewrite Int64.decompose_and. auto.
destruct x; auto. destruct y; auto.
Qed.
Theorem eval_orl: binary_constructor_sound orl Val.orl.
Proof.
red; intros. unfold orl. apply eval_splitlong2; auto.
intros.
exploit eval_or. eexact H1. eexact H3. intros [va [A B]].
exploit eval_or. eexact H2. eexact H4. intros [vb [C D]].
∃ (Val.longofwords va vb); split. EvalOp.
intros; subst. simpl in B; inv B. simpl in D; inv D.
simpl. f_equal. rewrite Int64.decompose_or. auto.
destruct x; auto. destruct y; auto.
Qed.
Theorem eval_xorl: binary_constructor_sound xorl Val.xorl.
Proof.
red; intros. unfold xorl. apply eval_splitlong2; auto.
intros.
exploit eval_xor. eexact H1. eexact H3. intros [va [A B]].
exploit eval_xor. eexact H2. eexact H4. intros [vb [C D]].
∃ (Val.longofwords va vb); split. EvalOp.
intros; subst. simpl in B; inv B. simpl in D; inv D.
simpl. f_equal. rewrite Int64.decompose_xor. auto.
destruct x; auto. destruct y; auto.
Qed.
Lemma is_intconst_sound:
∀ le a x n,
is_intconst a = Some n →
eval_expr ge sp e m le a x →
x = Vint n.
Proof.
unfold is_intconst; intros until n; intros LC.
destruct a; try discriminate. destruct o; try discriminate. destruct e0; try discriminate.
inv LC. intros. InvEval. auto.
Qed.
Remark eval_shift_imm:
∀ (P: expr → Prop) n a0 a1 a2 a3,
(n = Int.zero → P a0) →
(0 ≤ Int.unsigned n < Int.zwordsize →
Int.ltu n Int.iwordsize = true →
Int.ltu (Int.sub Int.iwordsize n) Int.iwordsize = true →
Int.ltu n Int64.iwordsize' = true →
P a1) →
(Int.zwordsize ≤ Int.unsigned n < Int64.zwordsize →
Int.ltu (Int.sub n Int.iwordsize) Int.iwordsize = true →
P a2) →
P a3 →
P (if Int.eq n Int.zero then a0
else if Int.ltu n Int.iwordsize then a1
else if Int.ltu n Int64.iwordsize' then a2
else a3).
Proof.
intros until a3; intros A0 A1 A2 A3.
predSpec Int.eq Int.eq_spec n Int.zero.
apply A0; auto.
assert (NZ: Int.unsigned n ≠ 0).
{ red; intros. elim H. rewrite <- (Int.repr_unsigned n). rewrite H0. auto. }
destruct (Int.ltu n Int.iwordsize) eqn:LT.
exploit Int.ltu_iwordsize_inv; eauto. intros RANGE.
assert (0 ≤ Int.zwordsize - Int.unsigned n < Int.zwordsize) by omega.
apply A1. auto. auto.
unfold Int.ltu, Int.sub. rewrite Int.unsigned_repr_wordsize.
rewrite Int.unsigned_repr. rewrite zlt_true; auto. omega.
generalize Int.wordsize_max_unsigned; omega.
unfold Int.ltu. rewrite zlt_true; auto.
change (Int.unsigned Int64.iwordsize') with 64.
change Int.zwordsize with 32 in RANGE. omega.
destruct (Int.ltu n Int64.iwordsize') eqn:LT'.
exploit Int.ltu_inv; eauto.
change (Int.unsigned Int64.iwordsize') with (Int.zwordsize × 2).
intros RANGE.
assert (Int.zwordsize ≤ Int.unsigned n).
unfold Int.ltu in LT. rewrite Int.unsigned_repr_wordsize in LT.
destruct (zlt (Int.unsigned n) Int.zwordsize). discriminate. omega.
apply A2. tauto. unfold Int.ltu, Int.sub. rewrite Int.unsigned_repr_wordsize.
rewrite Int.unsigned_repr. rewrite zlt_true; auto. omega.
generalize Int.wordsize_max_unsigned; omega.
auto.
Qed.
Lemma eval_shllimm:
∀ n,
unary_constructor_sound (fun e ⇒ shllimm e n) (fun v ⇒ Val.shll v (Vint n)).
