Library liblayers.compcertx.ErrorMonad
Require Import compcert.lib.Axioms.
Require Export compcert.common.Errors.
Require Import liblayers.lib.ExtensionalityAxioms.
Require Export liblayers.lib.Functor.
Require Export liblayers.lib.Monad.
Require Import liblayers.lib.Decision.
Require Import liblayers.logic.Structures.
Require Import liblayers.logic.LayerData.
Require Export compcert.common.Errors.
Require Import liblayers.lib.ExtensionalityAxioms.
Require Export liblayers.lib.Functor.
Require Export liblayers.lib.Monad.
Require Import liblayers.lib.Decision.
Require Import liblayers.logic.Structures.
Require Import liblayers.logic.LayerData.
res is a monad
Global Instance res_functor_ops: FunctorOps res :=
{
fmap A B f x := Errors.bind x (fun x ⇒ Errors.OK (f x))
}.
Global Instance res_functor_prf: Functor res.
Proof.
split.
× intros A x.
destruct x; reflexivity.
× intros A B C f g x.
destruct x; reflexivity.
Qed.
Global Instance res_monad_ops: MonadOps res :=
{
ret := Errors.OK;
bind A B f x := Errors.bind x f
}.
Global Instance res_monad_prf: Monad res.
Proof.
split; try typeclasses eauto.
× intros A B f.
extensionality mx.
destruct mx; reflexivity.
× intros A B f x.
reflexivity.
× intros A mx.
destruct mx; reflexivity.
× intros A B C f g mx.
destruct mx; reflexivity.
Qed.
Global Instance res_monad_inv_ret:
MonadInvRet res.
Proof.
intros A x y Hxy.
inversion Hxy.
reflexivity.
Qed.
Global Instance res_monad_inv_bind:
MonadInvBind res.
Proof.
intros A B f ma b H.
unfold ret, bind in H; simpl in ×.
destruct ma; try discriminate.
eauto.
Qed.
Lemma res_bind_error {A B} (f: A → res B) msg:
bind f (Error msg) = Error msg.
Proof.
reflexivity.
Qed.
Hint Rewrite @res_bind_error : monad.
Inductive res_le {A B} (R: rel A B): rel (res A) (res B) :=
| res_le_ok_def:
(R ++> res_le R)%rel (@OK A) (@OK B)
| res_le_error (msg: errmsg):
UpperBound (res_le R) (Error msg).
Global Existing Instance res_le_error.
Global Instance res_le_ok:
Monotonic (@OK) (forallr R, R ++> res_le R).
Proof.
exact @res_le_ok_def.
Qed.
Global Instance res_le_bind:
Monotonic
(@Errors.bind)
(forallr RA, forallr RB, res_le RA ++> (RA ++> res_le RB) ++> res_le RB).
Proof.
unfold Errors.bind.
rauto.
Qed.
Global Instance res_le_monad:
MonadRel (@res_le).
Proof.
split; simpl; rauto.
Qed.
Local Instance res_le_op `(Le): Le (res A) :=
{ le := res_le (≤) }.
Global Instance res_le_monotonic {A B}:
Monotonic (@res_le A B) (subrel ++> subrel).
Proof.
intros R1 R2 HR x y H.
destruct H; constructor.
apply HR; assumption.
Qed.
Global Instance res_le_monotonic_params:
Params (@res_le) 3.
Lemma res_le_refl `(Reflexive):
Reflexive (res_le R).
Proof.
intros [x | msg].
- constructor; reflexivity.
- constructor.
Qed.
Hint Extern 1 (Reflexive (res_le _)) ⇒
apply res_le_refl : typeclass_instances.
Lemma res_le_trans `(Transitive):
Transitive (res_le R).
Proof.
intros x y z Hxy Hyz.
destruct Hxy as [x y Hxy | x msg].
- inversion Hyz.
+ constructor.
transitivity y; trivial.
+ constructor.
- inversion Hyz.
constructor.
Qed.
Hint Extern 1 (Transitive (res_le _)) ⇒
apply res_le_trans : typeclass_instances.
Global Instance res_le_htrans {A B C} RAB RBC RAC:
HTransitive (A:=A) (B:=B) (C:=C) RAB RBC RAC →
HTransitive (res_le RAB) (res_le RBC) (res_le RAC).
Proof.
intros HR x y z Hxy Hyz.
destruct Hyz as [ y z Hyz | ]; try constructor.
inversion Hxy as [ x' y' Hxy' | ]; subst; try constructor.
htransitivity y; assumption.
Qed.
Global Instance res_le_rtrans {A B C} RAB RBC RAC:
RTransitive (A:=A) (B:=B) (C:=C) RAB RBC RAC →
RTransitive (res_le RAB) (res_le RBC) (res_le RAC).
