Library compcert.cfrontend.Clight
The Clight language: a simplified version of Compcert C where all
expressions are pure and assignments and function calls are
statements, not expressions.
Require Import Coqlib.
Require Import Errors.
Require Import Maps.
Require Import Integers.
Require Import Floats.
Require Import Values.
Require Import AST.
Require Import Memory.
Require Import Events.
Require Import Globalenvs.
Require Import Smallstep.
Require Import Ctypes.
Require Import Cop.
Abstract syntax
Expressions
Inductive expr : Type :=
| Econst_int: int → type → expr
| Econst_float: float → type → expr
| Econst_single: float32 → type → expr
| Econst_long: int64 → type → expr
| Evar: ident → type → expr
| Etempvar: ident → type → expr
| Ederef: expr → type → expr
| Eaddrof: expr → type → expr
| Eunop: unary_operation → expr → type → expr
| Ebinop: binary_operation → expr → expr → type → expr
| Ecast: expr → type → expr
| Efield: expr → ident → type → expr
| Esizeof: type → type → expr
| Ealignof: type → type → expr.
Extract the type part of a type-annotated Clight expression.
Definition typeof (e: expr) : type :=
match e with
| Econst_int _ ty ⇒ ty
| Econst_float _ ty ⇒ ty
| Econst_single _ ty ⇒ ty
| Econst_long _ ty ⇒ ty
| Evar _ ty ⇒ ty
| Etempvar _ ty ⇒ ty
| Ederef _ ty ⇒ ty
| Eaddrof _ ty ⇒ ty
| Eunop _ _ ty ⇒ ty
| Ebinop _ _ _ ty ⇒ ty
| Ecast _ ty ⇒ ty
| Efield _ _ ty ⇒ ty
| Esizeof _ ty ⇒ ty
| Ealignof _ ty ⇒ ty
end.
Statements
Definition label := ident.
Inductive statement : Type :=
| Sskip : statement
| Sassign : expr → expr → statement
| Sset : ident → expr → statement
| Scall: option ident → expr → list expr → statement
| Sbuiltin: option ident → external_function → typelist → list expr → statement
| Ssequence : statement → statement → statement
| Sifthenelse : expr → statement → statement → statement
| Sloop: statement → statement → statement
| Sbreak : statement
| Scontinue : statement
| Sreturn : option expr → statement
| Sswitch : expr → labeled_statements → statement
| Slabel : label → statement → statement
| Sgoto : label → statement
with labeled_statements : Type :=
| LSnil: labeled_statements
| LScons: option Z → statement → labeled_statements → labeled_statements.
The C loops are derived forms.
Definition Swhile (e: expr) (s: statement) :=
Sloop (Ssequence (Sifthenelse e Sskip Sbreak) s) Sskip.
Definition Sdowhile (s: statement) (e: expr) :=
Sloop s (Sifthenelse e Sskip Sbreak).
Definition Sfor (s1: statement) (e2: expr) (s3: statement) (s4: statement) :=
Ssequence s1 (Sloop (Ssequence (Sifthenelse e2 Sskip Sbreak) s3) s4).
Functions
Record function : Type := mkfunction {
fn_return: type;
fn_callconv: calling_convention;
fn_params: list (ident × type);
fn_vars: list (ident × type);
fn_temps: list (ident × type);
fn_body: statement
}.
Definition var_names (vars: list(ident × type)) : list ident :=
List.map (@fst ident type) vars.
The type of a function definition.
Definition type_of_function (f: function) : type :=
Tfunction (type_of_params (fn_params f)) (fn_return f) (fn_callconv f).
Definition type_of_fundef (f: fundef) : type :=
match f with
| Internal fd ⇒ type_of_function fd
| External id args res cc ⇒ Tfunction args res cc
end.
Programs
- a list of definitions of functions and global variables;
- the names of functions and global variables that are public (not static);
- the name of the function that acts as entry point ("main" function).
- a list of definitions for structure and union names
- the corresponding composite environment
- a proof that this environment is consistent with the definitions.
Operational semantics
Record genv := { genv_genv :> Genv.t fundef type; genv_cenv :> composite_env }.
Definition globalenv (p: program) :=
{| genv_genv := Genv.globalenv p; genv_cenv := p.(prog_comp_env) |}.
The local environment maps local variables to block references and
types. The current value of the variable is stored in the
associated memory block.
Definition env := PTree.t (block × type).
Definition empty_env: env := (PTree.empty (block × type)).
