Library coqrel.Relators
Relators
A note about universes
Relators for function types
Pointwise extension of a relation
Definition arrow_pointwise_rel A {B1 B2}:
rel B1 B2 → rel (A → B1) (A → B2) :=
fun RB f g ⇒ ∀ a, RB (f a) (g a).
Arguments arrow_pointwise_rel A%type {B1%type B2%type} RB%rel _ _.
Notation "- ==> R" := (arrow_pointwise_rel _ R)
(at level 55, right associativity) : rel_scope.
Global Instance arrow_pointwise_subrel {A B1 B2}:
Monotonic (@arrow_pointwise_rel A B1 B2) (subrel ++> subrel).
Proof.
firstorder.
Qed.
Global Instance arrow_pointwise_subrel_params:
Params (@arrow_pointwise_rel) 3.
Lemma arrow_pointwise_rintro {A B1 B2} (R: rel B1 B2) f g:
RIntro (∀ x: A, R (f x) (g x)) (- ==> R) f g.
Proof.
firstorder.
Qed.
Hint Extern 0 (RIntro _ (- ==> _) _ _) ⇒
eapply arrow_pointwise_rintro : typeclass_instances.
Note that although the elimination rule could use a single
variable and dispense with the equality premise, it actually uses
two distinct variables m and n, and a premise in P that m = n.
Hence the effect is similar to the elimination rule for the
equivalent relation eq ==> R. We do this because in contexts where
we have a single term t against which both m and n unify, it
is easy and cheap to automatically prove that t = t, but in
contexts where we have two disctinct variables and a proof of
equality, it is more involved to massage the goal into a form where
the single-variable version of the rule could apply.
Lemma arrow_pointwise_relim {A B1 B2} (R: rel B1 B2) f g (m n: A) P Q:
RElim R (f m) (g n) P Q →
RElim (- ==> R) f g (m = n ∧ P) Q.
Proof.
intros HPQ Hfg [Hab HP].
subst.
firstorder.
Qed.
Hint Extern 1 (RElim (- ==> _) _ _ _ _) ⇒
eapply arrow_pointwise_relim : typeclass_instances.
Dependent pointwise extension
Definition forall_pointwise_rel {V: Type} {FV1 FV2: V → Type}:
(∀ v, rel (FV1 v) (FV2 v)) →
rel (∀ v, FV1 v) (∀ v, FV2 v) :=
fun FE f g ⇒
∀ v, FE v (f v) (g v).
Arguments forall_pointwise_rel {V%type FV1%type FV2%type} FE%rel _ _.
Notation "'forallr' - @ v : V , FE" :=
(forall_pointwise_rel (V := V) (fun v ⇒ FE))
(v ident, at level 200).
Notation "'forallr' - @ v , FE" :=
(forall_pointwise_rel (fun v ⇒ FE))
(v ident, at level 200).
Notation "'forallr' - : V , FE" :=
(forall_pointwise_rel (V := V) (fun _ ⇒ FE))
(at level 200).
Notation "'forallr' - , FE" :=
(forall_pointwise_rel (fun _ ⇒ FE))
(at level 200).
Lemma forall_pointwise_rintro {V FV1 FV2} (FE: ∀ v, rel _ _) f g:
RIntro
(∀ v, FE v (f v) (g v))
(@forall_pointwise_rel V FV1 FV2 FE) f g.
Proof.
firstorder.
Qed.
Hint Extern 0 (RIntro _ (forall_pointwise_rel _) _ _) ⇒
eapply forall_pointwise_rintro : typeclass_instances.
Lemma forall_pointwise_relim {V FV1 FV2} R f g v P Q:
RElim (R v) (f v) (g v) P Q →
RElim (@forall_pointwise_rel V FV1 FV2 R) f g P Q.
Proof.
firstorder.
Qed.
Hint Extern 1 (RElim (forall_pointwise_rel _) _ _ _ _) ⇒
eapply forall_pointwise_relim : typeclass_instances.
Dependent products (restricted version)
Definition forallp_rel {V1 V2} (E: rel V1 V2) {FV1: V1→Type} {FV2: V2→Type}:
(∀ v1 v2, rel (FV1 v1) (FV2 v2)) →
rel (∀ v1, FV1 v1) (∀ v2, FV2 v2) :=
fun FE f g ⇒
∀ v1 v2, E v1 v2 → FE v1 v2 (f v1) (g v2).