Proof.
intros HR x z Hxz.
destruct Hxz as [ a c Hac | ].
× apply rtransitivity in Hac.
destruct Hac as (b & Hab & Hbc).
∃ (OK b).
split; constructor; assumption.
× ∃ (Error msg).
split; constructor.
Qed.
Global Instance res_lower_bound {A B} (R: rel A B) (x: A):
LowerBound R x →
LowerBound (res_le R) (OK x).
Proof.
intros H [y|m]; constructor.
apply lower_bound.
Qed.
Local Instance res_sim_op `(Tsim: Sim): Sim _ (fun D ⇒ res (T D)) :=
{ simRR D1 D2 R := res_le (sim R) }.
I'm not sure if those are still necessary now that we use the
generalized rel.
Global Instance OK_sim_monotonic `(Tsim: Sim):
Monotonic
(fun D ⇒ @OK (T D))
(forallr R, sim R ++> sim R).
Proof.
intros D1 D2 R.
apply res_le_ok.
Qed.
Global Instance res_sim_bind {V E} {A B: V → Type}:
∀ (RA: sim_relation E A) (RB: sim_relation E B),
Monotonic
(fun (v : V) ⇒ bind (A := A v) (B := B v))
(forallr e @ v1 v2 : E,
(RA v1 v2 e ++> res_le (RB v1 v2 e)) ++>
(res_le (RA v1 v2 e) ++> res_le (RB v1 v2 e))).
Proof.
intros RA RB v1 v2 e.
intros f g Hfg x y Hxy.
destruct Hxy as [x y Hxy | y msg].
× monad_norm.
apply Hfg.
assumption.
× monad_norm.
constructor.
Qed.
Global Instance res_sim_fmap {V E} {A B: V → Type}:
∀ (RA: sim_relation E A) (RB: sim_relation E B),
Monotonic
(fun (v : V) ⇒ fmap (A := A v) (B := B v))
(forallr e @ v1 v2 : E,
(RA v1 v2 e ++> RB v1 v2 e) ++>
(res_le (RA v1 v2 e) ++> res_le (RB v1 v2 e))).
Proof.
intros RA RB v1 v2 e.
intros f g Hfg x y Hxy.
destruct Hxy as [x y Hxy | y msg].
× monad_norm.
constructor.
apply Hfg.
assumption.
× monad_norm.
constructor.
Qed.
Require Import OptionOrders.
Lemma res_option_le_ok_none {A} (R: relation A) (y: res (option A)):
res_le (option_le R) (OK None) y.
Proof.
apply lower_bound.
Qed.
Hint Resolve res_option_le_ok_none: liblayers.
Definition eassert (e: errmsg) P `{HP: Decision P}: res P :=
match decide P with
| left H ⇒ ret H
| right H ⇒ Error e
end.
Lemma eassert_inv `{Pdec: Decision} {A} m (f: P → res A) (r: A):
bind f (eassert m P) = ret r ↔
∃ H, f H = ret r.
Proof.
unfold eassert.
destruct (decide P) as [HP | HP];
unfold bind; simpl.
× split; eauto.
intros [H Hf].
assert (H = HP) by apply proof_irr; congruence.
× split; try discriminate.
intros [H Hf].
tauto.
Qed.
Instance eassert_le:
Monotonic eassert (⊤ ++> forallr P Q : flip impl, ⊤ ++> res_le ⊤).
Proof.
intros msg1 msg2 _ P Q HPQ Pdec Qdec _.
unfold eassert, flip, impl in ×.
destruct (decide Q) as [HQ | HQ]; try constructor.
destruct (decide P) as [HP | HP]; try tauto.
constructor.
apply I.
Qed.
Hint Rewrite @eassert_inv using typeclasses eauto : monad.
These tactics make it easy to reduce subexpressions of the form
H <- eassert msg P; M in the goal by proving or disproving P.
Lemma eassert_true msg P `{Pdec: Decision P}:
P → ∃ H, eassert msg P = OK H.
Proof.
intros.
unfold eassert.
destruct (decide P); try contradiction.
eauto.
Defined.
Ltac eassert_true_aux msg P Pdec :=
let H := fresh "Hasserted" in
let HH := fresh "Hassert_eq" in
destruct (eassert_true msg P (Pdec := Pdec)) as [H HH];
[ idtac
| rewrite !HH in *;
clear HH;
monad_norm;
try clear H ].
Ltac eassert_true :=
lazymatch goal with
| |- context [@eassert ?msg ?P ?Pdec] ⇒
eassert_true_aux msg P Pdec
end.
Lemma eassert_false msg P `{Pdec: Decision P}:
¬P → eassert msg P = Error msg.
Proof.
intros.
unfold eassert.
destruct (decide P); try contradiction.
eauto.
Defined.