Proof.
unfold shllimm; red; intros.
apply eval_shift_imm; intros.
+
subst n. ∃ x; split; auto. destruct x; simpl; auto.
change (Int64.shl' i Int.zero) with (Int64.shl i Int64.zero).
rewrite Int64.shl_zero. auto.
+
apply eval_splitlong with (sem := fun x ⇒ Val.shll x (Vint n)); auto.
intros.
exploit eval_shlimm. eexact H4. instantiate (1 := n). intros [v1 [A1 B1]].
exploit eval_shlimm. eexact H5. instantiate (1 := n). intros [v2 [A2 B2]].
exploit eval_shruimm. eexact H5. instantiate (1 := Int.sub Int.iwordsize n). intros [v3 [A3 B3]].
exploit eval_or. eexact A1. eexact A3. intros [v4 [A4 B4]].
econstructor; split. EvalOp.
intros. subst. simpl in ×. rewrite H1 in ×. rewrite H2 in ×. rewrite H3.
inv B1; inv B2; inv B3. simpl in B4. inv B4.
simpl. rewrite Int64.decompose_shl_1; auto.
destruct x; auto.
+
exploit eval_lowlong. eexact H. intros [v1 [A1 B1]].
exploit eval_shlimm. eexact A1. instantiate (1 := Int.sub n Int.iwordsize). intros [v2 [A2 B2]].
econstructor; split. EvalOp.
destruct x; simpl; auto.
destruct (Int.ltu n Int64.iwordsize'); auto.
simpl in B1; inv B1. simpl in B2. rewrite H1 in B2. inv B2.
simpl. erewrite <- Int64.decompose_shl_2. instantiate (1 := Int64.hiword i).
rewrite Int64.ofwords_recompose. auto. auto.
+
econstructor; split. eapply eval_helper_2; eauto. EvalOp. DeclHelper. UseHelper. auto.
Qed.
Theorem eval_shll: binary_constructor_sound shll Val.shll.
Proof.
unfold shll; red; intros.
destruct (is_intconst b) as [n|] eqn:IC.
-
exploit is_intconst_sound; eauto. intros EQ; subst y; clear H0.
eapply eval_shllimm; eauto.
-
econstructor; split. eapply eval_helper_2; eauto. DeclHelper. UseHelper. auto.
Qed.
Lemma eval_shrluimm:
∀ n,
unary_constructor_sound (fun e ⇒ shrluimm e n) (fun v ⇒ Val.shrlu v (Vint n)).
Proof.
unfold shrluimm; red; intros. apply eval_shift_imm; intros.
+
subst n. ∃ x; split; auto. destruct x; simpl; auto.
change (Int64.shru' i Int.zero) with (Int64.shru i Int64.zero).
rewrite Int64.shru_zero. auto.
+
apply eval_splitlong with (sem := fun x ⇒ Val.shrlu x (Vint n)); auto.
intros.
exploit eval_shruimm. eexact H5. instantiate (1 := n). intros [v1 [A1 B1]].
exploit eval_shruimm. eexact H4. instantiate (1 := n). intros [v2 [A2 B2]].
exploit eval_shlimm. eexact H4. instantiate (1 := Int.sub Int.iwordsize n). intros [v3 [A3 B3]].
exploit eval_or. eexact A1. eexact A3. intros [v4 [A4 B4]].
econstructor; split. EvalOp.
intros. subst. simpl in ×. rewrite H1 in ×. rewrite H2 in ×. rewrite H3.
inv B1; inv B2; inv B3. simpl in B4. inv B4.
simpl. rewrite Int64.decompose_shru_1; auto.
destruct x; auto.
+
exploit eval_highlong. eexact H. intros [v1 [A1 B1]].
exploit eval_shruimm. eexact A1. instantiate (1 := Int.sub n Int.iwordsize). intros [v2 [A2 B2]].
econstructor; split. EvalOp.
destruct x; simpl; auto.
destruct (Int.ltu n Int64.iwordsize'); auto.
simpl in B1; inv B1. simpl in B2. rewrite H1 in B2. inv B2.
simpl. erewrite <- Int64.decompose_shru_2. instantiate (1 := Int64.loword i).
rewrite Int64.ofwords_recompose. auto. auto.