The temporary environment maps local temporaries to values.
deref_loc ty m b ofs v computes the value of a datum
of type ty residing in memory m at block b, offset ofs.
If the type ty indicates an access by value, the corresponding
memory load is performed. If the type ty indicates an access by
reference or by copy, the pointer Vptr b ofs is returned.
Inductive deref_loc (ty: type) (m: mem) (b: block) (ofs: ptrofs) : val → Prop :=
| deref_loc_value: ∀ chunk v,
access_mode ty = By_value chunk →
Mem.loadv chunk m (Vptr b ofs) = Some v →
deref_loc ty m b ofs v
| deref_loc_reference:
access_mode ty = By_reference →
deref_loc ty m b ofs (Vptr b ofs)
| deref_loc_copy:
access_mode ty = By_copy →
deref_loc ty m b ofs (Vptr b ofs).
Symmetrically, assign_loc ty m b ofs v m' returns the
memory state after storing the value v in the datum
of type ty residing in memory m at block b, offset ofs.
This is allowed only if ty indicates an access by value or by copy.
m' is the updated memory state.
CompCertX:test-compcert-protect-stack-arg As we now need to protect some locations against writing, this protection may need the global environment.
Section SEMANTICS.
Variable ge: genv.
Inductive assign_loc (ce: composite_env := ge) (ty: type) (m: mem) (b: block) (ofs: ptrofs):
val → mem → Prop :=
| assign_loc_value: ∀ v chunk m',
access_mode ty = By_value chunk →
Mem.storev chunk m (Vptr b ofs) v = Some m' →
assign_loc ty m b ofs v m'
| assign_loc_copy: ∀ b' ofs' bytes m',
access_mode ty = By_copy →
(sizeof ce ty > 0 → (alignof_blockcopy ce ty | Ptrofs.unsigned ofs')) →
(sizeof ce ty > 0 → (alignof_blockcopy ce ty | Ptrofs.unsigned ofs)) →
b' ≠ b ∨ Ptrofs.unsigned ofs' = Ptrofs.unsigned ofs
∨ Ptrofs.unsigned ofs' + sizeof ce ty ≤ Ptrofs.unsigned ofs
∨ Ptrofs.unsigned ofs + sizeof ce ty ≤ Ptrofs.unsigned ofs' →
Mem.loadbytes m b' (Ptrofs.unsigned ofs') (sizeof ce ty) = Some bytes →
Mem.storebytes m b (Ptrofs.unsigned ofs) bytes = Some m' →
assign_loc ty m b ofs (Vptr b' ofs') m'.
Allocation of function-local variables.
alloc_variables e1 m1 vars e2 m2 allocates one memory block
for each variable declared in vars, and associates the variable
name with this block. e1 and m1 are the initial local environment
and memory state. e2 and m2 are the final local environment
and memory state.
Inductive alloc_variables: env → mem →
list (ident × type) →
env → mem → Prop :=
| alloc_variables_nil:
∀ e m,
alloc_variables e m nil e m
| alloc_variables_cons:
∀ e m id ty vars m1 b1 m2 e2,
Mem.alloc m 0 (sizeof ge ty) = (m1, b1) →
alloc_variables (PTree.set id (b1, ty) e) m1 vars e2 m2 →
alloc_variables e m ((id, ty) :: vars) e2 m2.
Initialization of local variables that are parameters to a function.
bind_parameters e m1 params args m2 stores the values args
in the memory blocks corresponding to the variables params.
m1 is the initial memory state and m2 the final memory state.
Inductive bind_parameters (e: env):
mem → list (ident × type) → list val →
mem → Prop :=
| bind_parameters_nil:
∀ m,
bind_parameters e m nil nil m
| bind_parameters_cons:
∀ m id ty params v1 vl b m1 m2,
PTree.get id e = Some(b, ty) →
assign_loc ty m b Ptrofs.zero v1 m1 →
bind_parameters e m1 params vl m2 →
bind_parameters e m ((id, ty) :: params) (v1 :: vl) m2.
Initialization of temporary variables
Fixpoint create_undef_temps (temps: list (ident × type)) : temp_env :=
match temps with
| nil ⇒ PTree.empty val
| (id, t) :: temps' ⇒ PTree.set id Vundef (create_undef_temps temps')
end.
Initialization of temporary variables that are parameters to a function.
Fixpoint bind_parameter_temps (formals: list (ident × type)) (args: list val)
(le: temp_env) : option temp_env :=
match formals, args with
| nil, nil ⇒ Some le
| (id, t) :: xl, v :: vl ⇒ bind_parameter_temps xl vl (PTree.set id v le)
| _, _ ⇒ None
end.
