Library coqrel.Relators

Require Export RelDefinitions.
Require Import RelClasses.
Require Import Coq.Lists.List.

Relators

With this infrastructure in place, we can define actual relators that cover the commonly used type constructors. There are two broad categories: those related to function types, and those derived from inductive types.
As a convention, we name relators and the associated monotonicity theorems by appending the suffix _rel to the name of original type and those of its constructors. Likewise, we use the suffix _subrel for monotonicity theorems that characterize the variance of corresponding relators with respect to subrel, and the suffix _relim for an associated instance of RElim.

A note about universes

Our use of subrel illustrates the fact that we consider relations over relations, and use relators to build up relations over the types of our relators to characterize their variance. In other words: we relate all kind of higher-order things as a matter of course and make sure our library eats its own dog food. This makes it relatively easy to run into universe inconsistency issues. This note is to explain why those happen, fix the terminology, and formulate best practices to avoid such problems.
The critical universe level in Coqrel is the universe U from which the arguments and return type of rel are taken (so that conceptually we will write rel : U U U). We will call "small types" the inhabitants of U, and "large types" those taken from a universe strictly larger than U. At the moment, U is implicit, but at some point we may want declare an explicit Universe to aid debugging and enhance clarity.
Generally speaking, U is a pretty large universe: for the most part, the world of relational things sits well above the world of the things we want relate, no matter how high-order those are. Even rel A B is still a small type, so that @subrel : A B : U, rel (rel A B) (rel A B) above didn't cause any issue, although the type of rel itself, namely U U U : U+1, is of course a large type.
With this in mind, consider the relational operator rel_compose : A B C, rel A B rel B C rel A C. We wish to register a monotonicity property for rel_compose, establishing that composing larger relations yields a larger composite relation. As usual, we express this property by establishing that rel_compose is related to itself by an appropriate relation. However, the type of rel_compose may involve U : U+1 as the type of the arguments A B C, so that the type of rel_compose may itself be forced into sort U+1. Consequently, attempting to define that relation will yield a universe inconsistency as soon as, say, subrel is used as an argument of rel_compose.
Fortunately, even if A B C : U, the specialized form rel_compose A B C is still in the small type rel A B rel B C rel A C : U. Moreover, there is no relational structure that we want to capture regarding the type parameters A B C, so that we don't lose anything by defining our monotonicity property for the specialized rel_compose A B C, as long as the property itself is generic in the specific values of A B C.
This is why, as a general rule, we define the foo_subrel properties of our relators on partially applied versions thereof, and use a foo_subrel_params hint to make sure our monotonicity tactic can resolve them.

Relators for function types

Pointwise extension of a relation

One useful special case is the pointwise extension of a relation on the domain to the function type. This is equivalent to eq ==> R, however with the formulation below we don't have consider two equal elements of the domain.

Definition arrow_pointwise_rel A {B1 B2}:
  rel B1 B2 rel (A B1) (A B2) :=
    fun RB f g a, RB (f a) (g a).

Arguments arrow_pointwise_rel A%type {B1%type B2%type} RB%rel _ _.

Notation "- ==> R" := (arrow_pointwise_rel _ R)
  (at level 55, right associativity) : rel_scope.

Global Instance arrow_pointwise_subrel {A B1 B2}:
  Monotonic (@arrow_pointwise_rel A B1 B2) (subrel ++> subrel).
Proof.
  firstorder.
Qed.

Global Instance arrow_pointwise_subrel_params:
  Params (@arrow_pointwise_rel) 3.

Lemma arrow_pointwise_rintro {A B1 B2} (R: rel B1 B2) f g:
  RIntro ( x: A, R (f x) (g x)) (- ==> R) f g.
Proof.
  firstorder.
Qed.

Hint Extern 0 (RIntro _ (- ==> _) _ _) ⇒
  eapply arrow_pointwise_rintro : typeclass_instances.

Note that although the elimination rule could use a single variable and dispense with the equality premise, it actually uses two distinct variables m and n, and a premise in P that m = n. Hence the effect is similar to the elimination rule for the equivalent relation eq ==> R. We do this because in contexts where we have a single term t against which both m and n unify, it is easy and cheap to automatically prove that t = t, but in contexts where we have two disctinct variables and a proof of equality, it is more involved to massage the goal into a form where the single-variable version of the rule could apply.