Arguments forallp_rel {V1%type V2%type} E%rel {FV1%type FV2%type} FE%rel _ _.
Notation "'forallr' v1 v2 : E , R" :=
(forallp_rel E (fun v1 v2 ⇒ R))
(at level 200, v1 ident, v2 ident, right associativity)
: rel_scope.
Lemma forallp_rintro {V1 V2} {E: rel V1 V2} {F1 F2} (FE: ∀ v1 v2, rel _ _) f g:
RIntro
(∀ v1 v2, E v1 v2 → FE v1 v2 (f v1) (g v2))
(@forallp_rel V1 V2 E F1 F2 FE) f g.
Proof.
firstorder.
Qed.
Hint Extern 0 (RIntro _ (forallp_rel _ _) _ _) ⇒
eapply forallp_rintro : typeclass_instances.
Since e : E v1 v2 cannot be unified in Q, the elimination rule
adds an E v1 v2 premise to P instead.
Lemma forallp_relim {V1 V2 E FV1 FV2} R f g v1 v2 P Q:
RElim (R v1 v2) (f v1) (g v2) P Q →
RElim (@forallp_rel V1 V2 E FV1 FV2 R) f g (E v1 v2 ∧ P) Q.
Proof.
firstorder.
Qed.
Hint Extern 1 (RElim (forallp_rel _ _) _ _ _ _) ⇒
eapply forallp_relim : typeclass_instances.
TODO: A further specialization could be foralln_rel, which does
not even require that v1, v2 be related (let alone care about
the proof). In other words, a forallr v1 v2, R which would
essentially boil down to forallr v1 v2 : ⊤, R.
Sets of type A → Prop can be related using the regular arrow
relator, as in R ++> impl. This states that for any two elements
related by R, if the first is in the first set, then the second
must be in the second set.
However, very often we need the following relator instead, which
states that for any element of the first set, there exists an
element of the second set which is related to it. This is useful for
example when defining simulation diagrams.
Sets (A → Prop)
Definition set_rel {A B} (R: rel A B): rel (A → Prop) (B → Prop) :=
fun sA sB ⇒ ∀ a, sA a → ∃ b, sB b ∧ R a b.
Global Instance set_subrel {A B}:
Monotonic (@set_rel A B) (subrel ++> subrel).
Proof.
intros R1 R2 HR sA sB Hs.
intros x Hx.
destruct (Hs x) as (y & Hy & Hxy); eauto.
Qed.
Global Instance set_subrel_params:
Params (@set_rel) 3.
Inductive types
Nullary type constructors
Inductive Empty_set_rel: rel Empty_set Empty_set := .
Inductive unit_rel: rel unit unit :=
tt_rel: Proper unit_rel tt.
Global Existing Instance tt_rel.
Sum types
Inductive sum_rel: forall {A1 A2 B1 B2}, rel A1 A2 -> rel B1 B2 -> rel (A1+B1) (A2+B2):= | inl_rel: Proper (∀ RA : rel, ∀ RB : rel, RA ++> sum_rel RA RB) (@inl) | inr_rel: Proper (∀ RA : rel, ∀ RB : rel, RB ++> sum_rel RA RB) (@inr).However, to minimize the need for inversions we want to keep as many arguments as possible as parameters of the inductive type.
Inductive sum_rel {A1 A2 B1 B2} RA RB: rel (A1 + B1)%type (A2 + B2)%type :=
| inl_rel_def: (RA ++> sum_rel RA RB)%rel (@inl A1 B1) (@inl A2 B2)
| inr_rel_def: (RB ++> sum_rel RA RB)%rel (@inr A1 B1) (@inr A2 B2).
Infix "+" := sum_rel : rel_scope.
Since it is not possible to retype the constructors after the
fact, we use the _def suffix when defining them, then redeclare
a corresponding, full-blown Proper instance.
Global Instance inl_rel:
Monotonic (@inl) (forallr RA, forallr RB, RA ++> RA + RB).
Proof.
repeat intro; apply inl_rel_def; assumption.
Qed.
Global Instance inr_rel:
Monotonic (@inr) (forallr RA, forallr RB, RB ++> RA + RB).