Ltac eassert_false_aux msg P Pdec :=
let H := fresh in
assert (H: ¬P);
[ idtac
| rewrite !(eassert_false msg P (Pdec:=Pdec) H);
monad_norm;
clear H ].
Ltac eassert_false :=
lazymatch goal with
| |- context [@eassert ?msg ?P ?Pdec] ⇒
eassert_false_aux msg P Pdec
end.
Definition isOK {A} (x: res A): Prop :=
∃ (a: A), x = OK a.
Definition isError {A} (x: res A): Prop :=
∃ (m: errmsg), x = Error m.
Definition isOKNone {A} (x: res (option A)) :=
x = OK None.
Global Instance isOK_dec {A} (x: res A): Decision (isOK x) :=
match x with
| OK _ ⇒ left _
| Error _ ⇒ right _
end.
Proof.
abstract (red; eauto).
abstract (intros [a Ha]; discriminate).
Defined.
Global Instance isError_dec {A} (x: res A): Decision (isError x) :=
match x with
| OK _ ⇒ right _
| Error _ ⇒ left _
end.
Proof.
abstract (intros [msg Hmsg]; discriminate).
abstract (red; eauto).
Defined.
Global Instance isOKNone_dec {A} (x: res (option A)):
Decision (isOKNone x) :=
match x with
| OK None ⇒ left _
| _ ⇒ right _
end.
Proof.
abstract (unfold isOKNone; simpl; congruence).
abstract reflexivity.
abstract (unfold isOKNone; simpl; congruence).
Defined.
Global Instance isOK_le:
Monotonic (@isOK) (forallr R, res_le R --> impl).
Proof.
intros B A R x y Hxy [x' Hx].
subst.
inversion Hxy.
∃ x.
reflexivity.
Qed.
Global Instance isError_le:
Monotonic (@isError) (forallr R, res_le R ++> impl).
Proof.
intros A B R x y Hxy Hx.
destruct Hx as [err Hx]; subst.
inversion Hxy as [| err' x]; subst.
eexists.
reflexivity.
Qed.
Instance isOKNone_le:
Monotonic (@isOKNone) (forallr R, res_le (option_le R) --> impl).
Proof.
unfold isOKNone.
intros A1 A2 RA x y Hxy Hx.
destruct Hxy as [x y Hxy | ]; try discriminate.
destruct Hxy as [x y Hxy | ]; try discriminate.
reflexivity.
Qed.
Lemma isOK_OK {A} (a: A):
isOK (OK a).
Proof.
eexists.
reflexivity.
Qed.
Lemma isOK_Error {A} msg:
¬ isOK (@Error A msg).
Proof.
intros [a Ha].
discriminate.
Qed.
Hint Resolve isOK_OK.
Lemma isOKNone_OKNone {A}:
isOKNone (OK (@None A)).
Proof.
reflexivity.
Qed.
Hint Resolve isOKNone_OKNone.
Lemma isError_Error {A} msg:
isError (@Error A msg).
Proof.
eexists.
reflexivity.
Qed.
Hint Resolve isError_Error.
Flip option (res -) <-> res (option -)
Definition res_option_flip {A} (roa: res (option A)): option (res A) :=
match roa with
| OK None ⇒ None
| OK (Some a) ⇒ Some (OK a)
| Error msg ⇒ Some (Error msg)
end.
Global Instance res_option_flip_le:
Monotonic
(@res_option_flip)
(forallr R, res_le (option_le R) ++> option_le (res_le R)).
Proof.
intros A1 A2 RA _ _ [_ _ [y | x y Hxy] | msg [[|]|]];
simpl;
rauto.
Qed.
Definition option_res_flip {A} (ora: option (res A)): res (option A) :=
match ora with
| None ⇒ OK None
| Some (OK a) ⇒ OK (Some a)
| Some (Error msg) ⇒ Error msg
end.
Lemma option_res_le_flip {A B} (R: rel A B) x y:
res_le (option_le R) (option_res_flip x) (option_res_flip y) ↔
option_le (res_le R) x y.
Proof.
destruct x as [[|]|];
destruct y as [[|]|];
split; intro H;
inversion H; subst;
try (inversion H2; subst);
repeat (constructor || assumption).
Qed.
Global Instance option_res_flip_le:
Monotonic
(@option_res_flip)
(forallr R, option_le (res_le R) ++> res_le (option_le R)).
Proof.
intros A1 A2 RA x y Hxy.
apply option_res_le_flip.
assumption.
Qed.
Lemma res_option_flip_inv {A} (x: res (option A)):
option_res_flip (res_option_flip x) = x.
Proof.
destruct x as [[x|] | msg]; reflexivity.
Qed.
Lemma option_res_flip_inv {A} (x: option (res A)):
res_option_flip (option_res_flip x) = x.