Lemma arrow_pointwise_relim {A B1 B2} (R: rel B1 B2) f g (m n: A) P Q:
  RElim R (f m) (g n) P Q
  RElim (- ==> R) f g (m = n P) Q.
Proof.
  intros HPQ Hfg [Hab HP].
  subst.
  firstorder.
Qed.

Hint Extern 1 (RElim (- ==> _) _ _ _ _) ⇒
  eapply arrow_pointwise_relim : typeclass_instances.

Dependent pointwise extension

Like we did for non-dependent functions, we can provide a simpler definition for the special case where E is eq.

Definition forall_pointwise_rel {V: Type} {FV1 FV2: V Type}:
    ( v, rel (FV1 v) (FV2 v))
    rel ( v, FV1 v) ( v, FV2 v) :=
  fun FE f g
     v, FE v (f v) (g v).

Arguments forall_pointwise_rel {V%type FV1%type FV2%type} FE%rel _ _.

Notation "'forallr' - @ v : V , FE" :=
  (forall_pointwise_rel (V := V) (fun vFE))
  (v ident, at level 200).

Notation "'forallr' - @ v , FE" :=
  (forall_pointwise_rel (fun vFE))
  (v ident, at level 200).

Notation "'forallr' - : V , FE" :=
  (forall_pointwise_rel (V := V) (fun _FE))
  (at level 200).

Notation "'forallr' - , FE" :=
  (forall_pointwise_rel (fun _FE))
  (at level 200).

Lemma forall_pointwise_rintro {V FV1 FV2} (FE: v, rel _ _) f g:
  RIntro
    ( v, FE v (f v) (g v))
    (@forall_pointwise_rel V FV1 FV2 FE) f g.
Proof.
  firstorder.
Qed.

Hint Extern 0 (RIntro _ (forall_pointwise_rel _) _ _) ⇒
  eapply forall_pointwise_rintro : typeclass_instances.

Lemma forall_pointwise_relim {V FV1 FV2} R f g v P Q:
  RElim (R v) (f v) (g v) P Q
  RElim (@forall_pointwise_rel V FV1 FV2 R) f g P Q.
Proof.
  firstorder.
Qed.

Hint Extern 1 (RElim (forall_pointwise_rel _) _ _ _ _) ⇒
  eapply forall_pointwise_relim : typeclass_instances.

Dependent products (restricted version)

This is a restricted version of forall_rel with E in Prop, when the codomain relation only depends on the arguments.

Definition forallp_rel {V1 V2} (E: rel V1 V2) {FV1: V1Type} {FV2: V2Type}:
    ( v1 v2, rel (FV1 v1) (FV2 v2))
    rel ( v1, FV1 v1) ( v2, FV2 v2) :=
  fun FE f g
     v1 v2, E v1 v2 FE v1 v2 (f v1) (g v2).

Arguments forallp_rel {V1%type V2%type} E%rel {FV1%type FV2%type} FE%rel _ _.

Notation "'forallr' v1 v2 : E , R" :=
  (forallp_rel E (fun v1 v2R))
  (at level 200, v1 ident, v2 ident, right associativity)
  : rel_scope.

Lemma forallp_rintro {V1 V2} {E: rel V1 V2} {F1 F2} (FE: v1 v2, rel _ _) f g:
  RIntro
    ( v1 v2, E v1 v2 FE v1 v2 (f v1) (g v2))
    (@forallp_rel V1 V2 E F1 F2 FE) f g.
Proof.
  firstorder.
Qed.

Hint Extern 0 (RIntro _ (forallp_rel _ _) _ _) ⇒
  eapply forallp_rintro : typeclass_instances.

Since e : E v1 v2 cannot be unified in Q, the elimination rule adds an E v1 v2 premise to P instead.

Lemma forallp_relim {V1 V2 E FV1 FV2} R f g v1 v2 P Q:
  RElim (R v1 v2) (f v1) (g v2) P Q
  RElim (@forallp_rel V1 V2 E FV1 FV2 R) f g (E v1 v2 P) Q.
Proof.
  firstorder.
Qed.