Proof.
repeat intro; apply inr_rel_def; assumption.
Qed.
Global Instance sum_subrel {A1 A2 B1 B2}:
Monotonic (@sum_rel A1 A2 B1 B2) (subrel ++> subrel ++> subrel).
Proof.
intros RA1 RA2 HRA RB1 RB2 HRB.
intros x1 x2 Hx.
destruct Hx; constructor; eauto.
Qed.
Global Instance sum_subrel_params:
Params (@sum) 4.
Lemma sum_rel_refl {A B} (R1: rel A A) (R2: rel B B):
Reflexive R1 → Reflexive R2 → Reflexive (R1 + R2).
Proof.
intros H1 H2 x.
destruct x; constructor; reflexivity.
Qed.
Hint Extern 2 (Reflexive (_ + _)) ⇒
eapply sum_rel_refl : typeclass_instances.
Lemma sum_rel_corefl {A B} (R1: rel A A) (R2: rel B B):
Coreflexive R1 → Coreflexive R2 → Coreflexive (R1 + R2).
Proof.
intros H1 H2 _ _ [x y H | x y H];
f_equal;
eauto using coreflexivity.
Qed.
Hint Extern 2 (Coreflexive (_ + _)) ⇒
eapply sum_rel_corefl : typeclass_instances.
Lemma sum_rel_trans {A B} (R1: rel A A) (R2: rel B B):
Transitive R1 → Transitive R2 → Transitive (R1 + R2).
Proof.
intros H1 H2 x y z Hxy Hyz.
destruct Hxy; inversion Hyz; constructor; etransitivity; eassumption.
Qed.
Hint Extern 2 (Transitive (_ + _)) ⇒
eapply sum_rel_trans : typeclass_instances.
Lemma sum_rel_sym {A B} (R1: rel A A) (R2: rel B B):
Symmetric R1 → Symmetric R2 → Symmetric (R1 + R2).
Proof.
intros H1 H2 x y Hxy.
destruct Hxy; constructor; symmetry; eassumption.
Qed.
Hint Extern 2 (Symmetric (_ + _)) ⇒
eapply sum_rel_sym : typeclass_instances.
Lemma sum_rel_preorder {A B} (R1: rel A A) (R2: rel B B):
PreOrder R1 → PreOrder R2 → PreOrder (R1 + R2).
Proof.
split; typeclasses eauto.
Qed.
Hint Extern 2 (PreOrder (_ + _)) ⇒
eapply sum_rel_preorder : typeclass_instances.
Definition prod_rel {A1 A2 B1 B2} RA RB: rel (A1 × B1)%type (A2 × B2)%type :=
fun x1 x2 ⇒ RA (fst x1) (fst x2) ∧ RB (snd x1) (snd x2).
Infix "×" := prod_rel : rel_scope.
Global Instance pair_rel:
Monotonic (@pair) (forallr RA, forallr RB, RA ++> RB ++> RA × RB).
Proof.
intros A1 A2 RA B1 B2 RB a1 a2 Ha b1 b2 Hb.
red.
eauto.
Qed.
Global Instance fst_rel:
Monotonic (@fst) (forallr RA, forallr RB, RA × RB ==> RA).
Proof.
intros A1 A2 RA B1 B2 RB.
intros x1 x2 [Ha Hb].
assumption.
Qed.
Global Instance snd_rel:
Monotonic (@snd) (forallr RA, forallr RB, RA × RB ==> RB).
Proof.
intros A1 A2 RA B1 B2 RB.
intros x1 x2 [Ha Hb].
assumption.
Qed.
Global Instance prod_subrel {A1 A2 B1 B2}:
Monotonic (@prod_rel A1 A2 B1 B2) (subrel ++> subrel ++> subrel).
Proof.
firstorder.
Qed.
Global Instance prod_subrel_params:
Params (@prod_rel) 4.
Global Instance prod_rdestruct {A1 B1 A2 B2} (RA: rel A1 A2) (RB: rel B1 B2):
RDestruct
(RA × RB)%rel
(fun P ⇒ ∀ a1 a2 b1 b2, RA a1 a2 → RB b1 b2 → P (a1, b1) (a2, b2)).
Proof.
intros [a1 b1] [a2 b2] [Ha Hb] P HP.
firstorder.