+
econstructor; split. eapply eval_helper_2; eauto. EvalOp. DeclHelper. UseHelper. auto.
Qed.
Theorem eval_shrlu: binary_constructor_sound shrlu Val.shrlu.
Proof.
unfold shrlu; red; intros.
destruct (is_intconst b) as [n|] eqn:IC.
-
exploit is_intconst_sound; eauto. intros EQ; subst y; clear H0.
eapply eval_shrluimm; eauto.
-
econstructor; split. eapply eval_helper_2; eauto. DeclHelper. UseHelper. auto.
Qed.
Lemma eval_shrlimm:
∀ n,
unary_constructor_sound (fun e ⇒ shrlimm e n) (fun v ⇒ Val.shrl v (Vint n)).
Proof.
unfold shrlimm; red; intros. apply eval_shift_imm; intros.
+
subst n. ∃ x; split; auto. destruct x; simpl; auto.
change (Int64.shr' i Int.zero) with (Int64.shr i Int64.zero).
rewrite Int64.shr_zero. auto.
+
apply eval_splitlong with (sem := fun x ⇒ Val.shrl x (Vint n)); auto.
intros.
exploit eval_shruimm. eexact H5. instantiate (1 := n). intros [v1 [A1 B1]].
exploit eval_shrimm. eexact H4. instantiate (1 := n). intros [v2 [A2 B2]].
exploit eval_shlimm. eexact H4. instantiate (1 := Int.sub Int.iwordsize n). intros [v3 [A3 B3]].
exploit eval_or. eexact A1. eexact A3. intros [v4 [A4 B4]].
econstructor; split. EvalOp.
intros. subst. simpl in ×. rewrite H1 in ×. rewrite H2 in ×. rewrite H3.
inv B1; inv B2; inv B3. simpl in B4. inv B4.
simpl. rewrite Int64.decompose_shr_1; auto.
destruct x; auto.
+
exploit eval_highlong. eexact H. intros [v1 [A1 B1]].
assert (eval_expr ge sp e m (v1 :: le) (Eletvar 0) v1) by EvalOp.
exploit eval_shrimm. eexact H2. instantiate (1 := Int.sub n Int.iwordsize). intros [v2 [A2 B2]].
exploit eval_shrimm. eexact H2. instantiate (1 := Int.repr 31). intros [v3 [A3 B3]].
econstructor; split. EvalOp.
destruct x; simpl; auto.
destruct (Int.ltu n Int64.iwordsize'); auto.
simpl in B1; inv B1. simpl in B2. rewrite H1 in B2. inv B2.
simpl in B3. inv B3.
change (Int.ltu (Int.repr 31) Int.iwordsize) with true. simpl.
erewrite <- Int64.decompose_shr_2. instantiate (1 := Int64.loword i).
rewrite Int64.ofwords_recompose. auto. auto.
+
econstructor; split. eapply eval_helper_2; eauto. EvalOp. DeclHelper. UseHelper. auto.
Qed.
Theorem eval_shrl: binary_constructor_sound shrl Val.shrl.
Proof.
unfold shrl; red; intros.
destruct (is_intconst b) as [n|] eqn:IC.
-
exploit is_intconst_sound; eauto. intros EQ; subst y; clear H0.
eapply eval_shrlimm; eauto.
-
econstructor; split. eapply eval_helper_2; eauto. DeclHelper. UseHelper. auto.
Qed.
Theorem eval_addl: Archi.ptr64 = false → binary_constructor_sound addl Val.addl.
Proof.
unfold addl; red; intros.
set (default := Ebuiltin (EF_builtin "__builtin_addl" sig_ll_l) (a ::: b ::: Enil)).
assert (DEFAULT:
∃ v, eval_expr ge sp e m le default v ∧ Val.lessdef (Val.addl x y) v).
{
econstructor; split. eapply eval_builtin_2; eauto. UseHelper. auto.
}
destruct (is_longconst a) as [p|] eqn:LC1;
destruct (is_longconst b) as [q|] eqn:LC2.
- exploit (is_longconst_sound le a); eauto. intros EQ; subst x.
exploit (is_longconst_sound le b); eauto. intros EQ; subst y.
econstructor; split. apply eval_longconst. simpl; auto.
- predSpec Int64.eq Int64.eq_spec p Int64.zero; auto.
subst p. exploit (is_longconst_sound le a); eauto. intros EQ; subst x.