Hint Extern 1 (RElim (forallp_rel _ _) _ _ _ _) ⇒
  eapply forallp_relim : typeclass_instances.

TODO: A further specialization could be foralln_rel, which does not even require that v1, v2 be related (let alone care about the proof). In other words, a forallr v1 v2, R which would essentially boil down to forallr v1 v2 : ⊤, R.

Sets (A Prop)

Sets of type A Prop can be related using the regular arrow relator, as in R ++> impl. This states that for any two elements related by R, if the first is in the first set, then the second must be in the second set.
However, very often we need the following relator instead, which states that for any element of the first set, there exists an element of the second set which is related to it. This is useful for example when defining simulation diagrams.

Definition set_rel {A B} (R: rel A B): rel (A Prop) (B Prop) :=
  fun sA sB a, sA a b, sB b R a b.

Global Instance set_subrel {A B}:
  Monotonic (@set_rel A B) (subrel ++> subrel).
Proof.
  intros R1 R2 HR sA sB Hs.
  intros x Hx.
  destruct (Hs x) as (y & Hy & Hxy); eauto.
Qed.

Global Instance set_subrel_params:
  Params (@set_rel) 3.

Inductive types

For inductive types, there is a systematic way of converting their definition into that of the corresponding relator. Where the original inductive definition quantifies over types, the corresponding relator will quantify over pairs of types and relations between them. Then, the constructors of the relator will essentially be Proper instances for the original constructors. In other words, the resulting relation will be the smallest one such that the constructors are order-preserving.

Nullary type constructors

As a proof-of-concept, we start with the most elementary types Empty_set and unit, which can be considered as nullary type constructors related to sum and prod below.

Inductive Empty_set_rel: rel Empty_set Empty_set := .

Inductive unit_rel: rel unit unit :=
  tt_rel: Proper unit_rel tt.

Global Existing Instance tt_rel.

Sum types

The definition of sum_rel could look something like this:
    Inductive sum_rel:
      forall {A1 A2 B1 B2}, rel A1 A2 -> rel B1 B2 -> rel (A1+B1) (A2+B2):=
      | inl_rel: Proper (∀ RA : rel, ∀ RB : rel, RA ++> sum_rel RA RB) (@inl)
      | inr_rel: Proper (∀ RA : rel, ∀ RB : rel, RB ++> sum_rel RA RB) (@inr).
However, to minimize the need for inversions we want to keep as many arguments as possible as parameters of the inductive type.

Inductive sum_rel {A1 A2 B1 B2} RA RB: rel (A1 + B1)%type (A2 + B2)%type :=
  | inl_rel_def: (RA ++> sum_rel RA RB)%rel (@inl A1 B1) (@inl A2 B2)
  | inr_rel_def: (RB ++> sum_rel RA RB)%rel (@inr A1 B1) (@inr A2 B2).

Infix "+" := sum_rel : rel_scope.

Since it is not possible to retype the constructors after the fact, we use the _def suffix when defining them, then redeclare a corresponding, full-blown Proper instance.

Global Instance inl_rel:
  Monotonic (@inl) (forallr RA, forallr RB, RA ++> RA + RB).
Proof.
  repeat intro; apply inl_rel_def; assumption.
Qed.

Global Instance inr_rel:
  Monotonic (@inr) (forallr RA, forallr RB, RB ++> RA + RB).
Proof.
  repeat intro; apply inr_rel_def; assumption.
Qed.

Global Instance sum_subrel {A1 A2 B1 B2}:
  Monotonic (@sum_rel A1 A2 B1 B2) (subrel ++> subrel ++> subrel).
Proof.
  intros RA1 RA2 HRA RB1 RB2 HRB.
  intros x1 x2 Hx.
  destruct Hx; constructor; eauto.
Qed.

Global Instance sum_subrel_params:
  Params (@sum) 4.

Lemma sum_rel_refl {A B} (R1: rel A A) (R2: rel B B):
  Reflexive R1 Reflexive R2 Reflexive (R1 + R2).
Proof.
  intros H1 H2 x.
  destruct x; constructor; reflexivity.
Qed.