Qed.
Lemma prod_rel_refl {A B} (R1: rel A A) (R2: rel B B):
Reflexive R1 → Reflexive R2 → Reflexive (R1 × R2).
Proof.
intros H1 H2 x.
destruct x; constructor; reflexivity.
Qed.
Hint Extern 2 (Reflexive (_ × _)) ⇒
eapply prod_rel_refl : typeclass_instances.
Lemma prod_rel_corefl {A B} (R1: rel A A) (R2: rel B B):
Coreflexive R1 → Coreflexive R2 → Coreflexive (R1 × R2).
Proof.
intros H1 H2 [a1 b1] [a2 b2] [Ha Hb].
f_equal; eauto using coreflexivity.
Qed.
Hint Extern 2 (Coreflexive (_ × _)) ⇒
eapply prod_rel_corefl : typeclass_instances.
Lemma prod_rel_trans {A B} (R1: rel A A) (R2: rel B B):
Transitive R1 → Transitive R2 → Transitive (R1 × R2).
Proof.
intros H1 H2 x y z Hxy Hyz.
destruct Hxy; inversion Hyz; constructor; etransitivity; eassumption.
Qed.
Hint Extern 2 (Transitive (_ × _)) ⇒
eapply prod_rel_trans : typeclass_instances.
Lemma prod_rel_sym {A B} (R1: rel A A) (R2: rel B B):
Symmetric R1 → Symmetric R2 → Symmetric (R1 × R2).
Proof.
intros H1 H2 x y Hxy.
destruct Hxy; constructor; symmetry; eassumption.
Qed.
Hint Extern 2 (Symmetric (_ × _)) ⇒
eapply prod_rel_sym : typeclass_instances.
Lemma prod_rel_preorder {A B} (R1: rel A A) (R2: rel B B):
PreOrder R1 → PreOrder R2 → PreOrder (R1 × R2).
Proof.
split; typeclasses eauto.
Qed.
Hint Extern 2 (PreOrder (_ × _)) ⇒
eapply prod_rel_preorder : typeclass_instances.
Inductive option_rel {A1 A2} (RA: rel A1 A2): rel (option A1) (option A2) :=
| Some_rel_def: (RA ++> option_rel RA)%rel (@Some A1) (@Some A2)
| None_rel_def: option_rel RA (@None A1) (@None A2).
Global Instance Some_rel:
Monotonic (@Some) (forallr R @ A1 A2 : rel, R ++> option_rel R).
Proof.
exact @Some_rel_def.
Qed.
Global Instance None_rel:
Monotonic (@None) (forallr R, option_rel R).
Proof.
exact @None_rel_def.
Qed.
Global Instance option_subrel {A1 A2}:
Monotonic (@option_rel A1 A2) (subrel ++> subrel).
Proof.
intros RA1 RA2 HRA.
intros x1 x2 Hx.
destruct Hx; constructor; eauto.
Qed.
Global Instance option_subrel_params:
Params (@option_rel) 3.
XXX: This does not fit any of our existing patterns, we should
drop it for consistency or introduce a new convention and generalize
this kind of lemmas.
Lemma option_rel_some_inv A B (R: rel A B) (x: option A) (y: option B) (a: A):
option_rel R x y →
x = Some a →
∃ b,
y = Some b ∧
R a b.
Proof.
destruct 1; inversion 1; subst; eauto.
Qed.
Inductive list_rel {A1 A2} (R: rel A1 A2): rel (list A1) (list A2) :=
| nil_rel_def: (list_rel R) (@nil A1) (@nil A2)
| cons_rel_def: (R ++> list_rel R ++> list_rel R)%rel (@cons A1) (@cons A2).
Global Instance nil_rel:
Monotonic (@nil) (forallr R, list_rel R).
Proof.
exact @nil_rel_def.
Qed.
Global Instance cons_rel:
Monotonic (@cons) (forallr R, R ++> list_rel R ++> list_rel R).
Proof.
exact @cons_rel_def.
Qed.
Global Instance list_subrel {A1 A2}:
Monotonic (@list_rel A1 A2) (subrel ++> subrel).
Proof.
intros R S HRS x y.
red in HRS.
induction 1; constructor; eauto.
Qed.
Global Instance list_subrel_params:
Params (@list_rel) 3.