∃ y; split; auto. unfold Val.addl; rewrite H; destruct y; auto. rewrite Int64.add_zero_l; auto.
- predSpec Int64.eq Int64.eq_spec q Int64.zero; auto.
subst q. exploit (is_longconst_sound le b); eauto. intros EQ; subst y.
∃ x; split; auto. unfold Val.addl; rewrite H; destruct x; simpl; auto. rewrite Int64.add_zero; auto.
- auto.
Qed.
Theorem eval_subl: Archi.ptr64 = false → binary_constructor_sound subl Val.subl.
Proof.
unfold subl; red; intros.
set (default := Ebuiltin (EF_builtin "__builtin_subl" sig_ll_l) (a ::: b ::: Enil)).
assert (DEFAULT:
∃ v, eval_expr ge sp e m le default v ∧ Val.lessdef (Val.subl x y) v).
{
econstructor; split. eapply eval_builtin_2; eauto. UseHelper. auto.
}
destruct (is_longconst a) as [p|] eqn:LC1;
destruct (is_longconst b) as [q|] eqn:LC2.
- exploit (is_longconst_sound le a); eauto. intros EQ; subst x.
exploit (is_longconst_sound le b); eauto. intros EQ; subst y.
econstructor; split. apply eval_longconst. simpl; auto.
- predSpec Int64.eq Int64.eq_spec p Int64.zero; auto.
replace (Val.subl x y) with (Val.negl y). eapply eval_negl; eauto.
subst p. exploit (is_longconst_sound le a); eauto. intros EQ; subst x.
destruct y; simpl; auto.
- predSpec Int64.eq Int64.eq_spec q Int64.zero; auto.
subst q. exploit (is_longconst_sound le b); eauto. intros EQ; subst y.
∃ x; split; auto. unfold Val.subl; rewrite H; destruct x; simpl; auto. rewrite Int64.sub_zero_l; auto.
- auto.
Qed.
Lemma eval_mull_base: binary_constructor_sound mull_base Val.mull.
Proof.
unfold mull_base; red; intros. apply eval_splitlong2; auto.
- intros.
set (p := Val.mull' x2 y2). set (le1 := p :: le0).
assert (E1: eval_expr ge sp e m le1 (Eop Olowlong (Eletvar O ::: Enil)) (Val.loword p)) by EvalOp.
assert (E2: eval_expr ge sp e m le1 (Eop Ohighlong (Eletvar O ::: Enil)) (Val.hiword p)) by EvalOp.
exploit eval_mul. apply eval_lift. eexact H2. apply eval_lift. eexact H3.
instantiate (1 := p). fold le1. intros [v3 [E3 L3]].
exploit eval_mul. apply eval_lift. eexact H1. apply eval_lift. eexact H4.
instantiate (1 := p). fold le1. intros [v4 [E4 L4]].
exploit eval_add. eexact E2. eexact E3. intros [v5 [E5 L5]].
exploit eval_add. eexact E5. eexact E4. intros [v6 [E6 L6]].
∃ (Val.longofwords v6 (Val.loword p)); split.
EvalOp. eapply eval_builtin_2; eauto. UseHelper.
intros. unfold le1, p in *; subst; simpl in ×.
inv L3. inv L4. inv L5. simpl in L6. inv L6.
simpl. f_equal. symmetry. apply Int64.decompose_mul.
- destruct x; auto; destruct y; auto.
Qed.
Lemma eval_mullimm:
∀ n, unary_constructor_sound (mullimm n) (fun v ⇒ Val.mull v (Vlong n)).
Proof.
unfold mullimm; red; intros.
predSpec Int64.eq Int64.eq_spec n Int64.zero.
subst n. econstructor; split. apply eval_longconst.
destruct x; simpl; auto. rewrite Int64.mul_zero. auto.
predSpec Int64.eq Int64.eq_spec n Int64.one.
subst n. ∃ x; split; auto.
destruct x; simpl; auto. rewrite Int64.mul_one. auto.
destruct (Int64.is_power2' n) as [l|] eqn:P2.
exploit eval_shllimm. eauto. instantiate (1 := l). intros [v [A B]].