Hint Extern 2 (Reflexive (_ + _)) ⇒
  eapply sum_rel_refl : typeclass_instances.

Lemma sum_rel_corefl {A B} (R1: rel A A) (R2: rel B B):
  Coreflexive R1 Coreflexive R2 Coreflexive (R1 + R2).
Proof.
  intros H1 H2 _ _ [x y H | x y H];
  f_equal;
  eauto using coreflexivity.
Qed.

Hint Extern 2 (Coreflexive (_ + _)) ⇒
  eapply sum_rel_corefl : typeclass_instances.

Lemma sum_rel_trans {A B} (R1: rel A A) (R2: rel B B):
  Transitive R1 Transitive R2 Transitive (R1 + R2).
Proof.
  intros H1 H2 x y z Hxy Hyz.
  destruct Hxy; inversion Hyz; constructor; etransitivity; eassumption.
Qed.

Hint Extern 2 (Transitive (_ + _)) ⇒
  eapply sum_rel_trans : typeclass_instances.

Lemma sum_rel_sym {A B} (R1: rel A A) (R2: rel B B):
  Symmetric R1 Symmetric R2 Symmetric (R1 + R2).
Proof.
  intros H1 H2 x y Hxy.
  destruct Hxy; constructor; symmetry; eassumption.
Qed.

Hint Extern 2 (Symmetric (_ + _)) ⇒
  eapply sum_rel_sym : typeclass_instances.

Lemma sum_rel_preorder {A B} (R1: rel A A) (R2: rel B B):
  PreOrder R1 PreOrder R2 PreOrder (R1 + R2).
Proof.
  split; typeclasses eauto.
Qed.

Hint Extern 2 (PreOrder (_ + _)) ⇒
  eapply sum_rel_preorder : typeclass_instances.

Pairs


Definition prod_rel {A1 A2 B1 B2} RA RB: rel (A1 × B1)%type (A2 × B2)%type :=
  fun x1 x2RA (fst x1) (fst x2) RB (snd x1) (snd x2).

Infix "×" := prod_rel : rel_scope.

Global Instance pair_rel:
  Monotonic (@pair) (forallr RA, forallr RB, RA ++> RB ++> RA × RB).
Proof.
  intros A1 A2 RA B1 B2 RB a1 a2 Ha b1 b2 Hb.
  red.
  eauto.
Qed.

Global Instance fst_rel:
  Monotonic (@fst) (forallr RA, forallr RB, RA × RB ==> RA).
Proof.
  intros A1 A2 RA B1 B2 RB.
  intros x1 x2 [Ha Hb].
  assumption.
Qed.

Global Instance snd_rel:
  Monotonic (@snd) (forallr RA, forallr RB, RA × RB ==> RB).
Proof.
  intros A1 A2 RA B1 B2 RB.
  intros x1 x2 [Ha Hb].
  assumption.
Qed.

Global Instance prod_subrel {A1 A2 B1 B2}:
  Monotonic (@prod_rel A1 A2 B1 B2) (subrel ++> subrel ++> subrel).
Proof.
  firstorder.
Qed.

Global Instance prod_subrel_params:
  Params (@prod_rel) 4.

Global Instance prod_rdestruct {A1 B1 A2 B2} (RA: rel A1 A2) (RB: rel B1 B2):
  RDestruct
    (RA × RB)%rel
    (fun P a1 a2 b1 b2, RA a1 a2 RB b1 b2 P (a1, b1) (a2, b2)).
Proof.
  intros [a1 b1] [a2 b2] [Ha Hb] P HP.
  firstorder.
Qed.

Lemma prod_rel_refl {A B} (R1: rel A A) (R2: rel B B):
  Reflexive R1 Reflexive R2 Reflexive (R1 × R2).
Proof.
  intros H1 H2 x.
  destruct x; constructor; reflexivity.
Qed.

Hint Extern 2 (Reflexive (_ × _)) ⇒
  eapply prod_rel_refl : typeclass_instances.