Return the list of blocks in the codomain of e, with low and high bounds.
Definition block_of_binding (id_b_ty: ident × (block × type)) :=
match id_b_ty with (id, (b, ty)) ⇒ (b, 0, sizeof ge ty) end.
Definition blocks_of_env (e: env) : list (block × Z × Z) :=
List.map block_of_binding (PTree.elements e).
Optional assignment to a temporary
Definition set_opttemp (optid: option ident) (v: val) (le: temp_env) :=
match optid with
| None ⇒ le
| Some id ⇒ PTree.set id v le
end.
Selection of the appropriate case of a switch, given the value n
of the selector expression.
Fixpoint select_switch_default (sl: labeled_statements): labeled_statements :=
match sl with
| LSnil ⇒ sl
| LScons None s sl' ⇒ sl
| LScons (Some i) s sl' ⇒ select_switch_default sl'
end.
Fixpoint select_switch_case (n: Z) (sl: labeled_statements): option labeled_statements :=
match sl with
| LSnil ⇒ None
| LScons None s sl' ⇒ select_switch_case n sl'
| LScons (Some c) s sl' ⇒ if zeq c n then Some sl else select_switch_case n sl'
end.
Definition select_switch (n: Z) (sl: labeled_statements): labeled_statements :=
match select_switch_case n sl with
| Some sl' ⇒ sl'
| None ⇒ select_switch_default sl
end.
Turn a labeled statement into a sequence
Fixpoint seq_of_labeled_statement (sl: labeled_statements) : statement :=
match sl with
| LSnil ⇒ Sskip
| LScons _ s sl' ⇒ Ssequence s (seq_of_labeled_statement sl')
end.
eval_expr ge e m a v defines the evaluation of expression a
in r-value position. v is the value of the expression.
e is the current environment and m is the current memory state.
Inductive eval_expr: expr → val → Prop :=
| eval_Econst_int: ∀ i ty,
eval_expr (Econst_int i ty) (Vint i)
| eval_Econst_float: ∀ f ty,
eval_expr (Econst_float f ty) (Vfloat f)
| eval_Econst_single: ∀ f ty,
eval_expr (Econst_single f ty) (Vsingle f)
| eval_Econst_long: ∀ i ty,
eval_expr (Econst_long i ty) (Vlong i)
| eval_Etempvar: ∀ id ty v,
le!id = Some v →
eval_expr (Etempvar id ty) v
| eval_Eaddrof: ∀ a ty loc ofs,
eval_lvalue a loc ofs →
eval_expr (Eaddrof a ty) (Vptr loc ofs)
| eval_Eunop: ∀ op a ty v1 v,
eval_expr a v1 →
sem_unary_operation op v1 (typeof a) m = Some v →
eval_expr (Eunop op a ty) v
| eval_Ebinop: ∀ op a1 a2 ty v1 v2 v,
eval_expr a1 v1 →
eval_expr a2 v2 →
sem_binary_operation ge op v1 (typeof a1) v2 (typeof a2) m = Some v →
eval_expr (Ebinop op a1 a2 ty) v
| eval_Ecast: ∀ a ty v1 v,
eval_expr a v1 →
sem_cast v1 (typeof a) ty m = Some v →
eval_expr (Ecast a ty) v
| eval_Esizeof: ∀ ty1 ty,
eval_expr (Esizeof ty1 ty) (Vptrofs (Ptrofs.repr (sizeof ge ty1)))
| eval_Ealignof: ∀ ty1 ty,
eval_expr (Ealignof ty1 ty) (Vptrofs (Ptrofs.repr (alignof ge ty1)))
| eval_Elvalue: ∀ a loc ofs v,
eval_lvalue a loc ofs →
deref_loc (typeof a) m loc ofs v →
eval_expr a v
eval_lvalue ge e m a b ofs defines the evaluation of expression a
in l-value position. The result is the memory location b, ofs
that contains the value of the expression a.