∃ v; split; auto.
destruct x; simpl; auto.
erewrite Int64.mul_pow2' by eauto.
simpl in B. erewrite Int64.is_power2'_range in B by eauto.
exact B.
apply eval_mull_base; auto. apply eval_longconst.
Qed.
Theorem eval_mull: binary_constructor_sound mull Val.mull.
Proof.
unfold mull; red; intros.
destruct (is_longconst a) as [p|] eqn:LC1;
destruct (is_longconst b) as [q|] eqn:LC2.
- exploit (is_longconst_sound le a); eauto. intros EQ; subst x.
exploit (is_longconst_sound le b); eauto. intros EQ; subst y.
econstructor; split. apply eval_longconst. simpl; auto.
- exploit (is_longconst_sound le a); eauto. intros EQ; subst x.
replace (Val.mull (Vlong p) y) with (Val.mull y (Vlong p)) in ×.
eapply eval_mullimm; eauto.
destruct y; simpl; auto. rewrite Int64.mul_commut; auto.
- exploit (is_longconst_sound le b); eauto. intros EQ; subst y.
eapply eval_mullimm; eauto.
- apply eval_mull_base; auto.
Qed.
Theorem eval_mullhu:
∀ n, unary_constructor_sound (fun a ⇒ mullhu a n) (fun v ⇒ Val.mullhu v (Vlong n)).
Proof.
unfold mullhu; intros; red; intros. econstructor; split; eauto.
eapply eval_helper_2; eauto. apply eval_longconst. DeclHelper; eauto. UseHelper.
Qed.
Theorem eval_mullhs:
∀ n, unary_constructor_sound (fun a ⇒ mullhs a n) (fun v ⇒ Val.mullhs v (Vlong n)).
Proof.
unfold mullhs; intros; red; intros. econstructor; split; eauto.
eapply eval_helper_2; eauto. apply eval_longconst. DeclHelper; eauto. UseHelper.
Qed.
Theorem eval_shrxlimm:
∀ le a n x z,
Archi.ptr64 = false →
eval_expr ge sp e m le a x →
Val.shrxl x (Vint n) = Some z →
∃ v, eval_expr ge sp e m le (shrxlimm a n) v ∧ Val.lessdef z v.
Proof.
intros.
apply Val.shrxl_shrl_2 in H1. unfold shrxlimm.
destruct (Int.eq n Int.zero).
- subst z; ∃ x; auto.
- set (le' := x :: le).
edestruct (eval_shrlimm (Int.repr 63) le' (Eletvar O)) as (v1 & A1 & B1).
constructor. reflexivity.
edestruct (eval_shrluimm (Int.sub (Int.repr 64) n) le') as (v2 & A2 & B2).
eexact A1.
edestruct (eval_addl H le' (Eletvar 0)) as (v3 & A3 & B3).
constructor. reflexivity. eexact A2.
edestruct (eval_shrlimm n le') as (v4 & A4 & B4). eexact A3.
∃ v4; split.
econstructor; eauto.
assert (X: ∀ v1 v2 n, Val.lessdef v1 v2 → Val.lessdef (Val.shrl v1 (Vint n)) (Val.shrl v2 (Vint n))).
{ intros. inv H2; auto. }
assert (Y: ∀ v1 v2 n, Val.lessdef v1 v2 → Val.lessdef (Val.shrlu v1 (Vint n)) (Val.shrlu v2 (Vint n))).
{ intros. inv H2; auto. }
subst z. eapply Val.lessdef_trans; [|eexact B4]. apply X.
eapply Val.lessdef_trans; [|eexact B3]. apply Val.addl_lessdef; auto.
eapply Val.lessdef_trans; [|eexact B2]. apply Y.
auto.
Qed.
Theorem eval_divlu_base:
∀ le a b x y z,
eval_expr ge sp e m le a x →
eval_expr ge sp e m le b y →
Val.divlu x y = Some z →
∃ v, eval_expr ge sp e m le (divlu_base a b) v ∧ Val.lessdef z v.
Proof.
intros; unfold divlu_base.
econstructor; split. eapply eval_helper_2; eauto. DeclHelper. UseHelper. auto.
Qed.
Theorem eval_modlu_base:
∀ le a b x y z,
eval_expr ge sp e m le a x →
eval_expr ge sp e m le b y →
Val.modlu x y = Some z →
∃ v, eval_expr ge sp e m le (modlu_base a b) v ∧ Val.lessdef z v.