Lemma prod_rel_corefl {A B} (R1: rel A A) (R2: rel B B):
  Coreflexive R1 Coreflexive R2 Coreflexive (R1 × R2).
Proof.
  intros H1 H2 [a1 b1] [a2 b2] [Ha Hb].
  f_equal; eauto using coreflexivity.
Qed.

Hint Extern 2 (Coreflexive (_ × _)) ⇒
  eapply prod_rel_corefl : typeclass_instances.

Lemma prod_rel_trans {A B} (R1: rel A A) (R2: rel B B):
  Transitive R1 Transitive R2 Transitive (R1 × R2).
Proof.
  intros H1 H2 x y z Hxy Hyz.
  destruct Hxy; inversion Hyz; constructor; etransitivity; eassumption.
Qed.

Hint Extern 2 (Transitive (_ × _)) ⇒
  eapply prod_rel_trans : typeclass_instances.

Lemma prod_rel_sym {A B} (R1: rel A A) (R2: rel B B):
  Symmetric R1 Symmetric R2 Symmetric (R1 × R2).
Proof.
  intros H1 H2 x y Hxy.
  destruct Hxy; constructor; symmetry; eassumption.
Qed.

Hint Extern 2 (Symmetric (_ × _)) ⇒
  eapply prod_rel_sym : typeclass_instances.

Lemma prod_rel_preorder {A B} (R1: rel A A) (R2: rel B B):
  PreOrder R1 PreOrder R2 PreOrder (R1 × R2).
Proof.
  split; typeclasses eauto.
Qed.

Hint Extern 2 (PreOrder (_ × _)) ⇒
  eapply prod_rel_preorder : typeclass_instances.

Option types


Inductive option_rel {A1 A2} (RA: rel A1 A2): rel (option A1) (option A2) :=
  | Some_rel_def: (RA ++> option_rel RA)%rel (@Some A1) (@Some A2)
  | None_rel_def: option_rel RA (@None A1) (@None A2).

Global Instance Some_rel:
  Monotonic (@Some) (forallr R @ A1 A2 : rel, R ++> option_rel R).
Proof.
  exact @Some_rel_def.
Qed.

Global Instance None_rel:
  Monotonic (@None) (forallr R, option_rel R).
Proof.
  exact @None_rel_def.
Qed.

Global Instance option_subrel {A1 A2}:
  Monotonic (@option_rel A1 A2) (subrel ++> subrel).
Proof.
  intros RA1 RA2 HRA.
  intros x1 x2 Hx.
  destruct Hx; constructor; eauto.
Qed.

Global Instance option_subrel_params:
  Params (@option_rel) 3.

XXX: This does not fit any of our existing patterns, we should drop it for consistency or introduce a new convention and generalize this kind of lemmas.

Lemma option_rel_some_inv A B (R: rel A B) (x: option A) (y: option B) (a: A):
  option_rel R x y
  x = Some a
   b,
    y = Some b
    R a b.
Proof.
  destruct 1; inversion 1; subst; eauto.
Qed.

Lists


Inductive list_rel {A1 A2} (R: rel A1 A2): rel (list A1) (list A2) :=
  | nil_rel_def: (list_rel R) (@nil A1) (@nil A2)
  | cons_rel_def: (R ++> list_rel R ++> list_rel R)%rel (@cons A1) (@cons A2).

Global Instance nil_rel:
  Monotonic (@nil) (forallr R, list_rel R).
Proof.
  exact @nil_rel_def.
Qed.

Global Instance cons_rel:
  Monotonic (@cons) (forallr R, R ++> list_rel R ++> list_rel R).
Proof.
  exact @cons_rel_def.
Qed.

Global Instance list_subrel {A1 A2}:
  Monotonic (@list_rel A1 A2) (subrel ++> subrel).
Proof.
  intros R S HRS x y.
  red in HRS.
  induction 1; constructor; eauto.
Qed.

Global Instance list_subrel_params:
  Params (@list_rel) 3.

Lemma list_rel_refl `(HR: Reflexive):
  Reflexive (list_rel R).
Proof.
  intros l.
  induction l; constructor; eauto.
Qed.

Hint Extern 1 (Reflexive (list_rel _)) ⇒
  eapply list_rel_refl : typeclass_instances.