with eval_lvalue: expr → block → ptrofs → Prop :=
| eval_Evar_local: ∀ id l ty,
e!id = Some(l, ty) →
eval_lvalue (Evar id ty) l Ptrofs.zero
| eval_Evar_global: ∀ id l ty,
e!id = None →
Genv.find_symbol ge id = Some l →
eval_lvalue (Evar id ty) l Ptrofs.zero
| eval_Ederef: ∀ a ty l ofs,
eval_expr a (Vptr l ofs) →
eval_lvalue (Ederef a ty) l ofs
| eval_Efield_struct: ∀ a i ty l ofs id co att delta,
eval_expr a (Vptr l ofs) →
typeof a = Tstruct id att →
ge.(genv_cenv)!id = Some co →
field_offset ge i (co_members co) = OK delta →
eval_lvalue (Efield a i ty) l (Ptrofs.add ofs (Ptrofs.repr delta))
| eval_Efield_union: ∀ a i ty l ofs id co att,
eval_expr a (Vptr l ofs) →
typeof a = Tunion id att →
ge.(genv_cenv)!id = Some co →
eval_lvalue (Efield a i ty) l ofs.
Scheme eval_expr_ind2 := Minimality for eval_expr Sort Prop
with eval_lvalue_ind2 := Minimality for eval_lvalue Sort Prop.
Combined Scheme eval_expr_lvalue_ind from eval_expr_ind2, eval_lvalue_ind2.
eval_exprlist ge e m al tyl vl evaluates a list of r-value
expressions al, cast their values to the types given in tyl,
and produces the list of cast values vl. It is used to
evaluate the arguments of function calls.
Inductive eval_exprlist: list expr → typelist → list val → Prop :=
| eval_Enil:
eval_exprlist nil Tnil nil
| eval_Econs: ∀ a bl ty tyl v1 v2 vl,
eval_expr a v1 →
sem_cast v1 (typeof a) ty m = Some v2 →
eval_exprlist bl tyl vl →
eval_exprlist (a :: bl) (Tcons ty tyl) (v2 :: vl).
End EXPR.
Inductive cont: Type :=
| Kstop: cont
| Kseq: statement → cont → cont
| Kloop1: statement → statement → cont → cont
| Kloop2: statement → statement → cont → cont
| Kswitch: cont → cont
| Kcall: option ident →
function →
env →
temp_env →
cont → cont.
Pop continuation until a call or stop
Fixpoint call_cont (k: cont) : cont :=
match k with
| Kseq s k ⇒ call_cont k
| Kloop1 s1 s2 k ⇒ call_cont k
| Kloop2 s1 s2 k ⇒ call_cont k
| Kswitch k ⇒ call_cont k
| _ ⇒ k
end.
Definition is_call_cont (k: cont) : Prop :=
match k with
| Kstop ⇒ True
| Kcall _ _ _ _ _ ⇒ True
| _ ⇒ False
end.
States
Inductive state {memory_model_ops: Mem.MemoryModelOps mem}: Type :=
| State
(f: function)
(s: statement)
(k: cont)
(e: env)
(le: temp_env)
(m: mem) : state
| Callstate
(fd: fundef)
(args: list val)
(k: cont)
(m: mem) : state
| Returnstate
(res: val)
(k: cont)
(m: mem) : state.
Find the statement and manufacture the continuation
corresponding to a label
Fixpoint find_label (lbl: label) (s: statement) (k: cont)
{struct s}: option (statement × cont) :=
match s with
| Ssequence s1 s2 ⇒
match find_label lbl s1 (Kseq s2 k) with
| Some sk ⇒ Some sk
| None ⇒ find_label lbl s2 k
end
| Sifthenelse a s1 s2 ⇒
match find_label lbl s1 k with
| Some sk ⇒ Some sk
| None ⇒ find_label lbl s2 k
end
| Sloop s1 s2 ⇒
match find_label lbl s1 (Kloop1 s1 s2 k) with
| Some sk ⇒ Some sk
| None ⇒ find_label lbl s2 (Kloop2 s1 s2 k)
end
| Sswitch e sl ⇒
find_label_ls lbl sl (Kswitch k)
| Slabel lbl' s' ⇒
if ident_eq lbl lbl' then Some(s', k) else find_label lbl s' k
| _ ⇒ None
end
with find_label_ls (lbl: label) (sl: labeled_statements) (k: cont)
{struct sl}: option (statement × cont) :=
match sl with
| LSnil ⇒ None
| LScons _ s sl' ⇒
match find_label lbl s (Kseq (seq_of_labeled_statement sl') k) with
| Some sk ⇒ Some sk
| None ⇒ find_label_ls lbl sl' k
end
end.
Semantics for allocation of variables and binding of parameters at
function entry. Two semantics are supported: one where
parameters are local variables, reside in memory, and can have their address
taken; the other where parameters are temporary variables and do not reside
in memory. We parameterize the step transition relation over the
parameter binding semantics, then instantiate it later to give the two
semantics described above.