Proof.
intros; unfold modlu_base.
econstructor; split. eapply eval_helper_2; eauto. DeclHelper. UseHelper. auto.
Qed.
Theorem eval_divls_base:
∀ le a b x y z,
eval_expr ge sp e m le a x →
eval_expr ge sp e m le b y →
Val.divls x y = Some z →
∃ v, eval_expr ge sp e m le (divls_base a b) v ∧ Val.lessdef z v.
Proof.
intros; unfold divls_base.
econstructor; split. eapply eval_helper_2; eauto. DeclHelper. UseHelper. auto.
Qed.
Theorem eval_modls_base:
∀ le a b x y z,
eval_expr ge sp e m le a x →
eval_expr ge sp e m le b y →
Val.modls x y = Some z →
∃ v, eval_expr ge sp e m le (modls_base a b) v ∧ Val.lessdef z v.
Proof.
intros; unfold modls_base.
econstructor; split. eapply eval_helper_2; eauto. DeclHelper. UseHelper. auto.
Qed.
Remark decompose_cmpl_eq_zero:
∀ h l,
Int64.eq (Int64.ofwords h l) Int64.zero = Int.eq (Int.or h l) Int.zero.
Proof.
intros.
assert (Int64.zwordsize = Int.zwordsize × 2) by reflexivity.
predSpec Int64.eq Int64.eq_spec (Int64.ofwords h l) Int64.zero.
replace (Int.or h l) with Int.zero. rewrite Int.eq_true. auto.
apply Int.same_bits_eq; intros.
rewrite Int.bits_zero. rewrite Int.bits_or by auto.
symmetry. apply orb_false_intro.
transitivity (Int64.testbit (Int64.ofwords h l) (i + Int.zwordsize)).
rewrite Int64.bits_ofwords by omega. rewrite zlt_false by omega. f_equal; omega.
rewrite H0. apply Int64.bits_zero.
transitivity (Int64.testbit (Int64.ofwords h l) i).
rewrite Int64.bits_ofwords by omega. rewrite zlt_true by omega. auto.
rewrite H0. apply Int64.bits_zero.
symmetry. apply Int.eq_false. red; intros; elim H0.
apply Int64.same_bits_eq; intros.
rewrite Int64.bits_zero. rewrite Int64.bits_ofwords by auto.
destruct (zlt i Int.zwordsize).
assert (Int.testbit (Int.or h l) i = false) by (rewrite H1; apply Int.bits_zero).
rewrite Int.bits_or in H3 by omega. exploit orb_false_elim; eauto. tauto.
assert (Int.testbit (Int.or h l) (i - Int.zwordsize) = false) by (rewrite H1; apply Int.bits_zero).
rewrite Int.bits_or in H3 by omega. exploit orb_false_elim; eauto. tauto.
Qed.
Lemma eval_cmpl_eq_zero:
∀ le a x,
eval_expr ge sp e m le a (Vlong x) →
eval_expr ge sp e m le (cmpl_eq_zero a) (Val.of_bool (Int64.eq x Int64.zero)).
Proof.
intros. unfold cmpl_eq_zero.
eapply eval_splitlong_strict; eauto. intros.
exploit eval_or. eexact H0. eexact H1. intros [v1 [A1 B1]]. simpl in B1; inv B1.
exploit eval_comp. eexact A1. instantiate (2 := Eop (Ointconst Int.zero) Enil). EvalOp.
instantiate (1 := Ceq). intros [v2 [A2 B2]].
unfold Val.cmp in B2; simpl in B2.
rewrite <- decompose_cmpl_eq_zero in B2.
rewrite Int64.ofwords_recompose in B2.
destruct (Int64.eq x Int64.zero); inv B2; auto.
Qed.
Lemma eval_cmpl_ne_zero:
∀ le a x,
eval_expr ge sp e m le a (Vlong x) →
eval_expr ge sp e m le (cmpl_ne_zero a) (Val.of_bool (negb (Int64.eq x Int64.zero))).