Lemma list_rel_corefl `(HR: Coreflexive):
  Coreflexive (list_rel R).
Proof.
  intros l1 l2 Hl.
  induction Hl as [ | x1 x2 Hx l1 l2 Hl IHl];
  f_equal; eauto using coreflexivity.
Qed.

Hint Extern 1 (Coreflexive (list_rel _)) ⇒
  eapply list_rel_corefl : typeclass_instances.

Lemma list_rel_sym `(HR: Symmetric):
  Symmetric (list_rel R).
Proof.
  intros l1 l2 Hl.
  induction Hl; constructor; eauto.
Qed.

Hint Extern 1 (Symmetric (list_rel _)) ⇒
  eapply list_rel_sym : typeclass_instances.

Lemma list_rel_trans `(HR: Transitive):
  Transitive (list_rel R).
Proof.
  intros l1 l2 l3 Hl12 Hl23.
  revert l3 Hl23.
  induction Hl12; inversion 1; constructor; eauto.
Qed.

Hint Extern 1 (Transitive (list_rel _)) ⇒
  eapply list_rel_trans : typeclass_instances.

Global Instance length_rel:
  Monotonic
    (@length)
    (forallr R : rel, list_rel R ++> eq).
Proof.
  induction 1; simpl; congruence.
Qed.

Global Instance app_rel:
  Monotonic
    (@app)
    (forallr R : rel, list_rel R ++> list_rel R ++> list_rel R).
Proof.
  intros A1 A2 R l1 l2 Hl.
  induction Hl as [ | x1 x2 Hx l1 l2 Hl IHl]; simpl.
  - firstorder.
  - constructor; eauto.
Qed.

Global Instance map_rel:
  Monotonic
    (@map)
    (forallr RA, forallr RB, (RA ++> RB) ++> list_rel RA ++> list_rel RB).
Proof.
  intros A1 A2 RA B1 B2 RB f g Hfg l1 l2 Hl.
  induction Hl; constructor; eauto.
Qed.

Global Instance fold_right_rel:
  Monotonic
    (@fold_right)
    (forallr RA, forallr RB, (RB ++> RA ++> RA) ++> RA ++> list_rel RB ++> RA).
Proof.
  intros A1 A2 RA B1 B2 RB f g Hfg a1 a2 Ha l1 l2 Hl.
  induction Hl; simpl; eauto.
  eapply Hfg; eauto.
Qed.

Global Instance fold_left_rel:
  Monotonic
    (@fold_left)
    (forallr RA, forallr RB, (RA ++> RB ++> RA) ++> list_rel RB ++> RA ++> RA).
Proof.
  intros A1 A2 RA B1 B2 RB f g Hfg l1 l2 Hl.
  induction Hl; simpl.
  - firstorder.
  - intros a1 a2 Ha.
    eapply IHHl.
    eapply Hfg; assumption.
Qed.

Monotonicity of logical connectives


Lemma fold_impl_rstep (A B: Prop):
  RStep (impl A B) (A B).
Proof.
  firstorder.
Qed.

Hint Extern 1 (RStep _ (_ _)) ⇒
  eapply fold_impl_rstep : typeclass_instances.

Global Instance all_monotonic {A}:
  Monotonic (@all A) ((- ==> impl) ++> impl).
Proof.
  intros P Q HPQ H x.
  apply HPQ.
  apply H.
Qed.

Global Instance all_monotonic_params:
  Params (@all) 1.

Global Instance ex_monotonic A:
  Monotonic (@ex A) ((- ==> impl) ++> impl).
Proof.
  intros P Q HPQ [x Hx].
   x.
  apply HPQ.
  assumption.
Qed.

Global Instance ex_monotonic_params:
  Params (@ex) 1.

Global Instance and_monotonic:
  Monotonic (@and) (impl ++> impl ++> impl).
Proof.
  intros P1 P2 HP Q1 Q2 HQ [HP1 HQ1].
  eauto.
Qed.

Global Instance or_monotonic:
  Monotonic (@or) (impl ++> impl ++> impl).
Proof.
  intros P1 P2 HP Q1 Q2 HQ [HP1|HQ1];
  eauto.
Qed.