Lemma list_rel_refl `(HR: Reflexive):
Reflexive (list_rel R).
Proof.
intros l.
induction l; constructor; eauto.
Qed.
Hint Extern 1 (Reflexive (list_rel _)) ⇒
eapply list_rel_refl : typeclass_instances.
Lemma list_rel_corefl `(HR: Coreflexive):
Coreflexive (list_rel R).
Proof.
intros l1 l2 Hl.
induction Hl as [ | x1 x2 Hx l1 l2 Hl IHl];
f_equal; eauto using coreflexivity.
Qed.
Hint Extern 1 (Coreflexive (list_rel _)) ⇒
eapply list_rel_corefl : typeclass_instances.
Lemma list_rel_sym `(HR: Symmetric):
Symmetric (list_rel R).
Proof.
intros l1 l2 Hl.
induction Hl; constructor; eauto.
Qed.
Hint Extern 1 (Symmetric (list_rel _)) ⇒
eapply list_rel_sym : typeclass_instances.
Lemma list_rel_trans `(HR: Transitive):
Transitive (list_rel R).
Proof.
intros l1 l2 l3 Hl12 Hl23.
revert l3 Hl23.
induction Hl12; inversion 1; constructor; eauto.
Qed.
Hint Extern 1 (Transitive (list_rel _)) ⇒
eapply list_rel_trans : typeclass_instances.
Global Instance length_rel:
Monotonic
(@length)
(forallr R : rel, list_rel R ++> eq).
Proof.
induction 1; simpl; congruence.
Qed.
Global Instance app_rel:
Monotonic
(@app)
(forallr R : rel, list_rel R ++> list_rel R ++> list_rel R).
Proof.
intros A1 A2 R l1 l2 Hl.
induction Hl as [ | x1 x2 Hx l1 l2 Hl IHl]; simpl.
- firstorder.
- constructor; eauto.
Qed.
Global Instance map_rel:
Monotonic
(@map)
(forallr RA, forallr RB, (RA ++> RB) ++> list_rel RA ++> list_rel RB).
Proof.
intros A1 A2 RA B1 B2 RB f g Hfg l1 l2 Hl.
induction Hl; constructor; eauto.
Qed.
Global Instance fold_right_rel:
Monotonic
(@fold_right)
(forallr RA, forallr RB, (RB ++> RA ++> RA) ++> RA ++> list_rel RB ++> RA).
Proof.
intros A1 A2 RA B1 B2 RB f g Hfg a1 a2 Ha l1 l2 Hl.
induction Hl; simpl; eauto.
eapply Hfg; eauto.
Qed.
Global Instance fold_left_rel:
Monotonic
(@fold_left)
(forallr RA, forallr RB, (RA ++> RB ++> RA) ++> list_rel RB ++> RA ++> RA).
Proof.
intros A1 A2 RA B1 B2 RB f g Hfg l1 l2 Hl.
induction Hl; simpl.
- firstorder.
- intros a1 a2 Ha.
eapply IHHl.
eapply Hfg; assumption.
Qed.
Lemma fold_impl_rstep (A B: Prop):
RStep (impl A B) (A → B).
Proof.
firstorder.
Qed.
Hint Extern 1 (RStep _ (_ → _)) ⇒
eapply fold_impl_rstep : typeclass_instances.
Global Instance all_monotonic {A}:
Monotonic (@all A) ((- ==> impl) ++> impl).
Proof.
intros P Q HPQ H x.
apply HPQ.
apply H.
Qed.
Global Instance all_monotonic_params:
Params (@all) 1.
Global Instance ex_monotonic A:
Monotonic (@ex A) ((- ==> impl) ++> impl).
Proof.
intros P Q HPQ [x Hx].
∃ x.
apply HPQ.
assumption.
Qed.
Global Instance ex_monotonic_params:
Params (@ex) 1.
Global Instance and_monotonic:
Monotonic (@and) (impl ++> impl ++> impl).
Proof.
intros P1 P2 HP Q1 Q2 HQ [HP1 HQ1].
eauto.
Qed.
Global Instance or_monotonic:
Monotonic (@or) (impl ++> impl ++> impl).
Proof.
intros P1 P2 HP Q1 Q2 HQ [HP1|HQ1];
eauto.
Qed.