Proof.
intros. unfold cmpl_ne_zero.
eapply eval_splitlong_strict; eauto. intros.
exploit eval_or. eexact H0. eexact H1. intros [v1 [A1 B1]]. simpl in B1; inv B1.
exploit eval_comp. eexact A1. instantiate (2 := Eop (Ointconst Int.zero) Enil). EvalOp.
instantiate (1 := Cne). intros [v2 [A2 B2]].
unfold Val.cmp in B2; simpl in B2.
rewrite <- decompose_cmpl_eq_zero in B2.
rewrite Int64.ofwords_recompose in B2.
destruct (negb (Int64.eq x Int64.zero)); inv B2; auto.
Qed.
Lemma eval_cmplu_gen:
∀ ch cl a b le x y,
eval_expr ge sp e m le a (Vlong x) →
eval_expr ge sp e m le b (Vlong y) →
eval_expr ge sp e m le (cmplu_gen ch cl a b)
(Val.of_bool (if Int.eq (Int64.hiword x) (Int64.hiword y)
then Int.cmpu cl (Int64.loword x) (Int64.loword y)
else Int.cmpu ch (Int64.hiword x) (Int64.hiword y))).
Proof.
intros. unfold cmplu_gen. eapply eval_splitlong2_strict; eauto. intros.
econstructor. econstructor. EvalOp. simpl. eauto.
destruct (Int.eq (Int64.hiword x) (Int64.hiword y)); EvalOp.
Qed.
Remark int64_eq_xor:
∀ p q, Int64.eq p q = Int64.eq (Int64.xor p q) Int64.zero.
Proof.
intros.
predSpec Int64.eq Int64.eq_spec p q.
subst q. rewrite Int64.xor_idem. rewrite Int64.eq_true. auto.
predSpec Int64.eq Int64.eq_spec (Int64.xor p q) Int64.zero.
elim H. apply Int64.xor_zero_equal; auto.
auto.
Qed.
Theorem eval_cmplu:
∀ c le a x b y v,
eval_expr ge sp e m le a x →
eval_expr ge sp e m le b y →
Val.cmplu (Mem.valid_pointer m) c x y = Some v →
Archi.ptr64 = false →
eval_expr ge sp e m le (cmplu c a b) v.
Proof.
intros. unfold Val.cmplu, Val.cmplu_bool in H1. rewrite H2 in H1. simpl in H1.
destruct x; simpl in H1; try discriminate H1; destruct y; inv H1.
rename i into x. rename i0 into y.
destruct c; simpl.
-
exploit eval_xorl. eexact H. eexact H0. intros [v1 [A B]]. simpl in B. inv B.
rewrite int64_eq_xor. apply eval_cmpl_eq_zero; auto.
-
exploit eval_xorl. eexact H. eexact H0. intros [v1 [A B]]. simpl in B. inv B.
rewrite int64_eq_xor. apply eval_cmpl_ne_zero; auto.
-
exploit (eval_cmplu_gen Clt Clt). eexact H. eexact H0. simpl.
rewrite <- Int64.decompose_ltu. rewrite ! Int64.ofwords_recompose. auto.
-
exploit (eval_cmplu_gen Clt Cle). eexact H. eexact H0. intros.
rewrite <- (Int64.ofwords_recompose x). rewrite <- (Int64.ofwords_recompose y).
rewrite Int64.decompose_leu. auto.
-
exploit (eval_cmplu_gen Cgt Cgt). eexact H. eexact H0. simpl.
rewrite Int.eq_sym. rewrite <- Int64.decompose_ltu. rewrite ! Int64.ofwords_recompose. auto.
-
exploit (eval_cmplu_gen Cgt Cge). eexact H. eexact H0. intros.
rewrite <- (Int64.ofwords_recompose x). rewrite <- (Int64.ofwords_recompose y).
rewrite Int64.decompose_leu. rewrite Int.eq_sym. auto.
Qed.
Lemma eval_cmpl_gen:
∀ ch cl a b le x y,
eval_expr ge sp e m le a (Vlong x) →
eval_expr ge sp e m le b (Vlong y) →
eval_expr ge sp e m le (cmpl_gen ch cl a b)
(Val.of_bool (if Int.eq (Int64.hiword x) (Int64.hiword y)
then Int.cmpu cl (Int64.loword x) (Int64.loword y)
else Int.cmp ch (Int64.hiword x) (Int64.hiword y))).
Proof.
intros. unfold cmpl_gen. eapply eval_splitlong2_strict; eauto. intros.
econstructor. econstructor. EvalOp. simpl. eauto.
destruct (Int.eq (Int64.hiword x) (Int64.hiword y)); EvalOp.