Proof.
destruct x as [[x|msg] | ]; reflexivity.
Qed.
Lemma res_option_le_flip {A B} (R: rel A B) x y:
option_le (res_le R) (res_option_flip x) (res_option_flip y) ↔
res_le (option_le R) x y.
Proof.
rewrite <- option_res_le_flip.
repeat rewrite res_option_flip_inv.
tauto.
Qed.
PseudoJoin structure for res (option -)
Require Import PseudoJoin.
Section RES_OPTION_PSEUDO_JOIN.
Global Instance res_option_oplus_op (A: Type): Oplus (res (option A)) | 10 :=
{ oplus rox roy :=
ox <- rox;
oy <- roy;
match ox, oy with
| None, None ⇒ ret None
| Some x, None ⇒ ret (Some x)
| None, Some y ⇒ ret (Some y)
| Some x, Some y ⇒ Error nil
end }.
Global Instance res_option_oplus_monotonic {A} (R: relation A):
Monotonic
(⊕)
(res_le (option_le R) ++> res_le (option_le R) ++> res_le (option_le R)).
Proof.
simpl.
unfold Errors.bind.
repeat rstep.
destruct H3 as [[y1|] | x1 y1 H1];
destruct H4 as [[y2|] | x2 y2 H2];
repeat rstep.
Qed.
Existing Instance res_le_op.
Existing Instance option_le_op.
Local Hint Extern 4 ⇒ reflexivity.
Global Instance res_option_oplus_prf (A: Type) `{Ale: Le A}:
@PreOrder A (≤) →
PseudoJoin (res (option A)) (OK None).
Proof with simpl; monad_norm; repeat constructor; reflexivity.
intros Hpre.
split; try typeclasses eauto.
× simpl (≤).
split; typeclasses eauto.
× red; rauto.
× intros [[y|]|err]...
× intros [[x|]|xerr] [[y|]|yerr] [[z|]|zerr]...
× intros [[x|]|xerr] [[y|]|yerr]...
× intros [[x|]|xerr] [[y|]|yerr]...
Qed.
In addition, we have stronger versions of those.
Global Instance res_option_oplus_id_left A:
@LeftIdentity (res (option A)) eq (⊕) (OK None).
Proof.
intros [[|]|]; reflexivity.
Qed.
Global Instance res_option_oplus_comm A:
@RightIdentity (res (option A)) eq (⊕) (OK None).
Proof.
intros [[|]|]; reflexivity.
Qed.
End RES_OPTION_PSEUDO_JOIN.
Section OPTION_RES_PSEUDO_JOIN.
Global Instance option_res_oplus_op (A: Type): Oplus (option (res A)) | 10 :=
{
oplus orx ory :=
match orx, ory with
| None, None ⇒ None
| Some x, None ⇒ Some x
| None, Some y ⇒ Some y
| Some (Error e), Some y ⇒ Some (Error e)
| Some (OK x), Some (Error e) ⇒ Some (Error e)
| Some (OK x), Some (OK y) ⇒ Some (Error nil)
end
}.
Existing Instance option_le_op.
Existing Instance res_le_op.
Global Instance option_res_oplus_prf (A: Type) `{Ale: Le A} `{Hle: PreOrder A (≤)}:
PseudoJoin (option (res A)) None.
Proof with simpl; eauto with liblayers; intros; try solve_monotonic.
split; try typeclasses eauto.
× simpl (≤); split; typeclasses eauto.
× intros x1 x2 Hx y1 y2 Hy; simpl.
destruct Hx as [ [[x2|xerr]|] | _ _ [x1 x2 Hx | xerr [x|xe]]];
destruct Hy as [ [[y2|yerr]|] | _ _ [y1 y2 Hy | yerr [y|ye]]]...
× intros [[?|?]|]...
× intros [[?|?]|] [[?|?]|] [[?|?]|]...
× intros [[?|?]|] [[?|?]|]...
× intros [[?|?]|] [[?|?]|]...
Qed.
In addition, we have a top element.
Global Instance option_res_top {A B} (R: rel A B) errmsg:
UpperBound (option_le (res_le R)) (Some (Error errmsg)).
Proof.
intro x.
destruct x as [|]; repeat constructor.
Qed.
End OPTION_RES_PSEUDO_JOIN.
Global Instance decide_res_eq `{EqDec}:
EqDec (res A).
Proof.
repeat red.
repeat decide equality.
apply (decide _).
Defined.
UpperBound (option_le (res_le R)) (Some (Error errmsg)).
Proof.
intro x.
destruct x as [|]; repeat constructor.
Qed.
End OPTION_RES_PSEUDO_JOIN.
Global Instance decide_res_eq `{EqDec}:
EqDec (res A).
Proof.
repeat red.
repeat decide equality.
apply (decide _).
Defined.