Transition relation
Inductive step: state → trace → state → Prop :=
| step_assign: ∀ f a1 a2 k e le m loc ofs v2 v m',
eval_lvalue e le m a1 loc ofs →
eval_expr e le m a2 v2 →
sem_cast v2 (typeof a2) (typeof a1) m = Some v →
assign_loc (typeof a1) m loc ofs v m' →
step (State f (Sassign a1 a2) k e le m)
E0 (State f Sskip k e le m')
| step_set: ∀ f id a k e le m v,
eval_expr e le m a v →
step (State f (Sset id a) k e le m)
E0 (State f Sskip k e (PTree.set id v le) m)
| step_call: ∀ f optid a al k e le m tyargs tyres cconv vf vargs fd,
classify_fun (typeof a) = fun_case_f tyargs tyres cconv →
eval_expr e le m a vf →
eval_exprlist e le m al tyargs vargs →
Genv.find_funct ge vf = Some fd →
type_of_fundef fd = Tfunction tyargs tyres cconv →
step (State f (Scall optid a al) k e le m)
E0 (Callstate fd vargs (Kcall optid f e le k) m)
| step_builtin: ∀ f optid ef tyargs al k e le m vargs t vres m',
eval_exprlist e le m al tyargs vargs →
external_call ef ge vargs m t vres m' →
∀ BUILTIN_ENABLED: builtin_enabled ef,
step (State f (Sbuiltin optid ef tyargs al) k e le m)
t (State f Sskip k e (set_opttemp optid vres le) m')
| step_seq: ∀ f s1 s2 k e le m,
step (State f (Ssequence s1 s2) k e le m)
E0 (State f s1 (Kseq s2 k) e le m)
| step_skip_seq: ∀ f s k e le m,
step (State f Sskip (Kseq s k) e le m)
E0 (State f s k e le m)
| step_continue_seq: ∀ f s k e le m,
step (State f Scontinue (Kseq s k) e le m)
E0 (State f Scontinue k e le m)
| step_break_seq: ∀ f s k e le m,
step (State f Sbreak (Kseq s k) e le m)
E0 (State f Sbreak k e le m)
| step_ifthenelse: ∀ f a s1 s2 k e le m v1 b,
eval_expr e le m a v1 →
bool_val v1 (typeof a) m = Some b →
step (State f (Sifthenelse a s1 s2) k e le m)
E0 (State f (if b then s1 else s2) k e le m)
| step_loop: ∀ f s1 s2 k e le m,
step (State f (Sloop s1 s2) k e le m)
E0 (State f s1 (Kloop1 s1 s2 k) e le m)
| step_skip_or_continue_loop1: ∀ f s1 s2 k e le m x,
x = Sskip ∨ x = Scontinue →
step (State f x (Kloop1 s1 s2 k) e le m)
E0 (State f s2 (Kloop2 s1 s2 k) e le m)
| step_break_loop1: ∀ f s1 s2 k e le m,
step (State f Sbreak (Kloop1 s1 s2 k) e le m)
E0 (State f Sskip k e le m)
| step_skip_loop2: ∀ f s1 s2 k e le m,
step (State f Sskip (Kloop2 s1 s2 k) e le m)
E0 (State f (Sloop s1 s2) k e le m)
| step_break_loop2: ∀ f s1 s2 k e le m,
step (State f Sbreak (Kloop2 s1 s2 k) e le m)
E0 (State f Sskip k e le m)
| step_return_0: ∀ f k e le m m',
Mem.free_list m (blocks_of_env e) = Some m' →
step (State f (Sreturn None) k e le m)
E0 (Returnstate Vundef (call_cont k) m')
| step_return_1: ∀ f a k e le m v v' m',
eval_expr e le m a v →
sem_cast v (typeof a) f.(fn_return) m = Some v' →
Mem.free_list m (blocks_of_env e) = Some m' →
step (State f (Sreturn (Some a)) k e le m)
E0 (Returnstate v' (call_cont k) m')
| step_skip_call: ∀ f k e le m m',
is_call_cont k →
Mem.free_list m (blocks_of_env e) = Some m' →
step (State f Sskip k e le m)
E0 (Returnstate Vundef k m')
| step_switch: ∀ f a sl k e le m v n,
eval_expr e le m a v →
sem_switch_arg v (typeof a) = Some n →
step (State f (Sswitch a sl) k e le m)
E0 (State f (seq_of_labeled_statement (select_switch n sl)) (Kswitch k) e le m)
| step_skip_break_switch: ∀ f x k e le m,
x = Sskip ∨ x = Sbreak →
step (State f x (Kswitch k) e le m)
E0 (State f Sskip k e le m)
| step_continue_switch: ∀ f k e le m,
step (State f Scontinue (Kswitch k) e le m)
E0 (State f Scontinue k e le m)
| step_label: ∀ f lbl s k e le m,
step (State f (Slabel lbl s) k e le m)
E0 (State f s k e le m)
| step_goto: ∀ f lbl k e le m s' k',
find_label lbl f.(fn_body) (call_cont k) = Some (s', k') →
step (State f (Sgoto lbl) k e le m)
E0 (State f s' k' e le m)
| step_internal_function: ∀ f vargs k m e le m1,
function_entry ge f vargs m e le m1 →
step (Callstate (Internal f) vargs k m)
E0 (State f f.(fn_body) k e le m1)
| step_external_function: ∀ ef targs tres cconv vargs k m vres t m',
external_call ef ge vargs m t vres m' →
step (Callstate (External ef targs tres cconv) vargs k m)
t (Returnstate vres k m')
| step_returnstate: ∀ v optid f e le k m,
step (Returnstate v (Kcall optid f e le k) m)
E0 (State f Sskip k e (set_opttemp optid v le) m).