Qed.
Remark decompose_cmpl_lt_zero:
∀ h l,
Int64.lt (Int64.ofwords h l) Int64.zero = Int.lt h Int.zero.
Proof.
intros.
generalize (Int64.shru_lt_zero (Int64.ofwords h l)).
change (Int64.shru (Int64.ofwords h l) (Int64.repr (Int64.zwordsize - 1)))
with (Int64.shru' (Int64.ofwords h l) (Int.repr 63)).
rewrite Int64.decompose_shru_2.
change (Int.sub (Int.repr 63) Int.iwordsize)
with (Int.repr (Int.zwordsize - 1)).
rewrite Int.shru_lt_zero.
destruct (Int64.lt (Int64.ofwords h l) Int64.zero); destruct (Int.lt h Int.zero); auto; intros.
elim Int64.one_not_zero. auto.
elim Int64.one_not_zero. auto.
vm_compute. intuition congruence.
Qed.
Theorem eval_cmpl:
∀ c le a x b y v,
eval_expr ge sp e m le a x →
eval_expr ge sp e m le b y →
Val.cmpl c x y = Some v →
eval_expr ge sp e m le (cmpl c a b) v.
Proof.
intros. unfold Val.cmpl in H1.
destruct x; simpl in H1; try discriminate. destruct y; inv H1.
rename i into x. rename i0 into y.
destruct c; simpl.
-
exploit eval_xorl. eexact H. eexact H0. intros [v1 [A B]]. simpl in B; inv B.
rewrite int64_eq_xor. apply eval_cmpl_eq_zero; auto.
-
exploit eval_xorl. eexact H. eexact H0. intros [v1 [A B]]. simpl in B; inv B.
rewrite int64_eq_xor. apply eval_cmpl_ne_zero; auto.
-
destruct (is_longconst_zero b) eqn:LC.
+ exploit is_longconst_zero_sound; eauto. intros EQ; inv EQ; clear H0.
exploit eval_highlong. eexact H. intros [v1 [A1 B1]]. simpl in B1. inv B1.
exploit eval_comp. eexact A1.
instantiate (2 := Eop (Ointconst Int.zero) Enil). EvalOp.
instantiate (1 := Clt). intros [v2 [A2 B2]].
unfold Val.cmp in B2. simpl in B2.
rewrite <- (Int64.ofwords_recompose x). rewrite decompose_cmpl_lt_zero.
destruct (Int.lt (Int64.hiword x) Int.zero); inv B2; auto.
+ exploit (eval_cmpl_gen Clt Clt). eexact H. eexact H0. simpl.
rewrite <- Int64.decompose_lt. rewrite ! Int64.ofwords_recompose. auto.
-
exploit (eval_cmpl_gen Clt Cle). eexact H. eexact H0. intros.
rewrite <- (Int64.ofwords_recompose x). rewrite <- (Int64.ofwords_recompose y).
rewrite Int64.decompose_le. auto.
-
exploit (eval_cmpl_gen Cgt Cgt). eexact H. eexact H0. simpl.
rewrite Int.eq_sym. rewrite <- Int64.decompose_lt. rewrite ! Int64.ofwords_recompose. auto.
-
destruct (is_longconst_zero b) eqn:LC.
+ exploit is_longconst_zero_sound; eauto. intros EQ; inv EQ; clear H0.
exploit eval_highlong. eexact H. intros [v1 [A1 B1]]. simpl in B1; inv B1.
exploit eval_comp. eexact A1.
instantiate (2 := Eop (Ointconst Int.zero) Enil). EvalOp.
instantiate (1 := Cge). intros [v2 [A2 B2]].
unfold Val.cmp in B2; simpl in B2.
rewrite <- (Int64.ofwords_recompose x). rewrite decompose_cmpl_lt_zero.
destruct (negb (Int.lt (Int64.hiword x) Int.zero)); inv B2; auto.
+ exploit (eval_cmpl_gen Cgt Cge). eexact H. eexact H0. intros.
rewrite <- (Int64.ofwords_recompose x). rewrite <- (Int64.ofwords_recompose y).
rewrite Int64.decompose_le. rewrite Int.eq_sym. auto.
Qed.
End CMCONSTR.