Whole-program semantics
Inductive initial_state (p: program): state → Prop :=
| initial_state_intro: ∀ b f m0,
let ge := Genv.globalenv p in
Genv.init_mem p = Some m0 →
Genv.find_symbol ge p.(prog_main) = Some b →
Genv.find_funct_ptr ge b = Some f →
type_of_fundef f = Tfunction Tnil type_int32s cc_default →
initial_state p (Callstate f nil Kstop m0).
A final state is a Returnstate with an empty continuation.
Inductive final_state: state → int → Prop :=
| final_state_intro: ∀ r m,
final_state (Returnstate (Vint r) Kstop m) r.
End SEMANTICS.
The two semantics for function parameters. First, parameters as local variables.
Inductive function_entry1 (ge: genv) (f: function) (vargs: list val) (m: mem) (e: env) (le: temp_env) (m': mem) : Prop :=
| function_entry1_intro: ∀ m1,
list_norepet (var_names f.(fn_params) ++ var_names f.(fn_vars)) →
alloc_variables ge empty_env m (f.(fn_params) ++ f.(fn_vars)) e m1 →
bind_parameters ge e m1 f.(fn_params) vargs m' →
le = create_undef_temps f.(fn_temps) →
function_entry1 ge f vargs m e le m'.
Definition step1 (ge: genv) := step ge (function_entry1).
Second, parameters as temporaries.
Inductive function_entry2 (ge: genv) (f: function) (vargs: list val) (m: mem) (e: env) (le: temp_env) (m': mem) : Prop :=
| function_entry2_intro:
list_norepet (var_names f.(fn_vars)) →
list_norepet (var_names f.(fn_params)) →
list_disjoint (var_names f.(fn_params)) (var_names f.(fn_temps)) →
alloc_variables ge empty_env m f.(fn_vars) e m' →
bind_parameter_temps f.(fn_params) vargs (create_undef_temps f.(fn_temps)) = Some le →
function_entry2 ge f vargs m e le m'.
Definition step2 (ge: genv) := step ge (function_entry2).
Wrapping up these definitions in two small-step semantics.
Definition semantics1 (p: program) :=
let ge := globalenv p in
Semantics_gen step1 (initial_state p) final_state ge ge.
Definition semantics2 (p: program) :=
let ge := globalenv p in
Semantics_gen step2 (initial_state p) final_state ge ge.
This semantics is receptive to changes in events.
Lemma semantics_receptive:
∀ (p: program), receptive (semantics1 p).
Proof.
intros. unfold semantics1.
set (ge := globalenv p). constructor; simpl; intros.
assert (t1 = E0 → ∃ s2, step1 ge s t2 s2).
intros. subst. inv H0. ∃ s1; auto.
inversion H; subst; auto.
exploit external_call_receptive; eauto. intros [vres2 [m2 EC2]].
econstructor; econstructor; eauto.
exploit external_call_receptive; eauto. intros [vres2 [m2 EC2]].
∃ (Returnstate vres2 k m2). econstructor; eauto.
red; simpl; intros. inv H; simpl; try omega.
eapply external_call_trace_length; eauto.
eapply external_call_trace_length; eauto.
Qed.
End WITHEXTCALLS.